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Abstract — We investigate the numerics behind the numer-
ical solution of the Boltzmann transport equation using an ex-
pansion of the distribution function in spherical harmonics for
the purpose of electronic device simulation. Traditional imple-
mentations of higher order spherical harmonics expansions suf-
fer from huge memory requirements especially for two and three
dimensional devices. To overcome these complexity limitations,
a compressed matrix storage scheme based on Kronecker prod-
ucts is proposed, which reduces the memory requirements for
the storage of the system matrix such that the total memory
requirements are asymptotically dominated by the memory re-
quired for the unknowns.

I. INTRODUCTION

While in the early years of the semiconductor industry
macroscopic models have been sufficient for device sim-
ulation, this is not the case anymore for the small feature
sizes used today. As long as quantum mechanical effects
are not dominant, the microscopic behavior of electrons
is best described by a distribution functionf(x, k, t) that
depends on the spatial coordinatex = (x, y, z), the wave
vectork = (kx, ky, kz) and timet, and fulfills the Boltz-
mann Transport Equation (BTE).

The most commonly used method to solve the BTE is
the Monte Carlo method, with the main disadvantage of
its computational expense, especially when attempting to
reduce the statistical noise in the low density tails of the
distribution function. The most prominent alternative to
the stochastic Monte Carlo method is the deterministic
spherical harmonics expansion (SHE) method.

The major challenge of the SHE method is the huge
memory consumption reported even for two-dimensional
devices [1] at moderate expansion orders, which has so
far prohibited an application of the SHE method to three-
dimensional devices. To overcome these limitations, we
present a new system matrix compression scheme that re-
duces the memory requirements by orders of magnitude
and paves the way for three-dimensional device simula-
tions using the SHE method.

II. THE PROJECTEDEQUATIONS

Instead of an expansion of the electron distribution func-
tion into spherical harmonics, it is for reasons of numer-
ical stability of advantage to expand the generalized en-

ergy distribution function [2]

g(x, ε, θ, ϕ, t) = 2Z(ε, θ, ϕ)fν(x, k(ε, θ, ϕ), t) ,

with the generalized density of statesZ, into orthonor-
mal and real valued spherical harmonicsYl,m(θ, ϕ) and
truncate the series after(L + 1)2 terms:

g(x, ε, θ, ϕ, t) ≈
L∑

l=0

l∑

m=−l

gl,m(x, ε, t)Yl,m(θ, ϕ) .

Partial differential equations for the coefficientsgl,m are
directly obtained from projections of the BTE, which re-
sults (using Einstein’s summation convention) in

∂gl,m

∂t
+

∂F · vl′,m′

l,m gl′,m′

∂ε

+ v
l′,m′

l,m · ∇xgl′,m′ − F · Γl′,m′

l,m gl′,m′

= s
l′,m′;in

l,m gl′,m′(x, ε ∓ ~ωη, t)

− s
l′,m′;out

l,m gl′,m′ .

for all l = 0, . . . , L andm = −l, . . . , l.
It has been shown that the scattering termss

l′,m′;in

l,m and

s
l′,m′;out

l,m do not couple different expansion coefficients
in the case of spherical energy bands [2]. We show that
the coupling by the velocity termsvl′,m′

l,m and the angular

coupling termsΓl′,m′

l,m is again sparse:

Theorem 1. Under the assumption of spherical en-
ergy bands, the following holds true for indices l, l′ ∈
{0, . . . , L}, m ∈ {−l, . . . , l} and m′ ∈ {−l′, . . . , l′}:

1. If v
l′,m′

l,m is nonzero, then l ∈ {l′ ± 1} and m ∈

{±|m′| ± 1, m′}.

2. If Γ
l′,m′

l,m is nonzero, then l ∈ {l′ ± 1} and m ∈

{±|m′| ± 1, m′}.

III. DISCRETIZATION AND SYSTEM MA-
TRIX COMPRESSION

In steady state, a discretization of the expansion coeffi-
cients of the generalized distribution function is obtained
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Figure 1: Memory used for the uncompressed and the
compressed system matrix for different expansion orders
L on a two-dimensional(x, ε)-grid with 10.000 nodes.

by a Galerkin method

gl,m =

N∑

i=1

αi;l,m(t)ϕi(x, ε) ,

finally resulting in a system matrixS of size N(L +
1)2 × N(L + 1)2 with a-priori CsparseN(L + 1)4 en-
tries, whereCsparse is a constant that depends only on
the regularity of the underlying mesh. With Theorem 1,
we have shown that the number of entries in each row of
S is at most11Csparse. Consequently, there are at most
11CsparseN(L+1)2 nonzero entries inS. With the typi-
cal valuesL = 9 andCsparse = 10, the estimate becomes
11000N , which still prohibits sufficiently fine discretiza-
tions for the simulation of three-dimensional devices.

We suggest a method to decouple the spherical har-
monics expansion coefficients from the spatial discretiza-
tion, such that the system matrixS can be written as

S =

8∑

i=1

Qi ⊗ Ri , (1)

where⊗ denotes the Kronecker product. The matrices
Qi are of sizeN × N and the matricesRi are of size
(L + 1)2 × (L + 1)2 for i = 1, . . . , 8. This allows a
representation ofS using only32(L + 1)2 + 8CsparseN
numbers. SinceN is typically much larger than(L+1)2,
the full system matrix can forCsparse = 10 be stored
with roughly80N numbers, which means a reduction by
a factor137.5 compared to the uncompressed case.

IV. RESULTS

We have compared memory requirements for the storage
of the system matrix at several expansion orders in a one-
dimensional device simulation. The results in Figure 1
clearly demonstrate the asymptotic superiority of our ap-
proach: Already at an expansion order ofL = 5, memory
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Figure 2: Memory used for the system matrix in relation
to the total amount of memory used (i.e. system matrix,
unknowns and right hand side).

savings by a factor of35 are observed, which increases to
442 at L = 13. Moreover, this leads to the situation that
the memory required for the unknowns is much larger
than the memory required for the representation of the
system matrix, cf. Figure 2.

V. CONCLUSION

We have investigated the coupling structure of the SHE
equations and shown a weak coupling of the expansion
coefficients. This guarantees that the nonzero entries in
the system matrix obtained from a discretization withN
degrees of freedom in(x, ε)-space and SHE orderL are
at most11CsparseN(L+1)2 in contrast toCsparseN(L+
1)4 for the case of a dense coupling.

The proposed matrix compression scheme further re-
duces the memory requirements for the system matrix to
32(L + 1)2 + 8CsparseN ≈ 8CsparseN . While the huge
memory requirements for the storage of the full system
matrix prohibited the simulation of three-dimensional de-
vices so far, our proposed scheme paves the way for such
simulations especially for larger expansion ordersL.
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