A Lightweight Material Library
for Scientific Computing in C++

Josef Weinbub, René Heinzl,
Franz Stimpfl, Siegfried Selberherr

Institute for Microelectronics, TU Wien
GuBhausstrafie 27-29 / E360
1040 Vienna, Austria

{weinbub|heinzl|stimpfl|selberherr} Qiue.tuwien.ac.at

ABSTRACT

Simulations in the field of scientific computing require
often the availability of large sets of material properties.
We propose a convenient approach for a lightweight ma-
terial library using available open source tools. The pre-
sented approach is therefore suited for embedding into
larger projects, such as simulators. The XML file format
as well as an XML parser library is used to store, load,
and manage the data. The location of data items or
data sets is specified using XPath query language. Fur-
thermore, an utility is provided for the conversion of the
initially untyped data items to the numerical data types
required by the simulation package. As performance is
an issue in this context, we present a simple use case.

INTRODUCTION

Simulation tools require often a large set of (material)
parameters to carry out scientific simulations [1, 2], due
to the use of equations which include material parame-
ters to model the physical environment. Among such
equations, partial differential equations are especially
wide spread in the description of complex phenomena
and are therefore of special interest for scientific comput-
ing. A very prominent example is the system of Maxwell
equations [3]:

V x E=-8,B (1)
V-B=0 (2)
VxH=J+D (3)
V.-D= (4)

These four equations can be split into two almost inde-
pendent pairs. The first pair consists of Equation 1 and
Equation 2, which relates the spatial and time deriva-
tives of the vector fields E and B representing the elec-
trical field strength and the magnetic flux density, re-
spectively.

454

Philipp Schwaha

Shenteq s.r.o.
Zahradnicka 7
81107 Bratislava, Slovak Republic
schwaha@shenteq.com

The second pair is based on Equation 3 and Equation 4,
which links the spatial and time derivatives of the the
magnetic field strength H and the electrical flux density
D. Note, that J denotes the vector field of the current
density and p the charge density.

The Maxwell equations themselves set up a formal struc-
ture in each of the pairs, which links magnetic and elec-
tric field components. However, only by combining both
sets of equations a complete dynamical system which
carries energy and momentum can be achieved. This
attachment is accomplished using the material relations
(Equations 5a, 5b), which emphasizes the important role
of material properties:

(5a)

D=cF
5 (5b)

B:Mﬁ

These equations are of special interest, as they relate
flux densities to field strengths by material properties.
Here € denotes the permittivity, and p the permeability.
Both relations appear very simple, but both permittiv-
ity and permeability may need modeling using complex,
nonlinear functions depending not only on the mate-
rial, but also on the magnitude of the encountered field
quantities.

Considering the vast number of phenomena and the re-
lated sets of equations for which simulation environ-
ments have been and are currently being developed, it
becomes apparent that many different material param-
eters have to be made available in a consistent and reli-
able manner. The challenge lies not only in the efficient
storage of the material data but also in the convenient
and fast data access. Another important design goal
is to embed the material library into simulator envi-
ronments in an orthogonal fashion, as is schematically
depicted in Figure 1.

This conceptual design not only results in basic modu-
larity during software development, but also entails that
the individual modules can be changed freely without
affecting the other modules. This design therefore fa-
cilitates extendability and maintainability. While flexi-
bility is a major goal, it must not compromise the con-
sumption of computing resources.

Material
Library

/N

Module A Module B

Figure 1: The material library can be part of a module set.
Combining different modules results in a full scale applica-
tion.

Therefore, the implementation of the material library
should be as lightweight as possible. As such, memory
consumption and the size of the implementation are also
considered, when measuring the lightweight nature of
the developed library, besides the run time performance.
The modular nature ensures, that the use of the material
library does not compromise the application which it is
part of logically, while the lightweight nature ensures,
that resources are not squandered needlessly.

At last, the run time performance of access to data is
especially important, as repeated data access is typical
during simulations. Therefore, minimizing the access
times is important to maintain simulation performance.

LIBRARY STRUCTURE

XML [4] has been chosen as the storage format for the
material data (Figure 2). The underlying data associ-
ated with materials is inherently hierarchical, as shown
in Figure 3, and can be mapped to a tree naturally,
which is stored using XML. The variation due to the
fact that not all parameters are available or useful for
all materials can also easily be accommodated by the
flexible nature of XML.

XML - Files Material Library

C++ Application

Figure 2: XML files are used as input for the material
library. Data can be accessed by C++ applications.

455

Materials

Fluids Semiconductors

H20 Si

Refractive Index Lattice Constant

Figure 3: Material Properties schematically mapped on a
Tree. Materials do not necessarily share the same properties.

The provided examples and use cases are related to
embedding the XML parser library in a simulator from
the field of device simulation. Since the goal is to
provide a lightweight module with an already existing
framework, existing client/server database approaches
have not been used, as for example with PostgreSQL [5].

The material library is implemented based on a
lightweight XML parser library named PugiXML [6],
which is implemented in C++. Due to the basic func-
tionality of the parser library, it is well suited to be em-
bedded in a C4++ framework. In addition to the bare
XML parsing facilities, PugiXML also offers an imple-
mentation of the XPath 1.0 [7, 8] querying language.
Note, that other parsing libraries have been investigated
as well. Prominent examples include Xerces-C [9] and
XQilla [10]. Although, XQilla offers support for XPath
2.0, it is based on the rather old and monolithically im-
plemented Xerces-C parser. It has therefore been dis-
carded, as it conflicts with the goals of a lightweight
C++ implementation.

RapidXML has also been dismissed, as it does not of-
fer any support for a querying language for data access.
On the other hand, TinyXML [11] allows for support
for a querying language to be added by a separately im-
plemented XPath 1.0 library, named TinyXPath [12].
However, due to the fact, that PugiXML natively pro-
vides XPath support, it is the XML library of choice.
It should, however, not go unnoticed that should the
need arise, the XML library back end can easily be ex-
changed, as long as it provides XPath facilities.

XML FILE SETUP

This section discusses the chosen file setup used for the
XML input files. The following XML snippet depicts
parts of the schematic mapping introduced in Figure 3
thus yielding a hierarchical database.

© 0 N O U A W N e

e
= o

© 0 N e U A W N e

I~ S~ S S S
N

[
=

<db>
<ele>
<id>Materials</id>
<ele>
<id>Semiconductors</id>
<ele>
<id>Si</id>
</ele>
</ele>
</ele>
</db>

Each element has the following general setup:

<ele> // introduce a new element
<id>name</id> // identifiy this element
</ele>

Note, that the tag names do not change. The name
specified within the id tag is used for identification. In
order to uniquely accommodate several materials with
the same name, unique ids, for example assigned con-
secutively, may be introduced.

The actual data, only text in this case, is stored in the
value fields of the nodes corresponding to the various
tags. This approach enables to setup hierarchies of ar-
bitrary depth. Hence, imposing no restrictions on the
setup of the database.

To store actual data values, a special node hierarchy has
been chosen to not only support the commonly used
floating point numbers, but also different representa-
tions, which may be more suitable under certain circum-
stances. The following XML snippet depicts a property
node with data and representation child nodes.

<props>
<data>
<id>Lattice Constant</id>
<repr>
<double>0.543072</double>
</repr>
<unit>nm</unit>
</data>
<data>
<id>Dielectric Constant</id>
<repr>
<double>11.8</double>
<rational>59/5</rational>
</repr>
</data>
</props>

Note, that for each new property a new data node, with
a related identifier, is introduced. Different representa-
tions can be embedded within the data node. This ap-
proach is especially of interest for robust applications,
as the most suitable representation of a data value can
be chosen at execution time. Additional representations
can be added as the need arises. Similarly to the differ-
ent representations, different units can also be specified
in distinct nodes.

N VR

© o N o wu

N o oA W N e

456

QUERY

The access to data is implemented by using the XPath
query language. The use of a query language greatly
enhances the flexibility of data access. There is no need
for an additional data access layer via the Application
Programming Interface (API), as the query language
allows direct access to the data.

In the following, several queries are discussed to illus-
trate the functionality. These queries make use of the
following XML data structure:

<db>
<ele>
<id>Materials</id>
<ele>
<id>Semiconductors</id>
<ele>
<id>Si</id>
<props>
<data>
<id>Lattice Constant</id>
<repr>
<double>0.543072</double>
</repr>
<unit>nm</unit>
</data>
<data>
<id>Dielectric Constant</id>
<repr>
<double>11.8</double>
<rational>59/5</rational>
</repr>
</data>
</props>
</ele>
</ele>
</ele>
</db>

Common queries return the subtree of the data struc-
ture with the root node derived from the lowest query
element. The following query accesses a specific prop-
erty, for example.

db/ele/ele/ele/props/data[id="Lattice Constant”]

The XPath syntax syntax facilitates the intuitive de-
scent along the structure of the tree holding the data.
The values of the selected subtrees can then be investi-
gated as the need arises.

As a result, the following subtree is returned.

<data>
<id>Lattice Constant</id>
<repr>
<double>0.543072</double>
</repr>
<unit>nm</unit>
</data>

Note, that the whole node is again returned in XML
format. This enables further processing of the returned
data using the same mechanisms. It enables to conve-
niently investigate the database. This approach can be
used to quickly partition and browse large databases.

N

© o N o w

11

However, in the case of a material database for simu-
lations, the most common task is to directly access the
data values. To directly access the values, the text()
node can be used for an arbitrary node, as is shown in
the following query

db/ele/ele/ele/props/data[id="Lattice Constant”]
/repr/double/text ()

which results in:

0.543072

CONVERSION

For numerical applications the retrieved string values
must be converted to numerical data types, for exam-
ple, double. A polymorphic data type with a run time
evaluation system based on the Boost Spirit Parser fa-
cilities [13] is used to this end.

At the moment, the conversion utility is only capable of
dealing with double values. If the value being parsed can
not be handled as a double, it is kept as a string. How-
ever, the parser facility can be conveniently extended to
support additional conversion targets, such as, integer
values or rational numbers for example.

The following C+-+ code snippet depicts the behaviour.

// parse the value result, get poly result
poly_data pres = convert(value_string);

// test poly result on a certain data type
// extract the data accordingly
if(is< numeric_-type >(pres)) {
numeric_type dblval=get<numeric_type>(pres);

) A

strval=get<string_type >(pres);

if (is< string_type >(pres)
string_type
}

PERFORMANCE

This section introduces a few performance statistics for
different input XML files. The query execution perfor-
mance, the peak memory usage and the time required
to load a file is investigated. The test platform is a PC
with an AMD Phenom IT X4 - 965 CPU and 8GB of
RAM. The operating system is a Funtoo Linux [14] 64-
bit with a 2.6.34 kernel.

Table 1 depicts the query execution performance for in-
put files of different sizes. To investigate high load, 1E6
queries have been executed. Note, that the similar query
execution times of the larger files is due to the fact, that
the query depth is equally long, which is 9 for those
files. Whereas, the query depth of the smaller files, is
3 levels smaller. Apparently, the query depth influences
the performance more significantly, than the file size. To
improve the execution performance of queries, especially
for large files, the XML hierarchy should be as flat as
possible, so the query depths are kept small.

N

© w N o o«

11
12
13
14
15
16

18

457

XML File Size || Total Time | Time per Query
1.5 KB 5.66 s 5.66 us
42.2 KB 18.15 s 18.15 us
3.1 MB 121.63 s 121.6 us
6.2 MB 126.86 s 126.8 us
9.7 MB 132.54 s 132.5 us

Table 1: Overview of query execution performance for 1E6
queries based on input XML files of different sizes.

XML File Size || Peak Memory | File Loading
1.5 KB 38.17 KB <lms
42.2 KB 181.1 KB <lms
3.1 MB 10.66 MB 13ms
6.2 MB 21.26 MB 26ms
9.7 MB 25.40 MB 32ms

Table 2: Overview of the peak memory consumption and
the file loading performance based on input XML files of
different sizes.

Table 2 depicts the peak memory usage, which has been
measured with Valgrind [15], and the file loading time.
Note, that the peak memory consumption can be consid-
ered exceptional as for a input file of roughly 10 MB the
maximum amount of required memory is only around
25 MB. This fact emphasizes the applicability of this
approach as a lightweight database for applications in
the field of scientific computing.

Furthermore, the implementation of PugiXML is based
on only four source files, which have roughly 280 KB of
total size. Therefore, it can be easily added to a project
as an external, third-party library.

USE CASE EXAMPLE

This section depicts a usecase to illustrate the applica-
tion of the introduced approach in a C++ environment.
The goal is to setup the library, load input XML data,
and access the data by the query language. Finally, the
result of the query is converted to a numerical datatype.

// the datastructure is instantiated
pugi::xml_document doc;

// the xml file is loaded
pugi:: xml_parse_result result =
doc.load_file (”input/dev.xml”);

// a query string is set up

std :: string query._string(”db/ele/ele/ele/props
/data[id=\"Lattice Constant\”]
/repr/double/text ()”);

// the query string is processed ..

pugi:: xpath_query query(query_string.c_str ());
// and evaluated
pugi:: xpath_node_set tools =

query .evaluate_node_set (doc);

© 0 N O U A W N e

=R e
N o= O

Finally the string typed value has to be converted into
a numerical datatype.

// the result is converted to a string
std ::stringstream resultstream;

tools [0].node (). print (resultstream , 7 7);
std ::string value_string (resultstream.str ());
// parse the value result, get poly result
poly_data pres = convert(value_string);

// the result is tested if it is a numeric

// type and the data is extracted accordingly

if(is< numeric_type >(pres)) {
numeric_type quan=get<numeric_type >(pres);

CONCLUSION

A fast and lightweight application of a XML parser li-
brary as a material library has been introduced. The
XML file setup has been discussed as well as the usage
of the query language to access the data. A conver-
sion utility enables the use of this approach in numeri-
cal applications. The peak memory consumption as well
as the file loading times and the query execution times
have been investigated for input files of different sizes.
A use case example depicts the implementation details
for using the presented approach, as well as a possible
application scenario as part of a simulator environment
is introduced.

ACKNOWLEDGMENTS

The authors want to thank Karl Rupp from the Chris-
tian Doppler Laboratory for Reliability Issues in Micro-
electronics from TU Wien for his valuable input. This
work has been supported by the European Research
Council through the grant #247056 MOSILSPIN and
by the Austrian Science Fund FWF, project P19532-
N13.

REFERENCES

[1] M. Gayer and G. Iannaccone, “A Software Plat-
form for Nanoscale Device Simulation and Visual-
ization,” in Advances in Computational Tools for
Engineering Applications, ACTEA, 15-17 2009, pp.
432-437.

A. Logg and G. N. Wells, “DOLFIN: Automated
Finite Element Computing,” ACM Transactions on
Mathematical Software, vol. 37, no. 2, pp. 1-28,
2010.

J. C. Maxwell, A Treatise on Electricity & Mag-
netism. New York: Dover Publications, 1873.

[4] Extensible Markup Language (XML) 1.0,
http://www.w3.org/TR/REC-xml.

[5] PostgreSQL, http://www.postgresql.org.

[6] PugiXML, http://code.google.com/p/pugixml.

(7] XML Path Language (XPath) 1.0,

http://www.w3.org/TR/xpath.

458

[8] M. Benedikt et al., “XPath Leashed,” in In ACM
Computing Surveys, 2007.

Xerces-C++ Parser, The Apache Software Foun-
dation, http://xerces.apache.org.

[10] XQilla, http://xqilla.sourceforge.net.

[11] TinyXml, http://sourceforge.net/projects/tinyxml.
[12] TinyXPath, http://tinyxpath.sourceforge.net.

[13]

J. Weinbub et al., “A Dispatched Covariant Type
System for Numerical Applications in C++,” in In-
ternational Conference of Numerical Analysis and
Applied Mathematics, ICNAAM. AIP Conference
Proceedings, 2010, accepted.

[14] Funtoo Linuz, http://www.funtoo.org.

[15] Valgrind, http://valgrind.org.

BIOGRAPHY

JOSEF WEINBUB studied electrical engineering and
microelectronics at the Technische Universitit Wien,
where he received the degree of Diplomingenieur in
2009. He is currently working on his doctoral degree,
where his scientific interests are in the field of scien-
tific computing, with a special focus on algorithms and
datastructures, modern programming techniques, and
high-performance computing.

RENE HEINZL studied electrical engineering at the
Technische Universitat Wien, where he received the de-
gree of Diplomingenieur in 2003 and his PhD in tech-
nical sciences in 2007. His research interests include
programming paradigms, high performance program-
ming techniques, data structural aspects of scientific
computing, performance analysis, process simulation,
solid modeling, scientific visualization, algebraic topol-
ogy, and mesh generation and adaptation for TCAD.
FRANZ STIMPFL studied computer science at the
Technische Universitdt Wien, where he received the de-
gree of Diplomingenieur in 2007. He joined the Insti-
tute for Microelectronics in October 2007, where he is
currently working on his doctoral degree. His research
activities include mesh generation and modern software
paradigms.

PHILIPP SCHWAHA studied electrical engineering
at the Technische Universitit Wien, where he received
the degree of Diplomingenieur in 2004. He is currently
working on his doctoral degree. His research activities
include circuit and device simulation, device modeling,
and software development.

SIEGFRIED SELBERHERR was born in Austria
in 1955. He received the degree of Diplomingenieur in
electrical engineering and the doctoral degree in tech-
nical sciences from the Technische Universitdt Wien in
1978 and 1981, respectively. Dr. Selberherr has been
holding the wenia docendi on computer-aided design
since 1984. Since 1988 he has been the chair professor of
the Institute for Microelectronics. His current research
interests are modeling and simulation of problems for
microelectronics engineering.

