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Abstract—The subband structure of silicon nanowires has
gained much interest recently. Nanowires with diameters below
10 nm are predicted to have a significantly altered subband
structure compared with bulk silicon. The effective mass ap-
proximation fails to describe these alterings correctly, and so
far the semiempirical tight binding method and first principles
calculations were used to investigate them. In this paper we
present an approach based on a two band k · p description of
the conduction band minima. The method excels in simplicity
of modeling and versatility including the ability to model strain
effects on the subband structure.

I. INTRODUCTION

Nanostructures such as nanowires exhibit band structure
effects that cannot be captured by the single band effective
mass approximation. For very thin structures these effects
include nonparabolicity, change of effective mass in axial
direction and subband splitting. All these effects have already
been investigated using the semiempirical tight binding ap-
proach [4, 7], first principles calculations [6] and by applying
nonparabolicity corrections to the effective mass approxima-
tion [2]. In this work we rely on a different method: A
two band k · p Hamiltonian is used to model the electronic
band structure. The Hamiltonian contains only one additional
parameter in the coupling term while the other terms are
derived from the effective mass approximation. It also includes
deformation potentials for both uniaxial and shear strain. As
we shall see, these few parameters are sufficient to obtain an
accurate picture of the subband structure within the transport-
relevant energy range.

II. MODEL

The model Hamiltonian used here was introduced by
Hensel et al. [1] to describe the electronic band structure
behavior in strained bulk silicon. The Hamiltonian is derived
from k ·p theory by expanding the electronic band structure
around one of the X points. The description involves two ∆

valleys adjacent to the X point, the remaining bands are treated
as perturbation. Contrary to the common six and eight band
k ·p models which use an expansion around the Γ point, the
two bands in our model touch at the X point. The Hamiltonian
reads as follows:
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(
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V denotes the conduction band edge; ml = 0.91me and mt =
0.19me are the known longitudinal and transversal effective
masses of silicon; k0 = 0.15 2π

a amounts to the distance be-
tween the X and the adjacent band minima; εl-l and εt1-t2
are the respective uniaxial and shear strain components in
the valley coordinate system, (l, t1, t2), and Ξu=9.0 eV and
Ξu′=7.0 eV the corresponding deformation potentials; σx,z
denote the Pauli matrices and I the identity matrix.

I =
(

1 0
0 1

)
,σx =
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0 1
1 0

)
,σz =

(
1 0
0 −1

)
. (2)

The band coupling “mass” M is determined by the interband
matrix elements. In [1] the authors of the model gave an
approximate value for it,

1
M
≈ 1

mt
− 1

me
, (3)

which was recently confirmed by EPM results [5].
The model was found to give an accurate description of the

bulk band structure in an area of 0.25(2π/a) around k0 and
up to 0.5 eV above the conduction band minimum [5]. We
assume that the accuracy also holds for subbands within this
energy range.

In (1) we used a (l, t1, t2) coordinate system, which is
aligned to the (100), (010), and (001) crystallographic axes
as shown in Fig. 1. To cover all conduction band valleys in
silicon, the Hamiltonian must be solved for three different
orientations. Thus, it is rotated three times according to the
growth direction of the nanowire and its face orientations
and quantized in the cross section plane. The quantization
is achieved by replacing k with [−i∂x −i∂y k‖], which gives
an expression for (1) containing all sorts of first and second
order derivative terms since in the general case the crystal
and device coordinate system are not aligned. The resulting
differential equation is discretized using box integration and
solved for each k‖-value using efficient numerical algorithms
available through the Vienna Schrödinger Poisson framework
(VSP) [3].

III. SIMULATION AND PARAMETER EXTRACTION

We studied square and circular shaped nanowires of varying
diameters. Different stresses along the nanowire axis were
also applied. The behavior of the subband structure with
respect to confinement and stress was of primary interest here.
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Fig. 1. The coordinate system of the Hamiltonian at one of the X points
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Fig. 2. Cut through the bulk band structure at the X point showing two
different effective masses for the [110] directions

The change of the effective mass was taken as an quantity
representrative of the subband structure alterations due to
confinement and stress.

To obtain a singular, meaningful value for the effective
mass one cannot simply use the curvature of the lowest
subband, since thicker nanowires tend to have subbands that
are closely spaced energetically (less than kBT ) and thus not
only influence each other but also show different curvatures
at their respective minima. This is especially the case for
[110] oriented nanowires because the bulk band structure has
two different curvatures when viewed along a [110] axis, as
sketched in Fig. 2. As thickness increases the effective mass
of the lowest subbands become more and more indeterminate.

To mitigate these problems a different approach is chosen
here. When subjected to a small field the electron ensemble
will respond with a average effective mass. Assuming that
that the electron ensemble in the nanowire has the properties
of an ideal one dimensional gas, i.e. Boltzmann statistics and
only minor nonparabolicity, the average effective mass can be
derived from the relation

1
2

m∗avg
〈
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g
〉

=
1
2

kBT, (4)
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Fig. 3. Schematic picture of the projection of the bulk valleys onto the one
dimensional k-space through confinement

where vg is the group velocity which can be readily obtained
from the subband structure. The 1/2-factor on the right hand
side is due to the electron gas having only one degree of
freedom in the nanowire.

IV. RESULTS AND DISCUSSION

Nanowires of [100], [110] and [111] growth orientation of
both circular and square cross sections have been simulated.
The subband structure for a circular 5 nm thick nanowire is
shown in Fig. 4. In the case of the [100] nanowire confinement
causes the minima of the unprimed subbands to be projected
onto k‖ = 0, i.e. the Γ point of the one dimensional Brillouin
zone, and the minima of the primed subbands at k‖ = ±k0
(see Fig. 3). While unprimed subbands of the [100] nanowire
are four-fold degenerate, the degeneracy is lifted for the
[110] nanowire. This is due to the ambiguous confinement
effective mass in (11̄0) direction as discussed in Fig. 2. Fig. 5
illustrates the degeneracy lifting. For the [111] nanowire the
subband minima are not projected onto the Γ point. Instead,
the subbands split at the Γ point.

The axial effective mass versus nanowire thickness is shown
in Fig. 7 and 8. It shows that the effective mass deviates
strongly from the bulk limit for very thin nanowires. While
the effective mass increases for [100] and [111] nanowires, it
decreases for [110] nanowires. This will be of importance for
future nanowire based devices. In Fig. 8 the effective mass
dependence displays a non-monotonous behavior. The inset in
the figure shows why: Confinement opens a gap between the
first and second subband at the Γ point. Eventually, the two
separate valleys merge into one passing the point where the
lowest subband forms a fourth order flat at its bottom, giving
a sharp effective mass peak.

In order to verify our model data generated by 10-band
sp3d5s∗ semiempirical tight binding simulations [4, 7] is also
shown in Fig. 7. The agreement between the methods is
reasonably good. Although the figure gives the impression
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Fig. 4. Subband structure of circular 5 nm thick nanowires with [100], [110] and [111] growth orientations
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Fig. 5. Subband minima over (circular [110]) nanowire thickness. For low
diameters the subband structure exhibits splitting effects

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1 2 3 4 5 6 7

E
ne

rg
y

[e
V

]

Diameter [nm]

Subband 1

1′

Fig. 6. Subband energy of circular [111] nanowires at the Γ point over
thickness
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Fig. 7. Effective masses vs. thickness for [100] and [110] orientations
showing good agreement with tight binding data
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Fig. 8. Effective mass vs. thickness for [111] growth orientation; inset shows
the lowest subband for round nanowires
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Fig. 9. Subband of a 5 nm [111] wire with varying axial stress showing
subband splitting at the Γ point
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Fig. 10. Stress dependence of the effective mass of 5 nm thick [110] and
[111] wires at the Γ point

that the [100] curve does not approach the bulk value of
the effective mass, a power-law can be fitted to the points
giving a curve that approaches the bulk effective mass at
∆m∗/m0 = (d/d0)−3/4.

Stressing the nanowire along its axis produces effects
similar to confinement. Tensile stress applied to the [111]
nanowire increases the splitting of the subbands at the Γ point
while compressive stress has the opposite effect (Fig. 9). Also
the effective mass is affected by stress in the same way it
is affected by confinement: the effective mass decreases in
[110] and increases in [111] nanowires when tensile stress is
applied (Fig. 10). Stressing [100] nanowires produces merely
an energy shift of the primed subbands, which is not shown
here.

V. SUMMARY AND CONCLUSIONS

We have presented an alternative method for the calculation
of nanowire subband structures based on a two band k · p
model. The model introduces only one additional parameter,
M, with respect to the effective mass approximation in contrast
to the sp3d5s∗ model which needs ten parameters to be fitted
to measurements. Our model gives good results even for
nanowires of a few nanometers in diameter. Including two
deformation potentials in the model allows the study of strain
effects on the subband structure.

The results show a strong dependence of the subband
structure on confinement and strain. We observed that the
effective mass along the nanowire axis can be engineered, by
controlling geometry and applying stress. For [110] nanowires
the effective mass can even be reduced. These considerations
need to be taken into account in the design of future devices
and applications based on thin silicon nanowires.
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