
Increased Efficiency In Finite Element Computations
Through Template Metaprogramming

Karl Rupp
Christian Doppler Laboratory for Reliability Issues in Mic roelectronics

at the Institute for Microelectronics, TU Wien
Gußhausstraße 27–29/E360, A-1040 Wien, Austria

rupp@iue.tuwien.ac.at

Keywords: Template Metaprogramming, Finite Elements,
Symbolic Integration,

Abstract
In the area of scientific computing, abstraction was long said
to be achievable only in exchange for run time efficiency.
With the rise of template metaprogramming [1] in C++ in
the 1990s, run time efficiency comparable to hand tuned code
could be achieved for isolated operations such as matrix-
vector multiplication [2]. In more complex scenarios such
as large finite element simulation packages, traditional object
oriented programming is used for most abstractions, so the re-
sulting code usually suffers from reduced run time efficiency.
We have applied rigorous template metaprogramming to both
the mesh handling and the mathematical algorithms acting
on top, and obtain a high level of abstraction at a run time
efficiency comparable to that of hand-tuned code. Since the
weak formulation of the underlying mathematical problem is
directly transferred to code, the code effectively meets the ab-
straction of the mathematical description, including an even-
tual independence from the underlying spatial dimension.

1. INTRODUCTION AND OVERVIEW
The mathematical description of the finite element method

(FEM) is usually independent from the dimension of the
problem domainΩ, provided that this holds true for the un-
derlying (system of) partial differential equations (PDEs).
Thus, one can obtain a high level of abstraction in FEM codes
only if this holds true for the domain handling code (such
as iteration over cells and subcells) as well. An abstraction
of the underlying geometry is, if at all, in current FEM soft-
ware packages typically achieved by the use of standard ob-
ject oriented programming. The drawback of this approach is
a significant decrease of run time efficiency due to type dis-
patches. Moreover, the code is often not flexible enough to
selectively add or remove required functionality for a partic-
ular problem, hence a lot of CPU time and memory might
be wasted for unnecessary calculations or data in such cases.
Our approach to a flexible and fast domain management using
template metaprogramming in C++ is presented in Sec. 2. It
avoids unnecessary dispatches at run time and allows a flexi-

ble selection of the functionality needed for a particular prob-
lem at compile time.

In order to decouple algorithms acting on a certain geom-
etry, a general way to store and access quantities on domain
elements is necessary. Our approach works for quantities of
arbitrary types and is discussed in Sec. 3.

The first step towards FEM discretizations is to derive the
weak formulation, which is for second order PDEs obtained
by multiplication with a test functionv, integration over the
whole domain and integration by parts. The generic proce-
dure then is to select a suitable basis for a finite dimensional
space of test functions and similarly for trial functions, which
ultimately leads to a system of linear equations that can be
solved by either direct or iterative solvers. More precisely, if
the weak formulation can be written in the abstract form

Findu∈U s.t. a(u,v) = L(v) ∀v∈V (1)

with (in case of linear PDEs) bilinear forma(·, ·) and linear
form L(·), the resulting system matrixS is given by

S= (Si j)
N
i, j=1, Si, j = a(ϕ j ,ψi) , (2)

whereϕ j andψi are a basis for the finite-dimensional spaces
of trial and test functions respectively. A generic finite ele-
ment implementation must therefore be able to evaluate bilin-
ear forms for varying arguments. Moreover, the bilinear form
is to be supplied by the user, thus the specification must be
as easy and as convenient as possible. Our approach accom-
plishes this via extensive template metaprogramming and is
discussed in Sec. 4.

By the use of metaprogramming, the full information about
the weak formulation is then available at compile time. This
allows to precompute so-called local element matrices over
a reference cell already during the compilation process as is
presented in Sec. 5.

Type dispatches in standard object oriented programming
are carried out at run time. By the use of template metapro-
gramming, such dispatches are already resolved at compile
time, hence the resulting code is expected to be faster at the
cost of longer compilation times. We quantify this increasein
compilation times and compare execution times of our new
approach with existing finite element packages and a hand-
tuned reference implementation in Sec. 6.

Level 1

Level 0

Level 2

1 4

1

1
1 1

1 1 1

3
4

2

2 3

2
2 2

2
2

2

3 3 3

3
3

3

4

44

4 4 4

Level 3

Figure 1. Topological decomposition of a tetrahedron

2. DOMAIN MANAGEMENT

For the implementation of algorithms for arbitrary spatial
dimensions, a clean and general way to access mesh related
quantities is necessary. Our approach is to first break cells
down into topological levels [3] and then to use configura-
tion classes that specify the desired implementation for each
level separately. The subelements at lower topological lev-
els of a tetrahedron are shown in Fig. 1. Elements on level
zero are calledvertices, on level one they are callededges,
whereas elements of maximum topological level are called
cellsand elements with codimension one are calledfacets. A
domaincorresponds to the full problem domain and consists
of at least onesegment, which is the container for all elements
located therein.

Our aim is to provide a simple means of customizing the
domain management for the topological needs of a certain al-
gorithm. The performance critical path in such algorithms is
in many cases related to the iteration over domain elements of
different levels, hence this functionality must be provided in
a generic way at minimum computational costs. Consider for
example a tetrahedral mesh and an algorithm that is a-priori
known to iterate over edges only. In such a case it does not
make any sense to explicitly store facets in memory, whereas
this would make perfect sense for a different algorithm that
needs to iterate over facets. To be able to handle both scenar-
ios at minimum costs, each topological level can be config-
ured separately via type definitions.

Following the ideas ofpolicy classesand tagging [4],
we define small classes that indicate or realize a spe-
cific behavior. The concept can be applied directly to
polyhedral shapes, but for the sake of clarity we re-
strict ourselves to simplex elements in the following. The
first step is the introduction of simple tag classes that
hold the topological level (dimension) of the element:

1 struct VertexTag
2 { enum { TopoLevel = 0 }; };
3 struct LineTag
4 { enum { TopoLevel = 1 }; };
5 struct TriangleTag
6 { enum { TopoLevel = 2 }; };
7 ...

The next step is the specification of tags for the handling of
each topological level of a cell, were we introduce the follow-
ing two models:

• TopoLevelFullHandling indicates a full storage of
elements on that topological level. For example, in a
tetrahedron this tag specified for the facets means that
all facet triangles are set up at initialization and stored
within the cell.

• If TopoLevelNoHandling is used, the cell does not
care about elements on that topology level.

A configuration class for each element type configures the de-
sired implementation:
1 //declaration:
2 template <typename ElementTag_,
3 long level>
4 struct TopologyLevel;
5

6 // topological description of
7 // a tetrahedron’s vertices
8 template <>
9 struct TopologyLevel<TetrahedronTag, 0>

10 { typedef PointTag ElementTag;
11 typedef TopoLevelFullHandling
12 HandlingTag;
13

14 enum{ ElementNum = 4 }; //4 vertices
15 };
16

17 // topological description of
18 // a tetrahedron’s edges
19 template <>
20 struct TopologyLevel<TetrahedronTag, 1>
21 { typedef LineTag ElementTag;
22 typedef TopoLevelNoHandling
23 HandlingTag;
24

25 enum{ ElementNum = 6 }; //6 edges
26 };
27

28 // similar for other elements and levels

The snippet above shows the configuration for a tetrahe-
dron that stores its vertices, but does not store its edges.
The actual realization of the storage scheme for subele-
ments, say for triangular facets, are then again speci-
fied by additional partial specializationsTopologyLevel<

TriangleTag, level> for each topological levellevel .
This allows rather complex scenarios. Suppose an algorithm
needs to iterate over all edges of all facets in the domain.
Clearly, there is no need to store the edges on the cell, instead
it is sufficient to store edges on the facets. Such behavior can
be configured easily with the above configuration method.
This way all the requirements for mesh handling can be en-
coded into a class hierarchy that can be evaluated at compile
time and the compiler can then select the appropriate imple-
mentations.

The final domain configuration is again supplied by type
definitions. For example, for a two-dimensional mesh consist-
ing of triangles and double precision arithmetic, one defines
1 struct TriangleDomainConfig
2 {
3 typedef double CoordType;
4 typedef TwoDimensionsTag DimensionTag;
5 typedef TriangleTag CellTag;
6 //several other type definitions here
7 };

An object of the domain type modeling the
specified behavior above is then obtained by
1 domain<NewDomainTesting> myDomain;

The automatically deduced types of all elements in the
domain are obtained from a helper classDomainTypes :
1 typedef DomainTypes<TriangleDomainConfig>
2 ::VertexType VertexType;
3 typedef DomainTypes<TriangleDomainConfig>
4 ::EdgeType EdgeType;
5 //and so on

Iteration over different topological levels is implemented
according to the iterator concept. This allows to iterate
over arbitrary topological levels either globally over the
whole segment or locally over sublevels of a topological
(sub)element. The type retrieval is provided by a type con-
tainerIteratorTypes , that takes as first template argument
the type of the elementonwhich iteration is to be carried out
and as second argument the topological level of elementsover
which iteration is carried out. For example, in order to iterate
over all edges of a cellcell of type CellType , one writes
1 typedef IteratorTypes
2 <CellType,
3 1>::ResultType EdgeIterator;
4

5 for (EdgeIterator
6 eit = cell.getLevelIteratorBegin<1>();
7 eit != cell.getLevelIteratorEnd<1>();
8 ++eit)
9 { / * do something * / }

This code is independent from the underlying dimension of

theCellType . Since the topological level (in the above snip-
pet equal to1) is provided as template parameter, the com-
piler is able to eliminate all indirections at compile time and
generate a very efficient executable. This is in contrast to tra-
ditional object-oriented programming, where the use of a sin-
gle iterator class would lead to excessive run time dispatches
in order to provide a similar functionality.

3. QUANTITY STORAGE
Since the domain management was not tailored to a par-

ticular algorithm, a convenient and fast way of storing and
accessing quantities of arbitrary type is the key for the ap-
plication of any kind of algorithms. Our approach is to
provide a classQuantityManager , from which all topo-
logical elements are derived. The basic implementation of
QuantityManager consists of two nested maps, where the
first map uses the element addresses as keys and the second
map accesses the desired quantity based on objects of user-
defined key classes. Restrictions on the quantity types and the
key types are very low and coincide with those ofstd::map

from the C++ standard template library (STL). For example,
storing and accessing quantities of typedouble andbool
with keys of typechar andlong looks in the C++ code like
1 // ’element’ is an arbitrary
2 // element of the domain
3 double quan1 = 23.0;
4 bool quan2 = true;
5 long key = 42;
6

7 // store quantities:
8 element.storeQuantity(key, quan1);
9 element.storeQuantity(’c’, quan2);

10

11 // access quantities:
12 double data1 =
13 element.retrieveQuantity< double>(key);
14 bool data2 =
15 element.retrieveQuantity< bool>(’c’);

Even though this quantity storage scheme is very general,
its performance is not necessarily sufficient for high perfor-
mance applications. The reason for that are the two nested
maps, which allow access to data with access times of order
O(logN + logK), whereN is the number of elements in the
segment andK is the number of different keys of the same
type for the quantity to be accessed.

If required, one can eliminate the logarithmic depen-
dence onK by using different key types for quantities
with different meaning. Such a scheme renders the sec-
ond map obsolete, such that a single map with the el-
ement’s address as key and the quantity as data param-
eterized by the type of the supplied key class is suffi-
cient. The previous code snippet would then start with

1 KeyClassForPurposeA key1;
2 KeyClassForPurposeB key2;
3

4 // store quantities:
5 element.storeQuantity(key1, quan1);
6 element.storeQuantity(key2, quan2);

Even if quan1 and quan2 are of the same type, the cor-
rect quantities are stored because the type of the keys dif-
fer and hence the compiler generates two distinct codes.
This way the run time dispatch based onobjectsof a cer-
tain key class is shifted to a compile time dispatch based on
the typeof the keys. However, this requires that these keys
are already known at compile time, which is usually true at
least for the performance critical path of mathematical al-
gorithms operating on a mesh. To use this type based dis-
patch, the corresponding key types have to be registered at
theQuantityManager .

For several performance critical tasks the now reduced ac-
cess times of sizeO(logN) are still too large, especially if the
number of elementsN in fine meshes becomes very large. For
such cases theQuantityManager allows to assign unique
identifiers (within objects of the same time) of typelong
in the range 0, . . .N− 1. These identifiers need to be manu-
ally assigned by the user, which is usually a simple task if
these identifiers are already supplied by the mesh input file.
The benefit is that instead of a map with the element’s ad-
dresses as key it is then possible to use a vector that holds the
quantities with the index given by the element identifier. The
drawback of this solution is that extra care has to be taken to
stay within the size of the vector, which can be controlled by
1 KeyClassForPurposeA key1;
2

3 // prior to any other use of
4 // that particular key type for
5 // every(!) quantity type used later on:
6 element.reserveQuantity< double>(key1);
7 element.reserveQuantity< bool>(key1);
8

9 // store and access as usual here.

Nevertheless, this way all quantity access times are reduced
toO(1) provided that only a single key object is used for each
key type as discussed above.

4. EXPRESSION ENGINE
The domain management and the quantity storage scheme

presented in the previous sections are independent from any
FEM related requirements. However, since a superset of func-
tionality required by FEM on the domain level is provided,
the mathematical framework can now be built on top. The in-
gredients consist of a compile time representation of polyno-
mials that are used as test and trial functions on the reference
element, placeholders for these polynomials in the bilinear

form a(·, ·), the linear functionalL(·) in the weak formulation
(1) of the underlying PDE, and the compile time representa-
tions of integrals.

Our implementation strongly relies on ex-
pression templates and uses a tree struc-
ture to handle mathematical expressions:
1 template <typename ScalarType,
2 typename LHS,
3 typename RHS,
4 typename OP >
5 class Expression;

ScalarType denotes the underlying scalar type used for
the arithmetic operations,LHS andRHSare the left and right
hand side operands andOPencodes the type of the arithmetic
operation. After adding appropriate template metafunctions
one is then able to manipulate or even evaluate polynomials
for fractional arguments at compile time. Moreover, one
can eliminate trivial operations such as multiplications
by one or addition of zeros directly within the syntax
trees. While C++ is a procedural programming language,
template metafunctions follow a functional programming
paradigm and their implementation requires a different way
of thinking. However, due to the recursive tree structure of
the mathematical expressions the implementation of many
template metafunctions is considerably more compact than
procedural equivalents.

Placeholders for functions in the weak formulation
have to distinguish between trial and test functions and
have to take the order of differentiation into account.
The first is achieved via a scalar template parame-
ter, and the latter by nested differentiation tag classes:
1 basisfun<1> // no differentiation
2 basisfun<1, diff<0> > // d/dx
3 basisfun<1, diff<1> > // d/dy
4 basisfun<1, diff<0,
5 diff<0> > > // dˆ2/dxˆ2

The representation of integrals in the weak formulation is
driven by two tag classes that indicate the integration domain:
1 struct Omega {};
2

3 template <long id>
4 struct Gamma {};

where the first tag refers to integration over the whole seg-
ment and the latter to integration over (parts of) the boundary
of the segment. The free template parameterid allows to dis-
tinguish between several not necessarily disjoint subregions
of the boundary.

The final integral meta class follows the spirit
of the previously introduced Expression class:

1 template <typename IntDomain,
2 typename Integrand,
3 typename IntTag>
4 struct IntegrationType;

IntDomain is one of the two tag classes,Integrand is an
expression that encodes the integrand andIntTag is used to
specify the desired integration method.

To demonstrate the flexibility achieved after all the above
mentioned components are joined, let us consider the weak
form

Z

Ω
∇u ·∇vdx=

Z

Ω
vdx ∀v∈V , (3)

which is derived from the Poisson equa-
tion −∆u = 1. Transferred to code, (3) reads
1 assemble<FEMConfig>(segment, matrix, rhs,
2 integral<Omega>(grad_u * grad_v) =
3 integral<Omega>(v));

The weak formulation can clearly be seen in the second
and third line. grad_u and grad_v are both of type
basisfun with suitable differentiation tags,integral

is a convenience member function that generates the
correct IntegrationType , and the assignment oper-
ator was suitably overloaded. The template parameter
FEMConfig specifies the desired FEM related at-
tributes such as the spaces of trial and test functions:
1 struct FEMConfig
2 {
3 typedef ScalarTag ResultDimension;
4 typedef QuadraticBasisfunctionTag
5 TestSpace;
6 typedef QuadraticBasisfunctionTag
7 TrialSpace;
8 // further type definitions here
9 };

In this way, the specification of details of a particular finite
element scheme is separated from the core of linear or
linearized finite element iteration schemes, which is to
loop over all functions from the test and trial spaces and to
generate the system of linear equations from evaluations of
the weak formulation at each such function pair.

5. INTEGRATION AT COMPILE TIME
Since the mesh is unknown at compile time, evaluations of

the weak form (3) have to be carried out over each cell of the
mesh at run time. The standard procedure is to evaluate the
transformed weak formulation on a reference element and to
transform the result according to the location and orientation
of the respective element. This procedure is well describedin
the literature and makes use of so-called local element matri-
ces [5]. The local element matrixAe(T) for a cellT is typi-

cally a linear combination of matricesAk(Tref) precomputed
on a reference cellTref, thus

Ae(T) =
K

∑
k=0

αk(T)Ak(Tref) , (4)

whereK and the dimensions and entries ofAk(Tref) depend
on the spatial dimension, the underlying (system of) PDEs
and the chosen set of basis functions. The scalarsαk(T) are
the transformation coefficients from the reference cellTref to
the cellT. While many FEM implementations use hard-coded
element matrices, we use the fact that both the weak formu-
lation and the test and trial functions are available at compile
time in order to compute these local element matrices dur-
ing the compilation. At present a compile time integration is
supported for simplex cells only, because in that case the Ja-
cobian of the transformation is a scalar and can be pulled out
of the resulting integrals.

The transformation of integrals in the weak formulations
such as (3) typically requires the transformation of deriva-
tives according to the chain rule. Thus, this transformation
also needs to be applied to the template expression tree as il-
lustrated in Fig. 2 for the case of a product of two derivatives
in two dimensions. The classdt_dx<i,j> is used to repre-
sent the entries of the Jacobian matrix. Since such a transfor-
mation is independent from the set of trial and test functions,
it has to be carried out only once, keeping the workload for
the compiler low. After expansion of the products and rear-
rangement, the weak formulation is recast into a form that
directly leads to local element matrices as in (4). In a compile
time loop the test and trial functions defined on the reference
element are then substituted in pairs into this recast weak for-
mulation and the resulting integrals are evaluated symboli-
cally. This evaluation has to be carried out for each pair sep-
arately, thus a compile time integration cannot be applied to
large sets of test and trial functions without excessive compi-
lation times.

The resulting local integrals consists of summands of the
form

Iβ =

Z

Sn

(

n−1

∏
i=0

ξβi
i

)(

1−
n−1

∑
i=0

ξi

)βn

dξ , (5)

where Sn denotes then-dimensional reference simplex
with corners at(0,0, . . . ,0), (1,0, . . . ,0), (0,1,0, . . . ,0), . . .,
(0,0, . . . ,1), ξi denotes thei-th local variable and the multi-
index β = (βi), i = 0, . . . ,n contains suitable exponents for
the chosen test and trial spaces. The natural approach then
is to carry out an iterated symbolic integration. Consider the
integral

Z 1

0

Z 1−x

0
xy2 dydx (6)

basisfun<1, diff<0> > basisfun<2, diff<0> >

×

(a) Initial expression tree.

basisfun<1, diff<0> >

basisfun<1, diff<1> > basisfun<2, diff<0> > basisfun<2, di ff<1> >

dt dx<0,0>

dt dx<0,0>

dt dx<1,0>dt dx<1,0>

×

× ×××

++

(b) Expression tree after transformation.

Figure 2. Transformation of the expression tree representing∂u/∂x0× ∂v/∂x0 to a two-dimensional reference cell.

with cubic integrand over the reference triangle. After inte-
gration with respect toy one obtains

1
3

Z 1

0
x(1−x)3 dx . (7)

In order to carry out the remaining integration, one first hasto
expand the cubic term(1−x)3. Such a procedure is too costly
for a compiler, especially if this has to be repeated for many
different integrands. To circumvent these problems associated
with iterated integration we have derived the following ana-
lytic formula

Iβ =
β0! β1! · · ·βn!

(β0 + β1+ . . .+ βn+n)!
, (8)

which greatly reduces the compilation effort, because now it
is sufficient for the compiler to bring all integrals into the
canonical form (5).

6. BENCHMARK RESULTS
We have compared compilation and execution times for the

assembly of the FEM system matrix for the Poisson equation
with weak formulation as in (3) for different polynomial de-
grees of the trial and test spaces. In all our test cases the test
space was chosen equal to the trial space and simplex cells
were used. The compilation was carried out using gcc 4.3.2
on a machine with a Core 2 Quad 9550 CPU.

As can be seen in Tab. 1, symbolic integration at compile
time leads to reasonable compilation times in one and two di-
mensions. In three dimensions one cannot go beyond cubic
basis polynomials for the trial and test spaces without exces-
sive compilation times. The reason is that there are already
20 different cubic test (and trial) functions, so the compiler
has to compute 400 entries for each local element matrix. In

1D 2D 3D
Linear 5s, 321MB 5s, 329MB 7s, 371MB
Quadratic 5s, 324MB 8s, 375MB 36s, 698MB
Cubic 6s, 326MB 12s, 457MB 424s, 1896MB
Quartic 7s, 328MB 35s, 760MB -
Quintic 7s, 330MB 148s, 1230MB -

Table 1. Compilation times and compiler memory consump-
tion for several polynomial degrees of the test and trial func-
tions with symbolic integration at compile time in different
dimensions.

case of a polynomial basis of degree four, 35 basis functions
require to compute 1225 entries in each local element matrix,
which is for current compilers too much to handle in a rea-
sonable amount of time. Additionally, for more complicated
weak formulations, compilation times are further increased
due to a larger number of terms in the transformed weak for-
mulation. Nevertheless, due to the often complicated compu-
tational domains in real-world applications it is in most cases
sufficient to be able to cope with basis polynomials up to third
order.

As a benchmark for the run time efficiency of our approach,
we compared the full assembly process for the system matrix
resulting from the weak formulation (3) of the Poisson equa-
tion with the freely available FEM packagesdeal.ii [6],
DOLFIN [7], Getfem++ [8] andSundance [9]. Since the
system matrix is stored with a sparse matrix format that dif-
fers in each package, we eliminated matrix access times by
redirecting calls to a dummy matrix object with almost zero
access times. Moreover, we added a hand-tuned reference im-
plementation inC (tailored to that particular problem only)
for linear and quadratic test and trial functions to the bench-

mark.

From the results in two dimensions depicted in Fig. 3
one can see that for linear basis functions the approach pre-
sented in this paper is the fastest among the general purpose
FEM packages, only beaten by the hand-tuned reference im-
plementation. The performance differences are surprisingly
large: The reference implementation is about a factor of 100
faster than the slowest package. Since only low computational
effort is needed for the evaluation of the local element ma-
trices, higher weight is put on the access to global degrees
of freedom and to the iteration over domain elements. For
quadratic basis functions our approach even achieves the per-
formance of the hand tuned reference implementation, while
the variation in execution times among the packages becomes
smaller. For cubic basis functions, onlySundance is faster
than our approach. This test case puts most emphasis on the
fast and efficient computation of the entries of the local ele-
ment matrices and less emphasis on domain iterations. Thus,
the reason for the faster assembly bySundance is most
likely that the transformed expression tree after compile time
integration can still be evaluated more efficiently, for exam-
ple in a factorized form [10]. Moreover, the performance dif-
ferences between the fastest and the slowest implementation
drops to a factor of about 20, therefore the larger differences
in the case of linear basis functions is most likely due to dif-
ferences in domain iteration and quantity access efficiency.

The results in three dimension as shown in Fig. 4 draw
a similar picture: Our approach is in the case of linear ba-
sis functions only beaten by the hand-tuned reference imple-
mentation,Sundance is faster in the case of quadratic basis
functions most likely thanks to a more efficient way of eval-
uating the integrated expressions. For cubic basis functions,
our approach is the fastest among the remaining contestants,
becauseSundance does not provide an implementation for
this test case.

With matrix access times included in the comparison, rel-
ative differences in execution times are smaller, though still
significant. Our approach then has increased execution times
of a factor of six to seven for the two-dimensional test cases
and of a factor of about five, four and three for linear,
quadratic and cubic basis functions in three dimensions re-
spectively. Absolute increases in execution times of the same
order of magnitude can also be observed at the other pack-
ages. It is interesting to note that our approach with matrix
access times included is still faster thanGetfem++ without
matrix access times.

Once the system matrix and the right hand side vector
are assembled, the system of linear equations still has to be
solved. Especially for linear problems such as the Poisson
equation used for our comparison here, the solution proce-
dure typically takes considerably longer than the assembly
process. For this reason one has to keep in mind that large dif-

 0.001

 0.01

 0.1

 1

 10

 10000 100000 1e+06

T
im

e
fo

r
A

ss
em

bl
y

[s
ec

]

Degrees of Freedom

Linear Basis Functions in 2D

New Approach
deal.II 6.1.0

DOLFIN 0.9.0
Getfem++ 3.1
Sundance 2.3

Hand-Tuned Implementation

(a) Linear test and trial functions.

 0.01

 0.1

 1

 10

 10000 100000 1e+06 1e+07

T
im

e
fo

r
A

ss
em

bl
y

[s
ec

]

Degrees of Freedom

Quadratic Basis Functions in 2D

New Approach
deal.II 6.1.0

DOLFIN 0.9.0
Getfem++ 3.1
Sundance 2.3

Hand-Tuned Implementation

(b) Quadratic test and trial functions.

 0.01

 0.1

 1

 10

 10000 100000 1e+06

T
im

e
fo

r
A

ss
em

bl
y

[s
ec

]

Degrees of Freedom

Cubic Basis Functions in 2D

New Approach
deal.II 6.1.0

DOLFIN 0.9.0
Getfem++ 3.1
Sundance 2.3

(c) Cubic test and trial functions.

Figure 3. Run time comparison for the assembly of the stiff-
ness matrix in two dimensions.

 0.001

 0.01

 0.1

 1

 10

 100

 1000 10000 100000 1e+06

T
im

e
fo

r
A

ss
em

bl
y

[s
ec

]

Degrees of Freedom

Linear Basis Functions in 3D

New Approach
deal.II 6.1.0

DOLFIN 0.9.0
Getfem++ 3.1
Sundance 2.3

Hand-Tuned Implementation

(a) Linear test and trial functions.

 0.01

 0.1

 1

 10

 100

 10000 100000 1e+06 1e+07

T
im

e
fo

r
A

ss
em

bl
y

[s
ec

]

Degrees of Freedom

Quadratic Basis Functions in 3D

New Approach
deal.II 6.1.0

DOLFIN 0.9.0
Getfem++ 3.1
Sundance 2.3

Hand-Tuned Implementation

(b) Quadratic test and trial functions.

 0.01

 0.1

 1

 10

 100

 10000 100000 1e+06

T
im

e
fo

r
A

ss
em

bl
y

[s
ec

]

Degrees of Freedom

Cubic Basis Functions in 3D

New Approach
deal.II 6.1.0

DOLFIN 0.9.0
Getfem++ 3.1

(c) Cubic test and trial functions.

Figure 4. Run time comparison for the assembly of the stiff-
ness matrix in three dimensions.

ferences in assembly times such as those observed here lead
to much smaller differences in the overall simulation time.
The situation is likely to change for the assembly of nonlin-
ear problems, where the assembly process has a much larger
weight in the overall time budget, but we have postponed such
a comparison to future work.

7. CONCLUSION
In this work we have shown that the use of template

metaprogramming in C++ allows to increase both the level
of abstraction from the implementation point of view and the
run time efficiency of FEM implementations compared to tra-
ditional purely object-oriented approaches. By the strictor-
thogonalization of domain handling, quantity storage and al-
gorithmics, clean interfaces of the individual componentsare
found and the coupling is reduced to the absolute minimum.
The only disadvantage of the approach are increased compi-
lation times, which nevertheless still stay within a reasonable
range for most problems.

REFERENCES
[1] D. Abrahams and A. Gurtovoy.C++ Template Metapro-

gramming: Concepts, Tools, And Techniques From Boost
And Beyond. Addison-Wesley Professional (2004).

[2] T. Veldhuizen. “Expression Templates”.C++ Report,
vol. 7, p.26-31 (1995).

[3] A. Logg. “Efficient Representation Of Computational
Meshes”, International Journal of Computational Sci-
ence and Engineering, vol. 4, no. 4, p.283-295 (2009).

[4] A. Alexandrescu,Modern C++ Design: Generic Pro-
gramming and Design Patterns Applied, Addison-Wesley
Longman Publishing Co., Inc. (2001)

[5] O. C. Zienkiewicz, and R. L. Taylor,The Finite Element
Method - Volume 1: The Basis, Butterworth-Heinemann
(2000)

[6] deal.II - Differential Equations Analysis Library. URL:
http://www.dealii.org/ .

[7] FEniCS project. URL:http://www.fenics.org/ .

[8] Getfem++.
URL: http://home.gna.org/getfem/ .

[9] Sundance. URL: http://www.math.ttu.edu/
˜klong/Sundance/html/ .

[10] R. C. Kirby., M. G. Knepley, A. Logg, and L. R. Scott.
“Optimizing The Evaluation Of Finite Element Matri-
ces”. SIAM Journal on Scientific Computing, vol. 27,
no. 3, p.741-758 (2005).

