Increased Efficiency In Finite Element Computations
Through Template Metaprogramming

Karl Rupp
Christian Doppler Laboratory for Reliability Issues in Mic roelectronics
at the Institute for Microelectronics, TU Wien
GuRhausstraBe 27—-29/E360, A-1040 Wien, Austria
rupp@iue.tuwien.ac.at

Keywords: Template Metaprogramming, Finite Elements, ble selection of the functionality needed for a particulaip

Symbolic Integration, lem at compile time.
In order to decouple algorithms acting on a certain geom-
Abstract etry, a general way to store and access quantities on domain

In the area of scientific computing, abstraction was long sai elements is necessary. Our approach works for quantities of
to be achievable only in exchange for run time efficiency.arbitrary types and is discussed in Sec. 3.

With the rise of template metaprogramming [1] in C++ in The first step towards FEM discretizations is to derive the
the 1990s, run time efficiency comparable to hand tuned codeeak formulation, which is for second order PDEs obtained
could be achieved for isolated operations such as matrixdy multiplication with a test functiow, integration over the
vector multiplication [2]. In more complex scenarios suchwhole domain and integration by parts. The generic proce-
as large finite element simulation packages, traditionaib ~ dure then is to select a suitable basis for a finite dimensiona
oriented programming is used for most abstractions, saethe r space of test functions and similarly for trial functionsiieh
sulting code usually suffers from reduced run time efficienc ultimately leads to a system of linear equations that can be
We have applied rigorous template metaprogramming to botgolved by either direct or iterative solvers. More pregisi!

the mesh handling and the mathematical algorithms actinghe weak formulation can be written in the abstract form

on top, and obtain a high level of abstraction at a run time . _

efficiency comparable to that of hand-tuned code. Since the FindueUst a(uv)=L(v) weV (1)
weak formulation of the underlying mathematical problem iswith (in case of linear PDESs) bilinear forag-,-) and linear
directly transferred to code, the code effectively meetstr ~ form L(-), the resulting system matr&is given by
straction of the mathematical description, including aerev S (Sj)i'\,ljzla S —al;,), B

tual independence from the underlying spatial dimension.
where¢; andy; are a basis for the finite-dimensional spaces
of trial and test functions respectively. A generic finite-el

1. INTRODUCTION AND OVERVIEW ment implementation must therefore be able to evaluate-bili

The mathematical description of the finite element methodear forms for varying arguments. Moreover, the bilineanfor
(FEM) is usually independent from the dimension of theis to be supplied by the user, thus the specification must be
problem domain, provided that this holds true for the un- as easy and as convenient as possible. Our approach accom-
derlying (system of) partial differential equations (PPEs plishes this via extensive template metaprogramming and is
Thus, one can obtain a high level of abstraction in FEM codesliscussed in Sec. 4.
only if this holds true for the domain handling code (such By the use of metaprogramming, the full information about
as iteration over cells and subcells) as well. An abstractio the weak formulation is then available at compile time. This
of the underlying geometry is, if at all, in current FEM soft- allows to precompute so-called local element matrices over
ware packages typically achieved by the use of standard ola reference cell already during the compilation process as i
ject oriented programming. The drawback of this approach ipresented in Sec. 5.
a significant decrease of run time efficiency due to type dis- Type dispatches in standard object oriented programming
patches. Moreover, the code is often not flexible enough tare carried out at run time. By the use of template metapro-
selectively add or remove required functionality for a fgart gramming, such dispatches are already resolved at compile
ular problem, hence a lot of CPU time and memory mighttime, hence the resulting code is expected to be faster at the
be wasted for unnecessary calculations or data in such.case®st of longer compilation times. We quantify this increise
Our approach to a flexible and fast domain management usingpmpilation times and compare execution times of our new
template metaprogramming in C++ is presented in Sec. 2. lapproach with existing finite element packages and a hand-
avoids unnecessary dispatches at run time and allows a flexitned reference implementation in Sec. 6.

4

ave

Level 3
2
- //3 A //3 s 3
Level2 7 _-- 1 > 1 -7 / v
1 2 2
4 4 D
Level 1 /1 2 \ L / A 3
[N - 2
Level 0 1 2 °3 4

Figure 1. Topological decomposition of a tetrahedron

1 |Struct VertexTag

2 { enum{ TopoLevel = 0 }; };
3 |struct LineTag

4 { enum { TopoLevel = 1 }; }
s [struct TriangleTag

6 { enum{ TopoLevel = 2 }; };
7

The next step is the specification of tags for the handling of
each topological level of a cell, were we introduce the follo
ing two models:

e TopoLevelFullHandling indicates a full storage of
elements on that topological level. For example, in a
tetrahedron this tag specified for the facets means that
all facet triangles are set up at initialization and stored

2. DOMAIN MANAGEMENT

For the implementation of algorithms for arbitrary spatial

dimensions, a clean and general way to access mesh relatgd, o firation class for each element type configures the de-

within the cell.

e If TopoLevelNoHandling
care about elements on that topology level.

guantities is necessary. Our approach is to first break Ce"§ired implementation:

down into topological levels [3] and then to use configura-
tion classes that specify the desired implementation fohea :
level separately. The subelements at lower topological lev
els of a tetrahedron are shown in Fig. 1. Elements on leve|
zero are calledvertices on level one they are calleztiges .
whereas elements of maximum topological level are called;
cellsand elements with codimension one are caftemkts A 7
domaincorresponds to the full problem domain and consistss
of at least oneegmentwhich is the container for all elements ¢
located therein. 10
11
Our aim is to provide a simple means of customizing the”?
domain management for the topological needs of a certain al
gorithm. The performance critical path in such algorithms i i:
in many cases related to the iteration over domain eleménts g,
different levels, hence this functionality must be prodde
a generic way at minimum computational costs. Consider foy,
example a tetrahedral mesh and an algorithm that is a-priori
known to iterate over edges only. In such a case it does net
make any sense to explicitly store facets in memory, whereas
this would make perfect sense for a different algorithm that?
needs to iterate over facets. To be able to handle both scen&r
ios at minimum costs, each topological level can be config®
ured separately via type definitions. zz
Following the ideas ofpolicy classesand tagging [4],
we define small classes that indicate or realize a spe-

is used, the cell does not

//declaration:

tenpl ate <typenane ElementTag_,
| ong level>

struct TopologylLevel;

/I topological description of

/I a tetrahedron’s vertices

tenmpl ate <>

struct TopologyLevel<TetrahedronTag, 0>

{ typedef PointTag ElementTag;
typedef TopoLevelFullHandling

HandlingTag;

/l4 vertices

enun{ ElementNum = 4 };

h

/I topological description of
/I a tetrahedron’s edges
tenmplate <>
struct TopologyLevel<TetrahedronTag, 1>
{ typedef LineTag ElementTag;
t ypedef TopoLevelNoHandling
HandlingTag;

enun{ ElementNum =

h

6 } //6 edges

/I similar for other elements and levels

cific behavior. The concept can be applied directly toThe snippet above shows the configuration for a tetrahe-
polyhedral shapes, but for the sake of clarity we re-dron that stores its vertices, but does not store its edges.
strict ourselves to simplex elements in the following. TheThe actual realization of the storage scheme for subele-
first step is the introduction of simple tag classes thaiments, say for triangular facets, are then again speci-
hold the topological level (dimension) of the element:fied by additional partial specializatiom®pologyLevel<

TriangleTag, level> for each topological levelkvel . theCellType . Since the topological level (in the above snip-
This allows rather complex scenarios. Suppose an algorithipet equal tol) is provided as template parameter, the com-
needs to iterate over all edges of all facets in the domainpiler is able to eliminate all indirections at compile timada
Clearly, there is no need to store the edges on the cellddste generate a very efficient executable. This is in contrastto t
it is sufficient to store edges on the facets. Such behavior caditional object-oriented programming, where the use oha si
be configured easily with the above configuration methodgle iterator class would lead to excessive run time disgatch
This way all the requirements for mesh handling can be enin order to provide a similar functionality.
coded into a class hierarchy that can be evaluated at compile
time and the compiler can then select the appropriate imple-
mentations. 3. QUANT|TY STORAGE

Since the domain management was not tailored to a par-
ticular algorithm, a convenient and fast way of storing and
accessing quantities of arbitrary type is the key for the ap-
plication of any kind of algorithms. Our approach is to
provide a clasQuantityManager , from which all topo-

The final domain configuration is again supplied by type
definitions. For example, for a two-dimensional mesh cansis
ing of triangles and double precision arithmetic, one dsfine

struct TriangleDomainConfig

1

z t typedef doubl e CoordType; Iogicql elements are de_rived. The basic implementation of

. typedef TwoDimensionsTag DimensionTag; QuantityManager ~ consists of two nested maps, where the

5 t ypedef TriangleTag CellTag; first map uses the element addresses as keys and the second
6 IIseveral other type definitions here map accesses the desired quantity based on objects of user-
7|} defined key classes. Restrictions on the quantity typestend t

key types are very low and coincide with thosestaf:map

An object of the domain type modeling the from the C++ standard template library (STL). For example,
specified behavior above is then obtained bystoring and accessing quantities of typeubl e and bool

1 | domain<NewDomainTesting> myDomain; with keys of typechar and! ong looks in the C++ code like

/I ’element’ is an arbitrary
/I element of the domain
doubl e quanl = 23.0;
bool quan2 = true;

| ong key = 42;

The automatically deduced types of all elements in the'

domain are obtained from a helper cla@smainTypes :

t ypedef DomainTypes<TriangleDomainConfig>
=:VertexType VertexType;

t ypedef DomainTypes<TriangleDomainConfig>
::EdgeType EdgeType;

/I store quantities:
element.storeQuantity(key, quanl);
element.storeQuantity('c’, quan2);

gor W N R

/land so on

© ® N o o » W N

Iteration over different topological levels is implemeshte -
according to the iterator concept. This allows to iterate* |// access quantities:
over arbitrary topological levels either globally over the® |doubl e datal =

whole segment or locally over sublevels of a topologicali bo0leleg:;;rimeveQuam'ty< doubl e>(key);
(sub)element. The type retrieval is provided by a type con-_ element. retrieveQuantity< bool >(¢);

taineriteratorTypes , that takes as first template argument
the type of the elememin which iteration is to be carried out Even though this quantity storage scheme is very general,
and as second argument the topological level of elenmsets its performance is not necessarily sufficient for high perfo

which iteration is carried out. For example, in order todter mance applications. The reason for that are the two nested
over all edges of a cellell of type CellType , one writes maps, which allow access to data with access times of order

1 [typedef IteratorTypes O(logN + logK), whereN is the number of elements in the

2 <CellType, segment and is the number of different keys of the same

3 1>::ResultType Edgelterator; type for the quantity to be accessed.

4 If required, one can eliminate the logarithmic depen-
s |for (tEd%elteT;amtortL lIteratorBeqin<1>(): dence onK by using different key types for quantities

° e = cell.getieveliieratorbegin _0’ with different meaning. Such a scheme renders the sec-
7 eit != cell.getLevellteratorEnd<1>(); . .

. ++eit) ond map obsolete, such that a single map with the el-
9

ement's address as key and the quantity as data param-
eterized by the type of the supplied key class is suffi-
This code is independent from the underlying dimension oftient. The previous code snippet would then start with

{ [/* do something =*/ }

KeyClassForPurposeA keyl; forma(-,-), the linear functional(-) in the weak formulation

1
> | KeyClassForPurposeB key?2; (1) of the underlying PDE, and the compile time representa-
3 tions of integrals.
4 |/l store quantities:
5 | element.storeQuantity(keyl, quanl); Our implementation strongly relies on ex-
s | element.storeQuantity(key2, quan?2); pression templates and uses a tree struc-
. ture to handle mathematical expressions:
Even if qugpl and quan2 are of the same type, the cor- , [tenplate <typename ScalarType,
rect quantities are stored because the type of the keys dif; typenane LHS,
fer and hence the compiler generates two distinct codes, typename RHS,
This way the run time dispatch based objectsof a cer- typenane OP >
tain key class is shifted to a compile time dispatch based on |cl ass Expression;

the type of the keys. However, this requires that these keys]
are already known at compile time, which is usually true atScalarType denotes the underlying scalar type used for
least for the performance critical path of mathematical alhe arithmetic operationsHS andRHsare the left and right
gorithms operating on a mesh. To use this type based didl2nd side operands aawencodes the type of the arithmetic
patch, the corresponding key types have to be registered 8Peration. After adding appropriate template metafumstio
the QuantityManager one is then able to manipulate or even evaluate polynomials
For several performance critical tasks the now reduced ador fractional arguments at compile time. Moreover, one
cess times of siz&(logN) are still too large, especially if the €an €liminate trivial operations such as multiplications
number of element in fine meshes becomes very large. ForPy one or addition of zeros directly within the syntax
such cases th@uantityManager ~ allows to assign unique trees. While C++ is a procedural programming language,
identifiers (within objects of the same time) of typeng ~ {€Mplate metafunctions follow a functional programming
in the range 0...N — 1. These identifiers need to be manu- para@g_m and their implementation requires a different way
ally assigned by the user, which is usually a simple task if thinking. However, due to the recursive tree structure of
these identifiers are already supplied by the mesh input fildhe mathematical expressions the implementation of many
The benefit is that instead of a map with the element’s adleémplate metaf_uncnons is considerably more compact than
dresses as key it is then possible to use a vector that hads tRrocedural equivalents.
guantities with _the ind_ex given by the element identifiereTh p|aceholders for functions in the weak formulation
drawback of this solution is that extra care has to be taken taye 1o distinguish between trial and test functions and
stay within the size of the vector, which can be controlled by,ave to take the order of differentiation into account.

1 | KeyClassForPurposeA keyl; The first is achieved via a scalar template parame-
2) ter, and the latter by nested differentiation tag classes:
» |/ prior to any other use of 1 | basisfun<1> /I no differentiation
+ |/ that particular key type for . | basisfun<1, diff<o> > /I didx
s |/l every(!) quantity type used later on: , basisfun<1’ diffi<l> > I didy
s | element.reserveQuantity< doubl e>(keyl); basisfun<1’ diff<0
7 | element.reserveQuantity< bool >(keyl); ! ' ' diff<o> > > /| d"2/dx2
5
8
9

/I store and access as usual here.

The representation of integrals in the weak formulation is

Nevertheless, this way all quantity access times are retlucejriven by two tag classes that indicate the integration doma
to O(1) provided that only a single key object is used for each [qi et Omega {:

key type as discussed above.

tenpl ate <l ong id>
struct Gamma {};

A w N R

4. EXPRESSION ENGINE

The domain management and the quantity storage SCherT\Where the first tag refers to integration over the whole seg-

presented in the previous sections are independent from an¥ont and the latter to integration over (parts of) the bomnda

FEM raatEd r_equwements. However, sincea superset Qf fun%f the segment. The free template paramigteallows to dis-
tionality required by FEM on the domain level is provided,

: . . tinguish between several not necessarily disjoint subregi
the mathematical framework can now be built on top. The in- 9 y ais] =

: ; N : of the boundary.
gredients consist of a compile time representation of pmlyn
mials that are used as test and trial functions on the referen The final integral meta class follows the spirit
element, placeholders for these polynomials in the bilineaof the previously introduced Expression class:

1 |tenpl ate <typenane IntDomain, cally a linear combination of matrice(T.et) precomputed
2 t ypenanme Integrand, on a reference cellet, thus
3 t ypenane IntTag>
4 |struct IntegrationType; K

Ag(T) = ZOGK(T)AK(Tref>) (4)
IntDomain is one of the two tag classesfegrand is an k=

expression that encodes the integrand lafithg is used t0 \\LareK and the dimensions and entriesA(Trer) depend

specify the desired integra_ti(_)n meth_od. on the spatial dimension, the underlying (system of) PDEs
To demonstrate the flexibility achieved after all the above, 4 the chosen set of basis functions. The scalp() are
mentioned components are joined, let us consider the weak e transformation coefficients from the reference Eefito

form the cellT. While many FEM implementations use hard-coded
element matrices, we use the fact that both the weak formu-
lation and the test and trial functions are available at dtamp
time in order to compute these local element matrices dur-
which is derived from the Poisson equa- jngthe compilation. At present a compile time integratisn i

/Du-Dvdx:/vdx wev,)
Q Q

tion —Au = 1. Transferred to code, (3) reads gypported for simplex cells only, because in that case the Ja
1 | assemble<FEMConfig>(segment, matrix, rhs, cobian of the transformation is a scalar and can be pulled out
2 integral<Omega>(grad_u * grad_v) = of the resulting integrals.

3 integral<Omega>(v)); The transformation of integrals in the weak formulations

&uch as (3) typically requires the transformation of deriva
tives according to the chain rule. Thus, this transfornmatio
also needs to be applied to the template expression tree as il
Iéjstrated in Fig. 2 for the case of a product of two derivative

The weak formulation can clearly be seen in the secon
and third line. grad_u and grad_v are both of type
basisfun with suitable differentiation tagsintegral

is a convenience member function that generates th wo di ? The clask dx<i.i) dt
correct IntegrationType , and the assignment oper- IN WO dimensions. The class_dx<i]> IS Used 1o repre-
ator was suitably overloaded. The template paramete ent the entries of the Jacobian matrix. Since such a transfo

FEMConfig specifies the desired FEM related at- _mﬁUor][|sb|ndepe_ngenttfronl1 the setkof m"."l ar:ﬁ test ftlng’:jo?

tributes such as the spaces of trial and test functiond! Nas to € carried out only once, keeping the workioad for
. © FEMConfi the compiler low. After expansion of the products and rear-

struc onfig rangement, the weak formulation is recast into a form that

1
z { typedef ScalarTag ResultDimension: Qirectly leads to local elgment matrices as in (4). In a céenpi
+ | typedef QuadraticBasisfunctionTag time loop the test and trial functions defined on the refezenc
s TestSpace; element are then substituted in pairs into this recast werak f
6 t ypedef QuadraticBasisfunctionTag mulation and the resulting integrals are evaluated symboli
7 TrialSpace; cally. This evaluation has to be carried out for each pair sep
8 /I further type definitions here arately, thus a compile time integration cannot be applied t
o |} large sets of test and trial functions without excessivemiom

. lation times.
In this way, the sp§C|f|cat|0n of details of a partlculgr nit The resulting local integrals consists of summands of the
element scheme is separated from the core of linear orm

linearized finite element iteration schemes, which is to

loop over all functions from the test and trial spaces and to n-1 n-1 \Pn
generate the system of linear equations from evaluations of lg —/ <|‘L§F'> <1 Z}Ei> de,
S \i= =

the weak formulation at each such function pair.
where S, denotes then-dimensional reference simplex

(®)

5. INTEGRATION AT COMPILE TIME with corners at(0,0,...,0), (1,0,...,0), (0,1,0,...,0), ...,
Since the mesh is unknown at compile time, evaluations of0,0,...,1), & denotes thé-th local variable and the multi-
the weak form (3) have to be carried out over each cell of thendex = (B;), i =0,...,n contains suitable exponents for

mesh at run time. The standard procedure is to evaluate thithe chosen test and trial spaces. The natural approach then
transformed weak formulation on a reference element and tis to carry out an iterated symbolic integration. Considher t
transform the result according to the location and oriémtat integral

of the respective element. This procedure is well desciiived

the literature and makes use of so-called local elemeni-matr / ! / 17ny2 dy dx (6)

ces [5]. The local element matrixs(T) for a cell T is typi- o Jo

(basisfun<i, diff<0> >) (basisfun<2, diff<0> >)

(a) Initial expression tree.

dt _dx<0,0>
(basisfun<i, diff<0> >) dt _dx<1,0> dt _dx<0,0> dt _dx<1,0>

(basisfun<i, difi<l> > basisfun<2, diff<0> > basisfuh<2, di fi<l> >)

(b) Expression tree after transformation.

Figure 2. Transformation of the expression tree represerdiny@xp x 0v/0Xg to a two-dimensional reference cell.

with cubic integrand over the reference triangle. Afteeint 1D 2D 3D
gration with respect ty one obtains Linear 5s, 321MB 5s, 329MB 7s, 371MB
Quadratic| 5s, 324MB 8s, 375MB| 36s, 698MB
1 /1X(1_X)3dx (7y Cubic | 6s,326MB| 12s, 457MB| 424s, 1896MB
3Jo ' Quartic | 7s,328MB| 35s, 760MB -
Quintic 7s,330MB| 148s, 1230MB -

In order to carry out the remaining integration, one firsttoas e)
expand the cubic teri —x)3. Such a procedure is too costly Table 1. Compilation times and compiler memory consump-
for a compiler, especially if this has to be repeated for manyion for several polynomial degrees of the test and triatfun
differentintegrands. To circumvent these problems aagedi 0ns with symbolic integration at compile time in diffeten
with iterated integration we have derived the following ana dimensions.

lytic formula

lo — BO! Bll T Bn! (8)])])
B (Bo+Bi+...+Bn+n)! "’ case of a polynomial basis of degree four, 35 basis functions
require to compute 1225 entries in each local element matrix
which greatly reduces the compilation effort, because row iwhich is for current compilers too much to handle in a rea-
is sufficient for the compiler to bring all integrals into the sonable amount of time. Additionally, for more complicated

canonical form (5). weak formulations, compilation times are further increase
due to a larger number of terms in the transformed weak for-
6. BENCHMARK RESULTS mulation. Nevertheless, due to the often complicated cempu

We have compared compilation and execution times for théational domains in real-world applications it is in mosses.
assembly of the FEM system matrix for the Poisson equatiogufficient to be able to cope with basis polynomials up taithir
with weak formulation as in (3) for different polynomial de- ©rder.
grees of the trial and test spaces. In all our test casesshe te As a benchmark for the run time efficiency of our approach,
space was chosen equal to the trial space and simplex celige compared the full assembly process for the system matrix
were used. The compilation was carried out using gcc 4.3.2esulting from the weak formulation (3) of the Poisson equa-
on a machine with a Core 2 Quad 9550 CPU. tion with the freely available FEM packagdsal.ii [6],

As can be seen in Tab. 1, symbolic integration at compileDOLFIN [7], Getfem++ [8] and Sundance [9]. Since the
time leads to reasonable compilation times in one and two disystem matrix is stored with a sparse matrix format that dif-
mensions. In three dimensions one cannot go beyond cubfers in each package, we eliminated matrix access times by
basis polynomials for the trial and test spaces without &xce redirecting calls to a dummy matrix object with almost zero
sive compilation times. The reason is that there are alreadsiccess times. Moreover, we added a hand-tuned reference im-
20 different cubic test (and trial) functions, so the compil plementation inC (tailored to that particular problem only)
has to compute 400 entries for each local element matrix. Ifior linear and quadratic test and trial functions to the thenc

mark.

From the results in two dimensions depicted in Fig. 3
one can see that for linear basis functions the approach pre-
sented in this paper is the fastest among the general purpose
FEM packages, only beaten by the hand-tuned reference im-
plementation. The performance differences are surptising
large: The reference implementation is about a factor of 100
faster than the slowest package. Since only low computaltion
effort is needed for the evaluation of the local element ma-
trices, higher weight is put on the access to global degrees
of freedom and to the iteration over domain elements. For
guadratic basis functions our approach even achieves the pe
formance of the hand tuned reference implementation, while
the variation in execution times among the packages becomes
smaller. For cubic basis functions, orfigndance is faster
than our approach. This test case puts most emphasis on the
fast and efficient computation of the entries of the local ele
ment matrices and less emphasis on domain iterations. Thus,
the reason for the faster assembly Byndance is most
likely that the transformed expression tree after compitet
integration can still be evaluated more efficiently, for mxa
ple in a factorized form [10]. Moreover, the performance dif
ferences between the fastest and the slowest implementatio
drops to a factor of about 20, therefore the larger diffeesnc
in the case of linear basis functions is most likely due te dif
ferences in domain iteration and quantity access efficiency

The results in three dimension as shown in Fig. 4 draw
a similar picture: Our approach is in the case of linear ba-
sis functions only beaten by the hand-tuned reference imple
mentationSundance is faster in the case of quadratic basis
functions most likely thanks to a more efficient way of eval-
uating the integrated expressions. For cubic basis fumgtio
our approach is the fastest among the remaining contestants
becaus&undance does not provide an implementation for
this test case.

With matrix access times included in the comparison, rel-
ative differences in execution times are smaller, though st
significant. Our approach then has increased executiorstime
of a factor of six to seven for the two-dimensional test cases
and of a factor of about five, four and three for linear,
guadratic and cubic basis functions in three dimensions re-
spectively. Absolute increases in execution times of tineesa
order of magnitude can also be observed at the other pack-
ages. It is interesting to note that our approach with matrix
access times included is still faster th@etfem++ without
matrix access times.

Once the system matrix and the right hand side vector
are assembled, the system of linear equations still has to be
solved. Especially for linear problems such as the Poisson
equation used for our comparison here, the solution proce-

dure typically takes considerably longer than the assemblfrigure 3. Run time comparison for the assembly of the stiff-

Time for Assembly [sec]

Time for Assembly [sec]

Time for Assembly [sec]

Linear Basis Functions in 2D

10

0.01

)

New Approach =—+— _|
deal.ll 6.1.0
DOLFIN 0.9.0 ««- 4+
Lt Getfem++ 3.1 @
o’ Sundance 2.3
Ha‘nd»Tuned Implementation * *@-

0.001
10000

10

100000
Degrees of Freedom

(a) Linear test and trial functions.

Quadratic Basis Functions in 2D

01 F

New Approach —+—

deal.ll 6.1.0
DOLFIN 0.9.0
Getfem++ 3.1
Sundance 2.3
Hand-Tuned Implemenration - T

0.01
10000

10

100000
Degrees of Freedom

1e+06

(b) Quadratic test and trial functions.

Cubic Basis Functions in 2D

01 F

0.01

New Approach —+—
deal.ll 6.1.0
DOLFIN 0.9.0 «:-#--:
Getfem++ 3.1 @
Sundance 2.3

10000

100000
Degrees of Freedom

(c) Cubic test and trial functions.

process. For this reason one has to keep in mind that large difiess matrix in two dimensions.

le+06

le+07

Linear Basis Functions in 3D
100 r r

| |

ko
& 8
2 1t E
£
Q
7
<
5 01 F 4
Q
E
= New Approach —+—
0.01 deal.ll 6.1.0 i
’ DOLFIN 0.9.0 «-- .+
. Getfem++ 3.1 o
[Sundance 2.3
Hand-Tuned Implementation + -©- -
0.001 : L
1000 10000 100000 1le+06
Degrees of Freedom
(a) Linear test and trial functions.
Quadratic Basis Functions in 3D
100 T T
8
10 = 4
g o "
i
9,
I oty
o
£
g 1]
<
s F 0 e
o [e
E
= 0.1 New Approach =—+— _|
deal.ll 6.1.0
K DOLFIN 0.9.0 ++- &+
4 Getfem++ 3.1 @
Sundance 2.3
Hand-Tuned Implementation ** *@- +
0.01 L :
10000 100000 le+06 1le+07
Degrees of Freedom
(b) Quadratic test and trial functions.
Cubic Basis Functions in 3D
100 T
_ 10
(5]
i
9,
>
=]
£
8 1
<
8
i
E
oo
New Approach —+—
deal.ll 6.1.0
DOLFIN 0.9.0 =4+«
Getfem++ 3.1 @
0.01 L
10000 100000 1e+06

Degrees of Freedom

(c) Cubic test and trial functions.

Figure 4. Runtime comparison for the assembly of the stiff-
ness matrix in three dimensions.

ferences in assembly times such as those observed here lead
to much smaller differences in the overall simulation time.
The situation is likely to change for the assembly of nonlin-
ear problems, where the assembly process has a much larger
weightin the overall time budget, but we have postponed such
a comparison to future work.

7. CONCLUSION

In this work we have shown that the use of template
metaprogramming in C++ allows to increase both the level
of abstraction from the implementation point of view and the
run time efficiency of FEM implementations compared to tra-
ditional purely object-oriented approaches. By the swiet
thogonalization of domain handling, quantity storage dnd a
gorithmics, clean interfaces of the individual componemes
found and the coupling is reduced to the absolute minimum.
The only disadvantage of the approach are increased compi-
lation times, which nevertheless still stay within a readna
range for most problems.

REFERENCES

[1] D. Abrahams and A. Gurtovof++ Template Metapro-
gramming: Concepts, Tools, And Techniques From Boost
And BeyondAddison-Wesley Professional (2004).

(2]

T. Veldhuizen. “Expression TemplatesC++ Report,
vol. 7, p.26-31 (1995).

[3] A. Logg. “Efficient Representation Of Computational
Meshes”, International Journal of Computational Sci-

ence and Engineeringol. 4, no. 4, p.283-295 (2009).
(4]

A. AlexandrescuModern C++ Design: Generic Pro-
gramming and Design Patterns Appliggtldison-Wesley

Longman Publishing Co., Inc. (2001)

[5] O. C. Zienkiewicz, and R. L. TayloiThe Finite Element
Method - Volume 1: The BasiButterworth-Heinemann

(2000)

[6] deal.ll - Differential Equations Analysis Library. URL

http://www.dealii.org/
[7]
(8]

FENICS project. URLhttp://www.fenics.org/

Getfem++,
URL: http://home.gna.org/getfem/

[9] Sundance. URL: http://www.math.ttu.edu/

“klong/Sundance/html/

[10] R. C. Kirby., M. G. Knepley, A. Logg, and L. R. Scott.
“Optimizing The Evaluation Of Finite Element Matri-
ces”. SIAM Journal on Scientific Computingol. 27,
no. 3, p.741-758 (2005).

