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Abstract—An algorithm to extract the statistical properties
of oxide traps in ultra-small metal oxide silicon field effect
transistors (MOSFETs) is presented. The algorithm uses data
from time dependent defect spectroscopy (TDDS) measurements.
It works reliable in a great range of circumstances, and au-
tomatically detects and correctly processes variations in the
measurement data due to channel percolation path modulations.
The algorithm is designed to require minimal user interaction,
making parameter extraction from a large base of experimental
data feasible.

I. INTRODUCTION

Being a charge-driven device, the metal oxide silicon field

effect transistor (MOSFET) suffers from a number of ef-

fects that build up parasitic charges in the oxide or at the

silicon/oxide interface. Particularly annoying in this respect

are charges that vary with time and/or bias of the device.

While the charge traps at the silicon/oxide interface can follow

the bias very quickly, oxide traps have a wide range of

capture and emission times. Exactly this property made them

ideal candidates to explain flicker noise (1/ f noise) [4, 6,

10]. Recently, we have been investigating the role of oxide

traps in the negative bias temperature instability [2]. Negative

bias temperature instability (NBTI) is one of the most critical

degradation mechanisms in p-channel MOSFETs today. It is

observed when a pMOSFET is subjected to negative bias at

the gate with the other terminals grounded. The degradation

is considerably accelerated at elevated temperatures. In our

study [2] we employed a new technique termed ‘time de-

pendent defect spectroscopy’ (TDDS). Within this technique,

a large amount of measurement data has to be collected

and processed, calling for an automatic and sophisticated

algorithm. Such an algorithm will be presented in this paper.

II. TIME DEPENDENT DEFECT SPECTROSCOPY (TDDS)

In large-area devices, where a large ensemble of defects

acts simultaneously, the impacts of individual defects are

averaged out. Consequently, unambiguous identification of

the individual defects’ physics is impossible. In small-area

devices, only a handful of defects are present. In these devices,

observation of the effects of individual defects and extraction

of their characteristic properties is possible. The differences

between large and small devices can also be observed in

their low frequency noise: In large devices the defects create

flicker noise, which has a uniform 1/ f -spectrum and therefore

allows only to draw conclusions about the whole ensemble. In

small devices, on top of the ubiquitous flicker noise, random

telegraph noise is observed. From this random telegraph noise,

characteristic parameters of the individual defects can be

extracted.

The duality between large and small devices can also be

seen with NBTI, where the recovery of small devices proceeds

in discrete steps. Contrary to the prediction of the MOSFET

charge sheet approximation, these steps are not equal in height.

This fact is explained by the non-uniform current distribution

in the channel [7]: A defect in a current percolation path has a

much higher influence on the current than a defect in a region

where for some reason the current density is lower. Hence,

each defect produces current steps of individual magnitude,

allowing to relate the observed steps to the individual defects.

The TDDS proceeds as follows: The MOSFET is subjected

to NBTI stress at some temperature T with a gate voltage

of Vs for some time ts,1. The following recovery phase at a

gate voltage Vr is recorded from tr,min to tr,max, where tr,min is

restricted by the measurement equipment, and tr,max is set to

a value that permits all defects which were charged within ts,1
to emit with sufficient probability. This procedure is repeated

N times in order to gain a statistically significant number

of samples. After that, the whole procedure of recording N

transients is repeated M − 1 times with different stress times

ts,2, . . . ,ts,M . As such, the TDDS is similar in spirit to the

successful deep-level transient spectroscopy (DLTS) technique

[5], which has also been applied to small devices [3]. However,

rather than assuming that after application of a charging pulse

for a certain amount of time all defects are fully charged [3],

we exploit the fact that the capture time constants are widely
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Fig. 1. Two typical recovery transients of a previously stressed pMOSFET.
The measured data are given by the (slightly noisy) thin black lines in the
top part of the figure. The thick blue and red lines together with the symbols
mark the automatically extracted emission times and step heights (bottom).

distributed, an issue also observed in DLTS literature as a non-

saturating behavior in the DLTS spectra [9]. It is particularly

this time-dependence of the spectral maps obtained from the

TDDS that allows for a detailed assessment of the physical

phenomenon.

From the N ×M recovery transients the detrapping events

and their associated step heights are detected. The events,

represented by tuples (τe,d) of their emission time and step

height, are binned into 2D-histograms, one histogram for

each row of N experiments with the same stress time. The

resulting M histograms, which have the axis of emission times

in logarithmic scale, are termed ‘spectral maps’. Figure 1

illustrates the creation of the spectral maps. Two examples

of such spectral maps obtained from a production quality

pMOSFET (cf. Section III) are shown in Figure 2. Clearly,

marked clusters of (τe,d) pairs evolve, the intensity of which

typically follows Pc = 1−exp(−ts/τ̄c), where τ̄c is the average

capture time. The position on the emission time axis remains

fixed with stress time, while the step height is subject to slight

variations, depending on the most dominant current conduction

path [1], which can change with the occurrence of additional

charged defects. Each cluster corresponds to an individual

defect and is labeled accordingly in the maps.

The described procedure can be repeated for different stress

voltages and temperatures. Moreover, additional information

can be obtained by varying the readout voltage Vr, which

alters the channel percolation paths. This method also proves

successful if some defects are not well-separated in their step

heights.

Fig. 2. Spectral maps obtained after two different stress times, ts = 1ms
(top) and ts = 10s (bottom). With increasing stress time, the number of defects
contributing to the map increases as defects with τ̄c . ts have a significant
probability of being charged after stress.

III. EXPERIMENTAL SETUP

We used pMOSFETs with dimensions of W = L = 0.1µm

and a 2.2nm thick plasma nitrided gate oxide. The charge-

sheet approximation gives ∆Vth ≃ 1mV for these devices. Thus

the gate area is small enough to conveniently resolve the

trapping/detrapping of a single carrier in the channel, and large

enough to have at least a handful of active defects in the

device. Stress pulses ranging from ts,1 = 1µs to ts,M = 100s

were applied to the gate. The shift in the threshold voltage

corresponding to a preset drain current (typically 1µA×W/L)

was directly recorded after the pulse using the fast feedback

loop described in [8].

IV. SEMI-AUTOMATIC DEFECT PARAMETER EXTRACTION

A considerable number of recovery traces must be recorded

and analyzed in order to exhaustively characterize the defects

of a particular device. It is therefore desirable to devise a

method to process these transients with an as high as possible

degree of automatization. Currently, our algorithm works as

follows: After measuring N recovery traces to each of the

M different stress times ts,1, . . . , ts,M , the detrapping events

and their associated step heights are detected. The events,

represented by tuples (τe,d) of their emission time and step

height, are binned and displayed in their corresponding M

spectral maps. By inspection, clusters of events are tagged.

Clusters in different spectral maps located around the same

emission times and step heights belong to the same defect.



Note that the clusters’ step heights may be somewhat fuzzy

because of channel percolation path modulation.

In the next step, to each set of M clusters belonging to a

particular defect the M theoretical probability distributions are

fit by a least-squares method. The theoretical probability dis-

tributions are derived under the following assumptions: (i) The

distributions in step height are Gaussian. Their mean values are

different for each spectral map, allowing for a different channel

percolation path after experiments of different stress time. The

events’ deviations from the mean values are attributed to mea-

surement noise, and are of no particular interest. Therefore, the

Gaussian distributions’ standard deviations were empirically

set to a single, fixed value for all defects and all spectral maps.

(ii) The distributions in emission time are exponential. Since

we assume the capture and emission processes independent,

the mean emission time will not depend on the stress time;

hence, the same exponential distribution is used for a defect’s

events in all of the M spectral maps. (iii) The emission times

and step heights are statistically independent.

Local variations in the electrostatic configuration in the

vicinity of a defect due to percolation path modulation actually

have an impact on the defect’s capture and emission behavior.

Since we consider the effects of these variations in the distribu-

tion in step height, one could argue that these variations should

also be taken into account in the distribution in emission time.

This would right away invalidate assumption (ii), and by the

now existing correlation between step heights and emission

times also assumption (iii). In the vast majority of emission

events encountered in our experiments, however, we could not

observe significant modulation of the mean emission times.

The histograms are logarithmically spaced with regard to

the emission times. Therefore, it is not possible to directly fit

the exponential probability density function to the histogram

data. Instead, the probability density function integrated over

intervals [τ j,τ j+1] with τ j+1 = λτ j must be used; the τ j are the

histogram bins’ boundaries and λ is the logarithmic increment.

Regarding the step heights, the (empirically set) standard

deviation is usually smaller or in the order of magnitude of the

bin width. Therefore, also the Gaussian probability density has

to be integrated over intervals [dk,dk+1] with dk+1 = dk + κ,

where dk are the bins’ boundaries and κ is the bin width.

Altogether, the theoretical probability distributions read

ai

[

exp
(

−τ j

τ̄e

)

− exp
(

−λ
τ j

τ̄e

)]

× 1
2

[

erf
(dk +κ− d̄i√

2σd

)

− erf
(dk − d̄i√

2σd

)]

, (1)

where i = 1,2, . . . ,M runs through all spectral maps. The

amplitudes ai account for the fact that after the corresponding

stress times ts,i not all defects will have captured a charge;

they are parameters of the fit. The statistically independent

probability distributions are parametrized by the mean step

heights d̄i and the mean emission time τ̄e common to all

spectral maps, as discussed above. In our work, the standard

deviation of the step height was set to σd = 100µV, which

worked reasonably well. Smaller values resulted in a more

Fig. 3. Example of the fitting procedure. The groups are indicated by the
rectangles. Empty rectangles belong to defects with larger capture times which
are not yet visible. The fitted spectral map is given by the color gradient while
the actual emission events which contribute to the histograms are shown as
small red squares. The crosshairs show the fitted tuples (τ̄e, d̄i), and are labeled
by the number of the defect. If split-clusters were detected, the second sub-
cluster is labeled with a prime.

narrow distribution in the direction of the step height, making

it impossible to capture all events constituting a cluster. This

in turn makes the fit more unstable by arbitrarily increasing

the overall fit error. Significantly larger values for σd degraded

the precision of the fitted mean values d̄i, ultimately leading

to the fits of adjacent clusters ‘running into another’.

The centers (τ̄◦e , d̄
◦) of the previously designated clusters

are used as initial guesses for the nonlinear and hence it-

erative least-squares algorithm. To sensibly limit the amount

of data, only events in the subsets {(τe,d) : |d − d̄◦| < 5σd ∧
| log10(τe/τ̄◦e)| < 1} of the spectral maps are used for fitting

this particular defect’s clusters. The sum of probabilities in

each subset is used as initial guess for the corresponding



cluster’s ai. If this sum is zero for a particular subset i′, the

respective spectral map is excluded from this fit; ai′ = 0 is left

as result, and d̄i′ is set to some dummy value, which will be

ignored in the postprocessing.

In order to aid convergence to physical solutions of the

least-squares algorithm, the fit parameters are incorporated

indirectly through mappings ai = α(Ai) with α : R → ]0,2[
and d̄i = δ(D̄i) with δ : R → ]d̄◦ − 5σd , d̄

◦ + 5σd [. Note that

although the ai in theory should be bounded to the interval

[0,1], spurious events sometimes cause some ai > 1. This

somewhat unphysical result should not be suppressed by

using a mapping α : R → ]0,1[. Doing so would just impair

convergence of the fit procedure and arbitrarily increase the

final fit error. In a refined approach, clusters having ai > 1

could be used to trigger a more sophisticated algorithm of

selecting which events are discarded when fitting these clus-

ters. The mappings themselves should be sufficiently smooth,

and preferably invertible; we used α(x) = 2/(1+ exp(x)) and

δ(x) = d̄◦ +5σd(1− exp(x))/(1+ exp(x)).

A. Split Clusters

As discussed previously, changes in the channel’s percola-

tion paths can alter a defect’s step height. In fact, this regularly

happens when comparing recovery traces from rows of ex-

periments with different stress times; hence the introduction

of M distinct mean step heights d̄1, . . . , d̄M . But this effect

is also observed within a row of experiments with the same

stress time, especially if one defect strongly modulates another

defect’s percolation path and the two defects have similar

mean emission times. In this case, the cluster of events for

that particular defect in that particular spectral map splits into

two (or rarely even more than two, although we will just deal

with the case of two) sub-clusters, cf. Figure 4. Since the sub-

clusters are often well separated by a multiple of the adopted

standard deviation σd , the fit algorithm arbitrarily converges

to either of the sub-clusters. This raises two issues: First,

convergence is poor, especially if the number of events in the

two sub-clusters is similar, and the fit results are unstable in

the sense that minor alterations of the initial values or other

fit parameters may lead to the fit ‘snapping’ to the other sub-

cluster. And second, a considerable amount of events is not

covered, thus giving wrong amplitudes ai.

To rectify these issues, an attempt to detect split clusters

is made after fitting all clusters with (1). If in some spectral

maps split clusters are detected, the fit procedure is repeated,

with (1) replaced by

ai

[

exp
(

− τj

τ̄e

)

− exp
(

−λ
τj

τ̄e

)]

× 1
2

[

bi

(

erf
(dk +κ− d̄i√

2σd

)

− erf
(dk − d̄i√

2σd

))

+(1−bi)
(

erf
(dk +κ− d̄′

i√
2σd

)

− erf
(dk − d̄′

i√
2σd

))]

(2)

for those spectral maps where clusters are split. The newly

introduced fit parameter bi represents the fraction of events

Fig. 4. Quite regularly, a single defect produces peaks of different height in
the maps. For instance, #4 appears as #4 and #4′ (top). Filtering out all traces
that produce an event in #4′ (top) reveals that as soon as #6 is occupied, #4
produces an event in the #4 cluster. Otherwise, for an unoccupied #6, an event
in the #4′ cluster is obtained (bottom).

covered by the Gaussian peak at d̄i. The remainder of events

are covered by the peak at d̄′
i , which is also an additional

fit parameter. The parameters bi and d̄′
i are also mapped via

bi = α(Bi) and d̄′
i = δ(D̄′

i).

The detection algorithm for split clusters works as follows:

(The spectral map index i is omitted in this paragraph for

the sake of brevity.) After the first fit, in each spectral map

the sum of probabilities p̃ represented by ‘outliers’, i.e. points

of the cluster with 2σd < |d − d̄| < 5σd and | log10(τe/τ̄e)| <
0.8 is calculated for the defect in question. Furthermore, by

evaluation of the first and second moments in direction of d,

the center of gravity of the outliers, d̃, and the deviation from

this center of gravity, σ̃d , is calculated. A split-cluster situation

is assumed if the following three conditions are fulfilled: (i)



The uncovered probability p̃ is larger than 3% of the total

probability represented by this group of events. (ii) The center

of gravity of the outliers is spaced more than σd apart from d̄,

i.e. |d̄− d̃|> σd . (iii) The normalized standard deviation from

this second center of gravity is less than 5%, i.e. σ̃d/d̃ < 0.05.

Requirement (ii) ensures that the second sub-cluster is well

separated from the first cluster, otherwise the fit parameter b

will not be well-defined, resulting in slow convergence. (If the

sub-clusters are close, they have been captured by the fit of (1)

anyway.) Requirement (iii) ensures that the outliers really form

a secondary, separated cluster and are not spread randomly.

The empirical quantity p̃ is used to get an initial guess for the

fit parameter b through b◦ = 1− p̃; the initial guess for the fit

parameter d̄′ as directly obtained as d̄′◦ = d̃.

B. Fit Error Estimation

Fit errors are calculated in a standard fashion, e.g.

∆ai =

√

χ2

η

√

Cνν α′(Ai) , (3)

where χ2 is the sum of the fit residuals’ squares, η is the

number of degrees of freedom, i.e. the number of overall data

points in the M clusters minus the number of fit parameters,

and Cνν is the main-diagonal element of the least-squares

covariance matrix corresponding to Ai. The last term accounts

for the fact that the fit is actually carried out through the map

α, of which α′ is its derivative. The errors of τ̄e, d̄i, d̄′
i , and

bi are calculated analogously.

C. Extraction of Capture Times

Using the intensities a1, . . . ,aM determined from the set of

spectral maps, the capture time constant can be determined.

Provided charge trapping is given by the first-order differen-

tial equations obtained from standard capture and emission

models, ai = Pc(ts,i) = 1−exp(−ts,i/τ̄c) provided that τe ≫ τc.

Similarly to the previous fits, the capture time constant is

evaluated using a standard least-squares algorithm. Figure 5

shows an extraction of capture time constants.

V. SUMMARY AND CONCLUSIONS

We developed an algorithm accompanying the time depen-

dent defect spectroscopy to analyze oxide traps. The algorithm

works reliably also in more complicated situations, namely

when modulations of the defects’ characteristic step heights

occur, while requiring a minimum of user attention. It is

ideally suited to process large amounts of TDDS measure-

ments. In a future version, the still required manual definition

of clusters may be replaced by an automatic cluster search

algorithm, making the procedure fully automatic.
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Fig. 5. Example for the extraction of the capture time constant for four
different temperatures. With increasing stress time and temperature the number
of defects contributing to the map increases. This makes the identification of
the discrete steps more difficult and the noise level in the maps increases.
Consequently, the clusters become wider, resulting in a spurious decrease of
the intensities ai, which may show a visible deviation from 1 even for ts > τ̄c.
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