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We consider the segregation of particles at material interfaces as it is observed during
the implantation of dopants during semiconductor device fabrication. First, the resulting
system of partial differential equations is analysed from the analytic point of view. After that
numerical simulations, which are complicated due to possible discontinuities at the interface
boundary, are carried out.

Consider two bounded domains Ω1 and Ω2 with particle concentrations u1 and u2 respec-
tively. In the interior of each domain the diffusion equation with diffusion parameters αi > 0
is assumed to hold:

∂ui

∂t
= −∇qi in Ωi , with qi = −αi∇ui, i = 1, 2. (1)

The total flux density in outer normal direction ni relative to Ωi at the common interface
Γ12 = ∂Ω1 ∩ ∂Ω2 is according to Lau et. al. [1] given by

J = q1 · n1 = −q2 · n2 = β(u1 − γu2) , (2)

where β > 0 is the transport coefficient and γ > 0 is the segregation parameter. Assuming
homogeneous Neumann boundary conditions at the outer boundaries ∂Ω1 \ Γ12, ∂Ω2 \ Γ12,
the weak formulation of the above equations is to find a solution (u1, u2) that fulfils the weak
form

∫

Ω1

∂u1

∂t
v1 + α1∇u1∇v1 dx + β

∫

Γ

(u1 − γu2)v1 dA = 0 ,

∫

Ω2

∂u2

∂t
v2 + α2∇u2∇v2 dx − β

∫

Γ

(u1 − γu2)v2 dA = 0 ,

(3)

for all test functions (v1, v2) from a suitable test space. We show that there exists a unique
solution u = (u1, u2) ∈ L2([0, T ], V ) ∩ H1([0, T ], V ∗) of (3) for u(0) = u0 ∈ V , where
V := H1(Ω1) × H1(Ω2) and V ∗ = H−1(Ω1) × H−1(Ω2).

A numerical approximation to the solution of the segregation model (3) has been imple-
mented into a newly developed generic finite element programming environment in C++,
which allows the direct specification of the weak formulation into code. In particular, the
end-user implementation of the transport terms in (3) takes the mnemonic form
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assemble < FEMConfig >(segment1, system_matrix, rhs,

integral< Omega >(gradient_u * gradient_v)

+ integral< Gamma<1> >( u * v )

- integral< Interface<1> > ( u * v ) = _0_ ) ;

assemble < FEMConfig >(segment2, system_matrix, rhs,

integral< Omega >(gradient_u * gradient_v)

- integral< Interface<1> > ( u * v )

+ integral< Gamma<1> >( u * v ) = _0_ ) ;

The difficulty from the implementation point of view is the discontinuity at the transition
from u1 in Ω1 to u2 in Ω2 at the common boundary Γ12, because there one has to test the
traces of trial functions defined in Ω1 with traces of test functions defined on both Ω1 and
Ω2 and vice versa. This is further complicated by the fact that interface elements can have
different orientations, which especially complicates the assembly for higher order trial and
test functions. We have solved these difficulties by the use of a reordering scheme based on
the vertices of the interface elements.

Simulations have been carried out for a fictitious diffusive hourglass (cf. Fig. 1) with
essentially the same code basis in one, two and three dimensions using a backward Euler time
discretisation. Different ansatz spaces of functions with globally fixed piecewise polynomial
degrees are compared.

Figure 1. Particle concentration in a diffusive hour-

glass. The connection in the centre obeys the segre-

gation model.
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ṽ2 =vπ(1)

v0

v1

v2

00 11

k = (k0, k1, k2) kπ = (kπ(0), kπ(1), kπ(2))

pd

3(k) pd

3(kπ)|Kd

3 |−1 |Kd

3 |−1

Mapping numbers for v Mapping numbers for u

Interface

Figure 2. Automatic detection of elements with

different orientation at interfaces.
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