
PARALLELIZATION STRATEGY FOR HIERARCHICAL RUN LENGTH
ENCODED DATA STRUCTURES

Lado Filipović*, Otmar Ertl, and Siegfried Selberherr
Institute for Microelectronics, TU Wien, Gußhausstraße 27–29/E360, A-1040 Wien, Austria

*Phone: +43 1 58801-36036, Fax: +43 1 58801 36099, email:{filipovic ertl selberherr}@iue.tuwien.ac.at

ABSTRACT
An efficient parallelization strategy is presented for a Hier-
archical Run Length Encoded (HRLE) data structure, im-
plemented for the Sparse Field Level Set method. In or-
der to achieve high parallel efficiency, computational work
must be distributed evenly over all available CPU threads.
Since the Level Set surface must be allowed to deform and
evolve, thereby increasing the simulation area, there must
exist a way to increase the surface domain while keeping an
efficient parallelization strategy in place. This is achieved
by processing the same number of calculations across each
available CPU. The addition of data to HRLE data struc-
tures is only permitted in a sequential or lexicographical or-
der, making parallelization more complex. The presented
solution uses as many HRLE data structures as there are
CPUs available. Approximately 90% of operations can be
performed in parallel when using the presented strategy,
leading to an efficiency of up to 96% or 78.5% when us-
ing two or sixteen CPU cores of an AMD Opteron 8435
processor, clocked at 2.6GHz, respectively. Topographies
with one and two moving interfaces were simulated using
multi-threading, showing the speedup and efficiency for the
presented strategy.

KEY WORDS
Modeling and Simulation, Parallel Programming, Hierar-
chical Run Length Encoding, Level Set Method, Surface
Evolution.

1 Introduction

The Level Set method, first introduced by Osher and
Sethian [1, 2, 3] is very powerful to visualize implicitly
defined surfaces. The method can be used for many appli-
cations in a wide range of fields, such as computer graph-
ics [4, 5, 6], image processing [7, 8], visualization [9, 10],
and computational physics [2, 3, 11, 12]. Level Sets are
ideal for modeling dynamic surface deformations, since
they avoid problems associated with parametric surfaces
[13]. One such problem is that a parametric surface re-
quires frequent regularization in order to avoid deteriora-
tion of the surface, caused by inaccuracies and instabilities
[3].

The Level Set method describes a movable surfaceS

as the zero Level Set of a continuous function, defined on

the entire simulation domain,Φ(~x, t)

S(t) = {~x : Φ(~x, t) = 0}. (1)

The implicitly defined surfaceS describes a surface evolu-
tion, driven by a scalar velocityV (x), using the Level Set
equation

∂Φ

∂t
+ V (~x)‖∇Φ‖ = 0, (2)

whereΦ = 0 denotes the location of the surfaceS on the
entire simulation domain. The motion of the surface is cal-
culated by extracting a velocity field from the known sur-
face velocities, followed by a reconstruction of the modi-
fied surface position. The easiest way to advance the sur-
face is to calculate the Level Set valueΦ(~x, t) for all points
on the domain after every movement of the surface. This
method also allows for easy parallelization, by a simple di-
vision of the domain among the available CPUs. However,
calculating the entire domain is cumbersome and unneces-
sarily drains computer resources, resulting in poor memory

and speed performance. A complexity of orderO
(

N
3

2

)

can be expected in three dimensions, whereN is a rep-
resentation of the surface size. Alternatives can achieve
a linear scaling of complexity in the form of the Narrow-
Band Algorithm [14] and the Sparse Field method [15].
The Narrow-Band Algorithm takes advantage of the fact
that only values near the surface influence the evolution of
the zero Level Set, thereby limiting the re-calculation of
new Level Set values to a narrow band of approximately
10-20 grid points around the moving interface. Since the
evolving surface can push the zero Level Set outside of
the computed band, the Level Set values must regularly be
re-initialized. The Sparse Field method takes the Narrow-
Band method one step further by only computing a single
layer of defined grid points for each time integration step,
further reducing the computational effort.

Common methods for parallelization and speedup of
the solution of PDEs exploit the inherent, fine-grained par-
allelism of finite difference schemes through algorithms
which are implementable on clusters of computers or mul-
tiprocessors with shared memory systems [13, 16]. A dif-
ferent approach is taken in [13], where a full grid is dis-
tributed over multiple threads by partitioning the grid into
slabs, with each thread handling the calculations required
for one slab. This option is not available for data structures
which implement HRLE due to the complexity of adding

Proceedings of the IASTED International Conference

February 15 - 17, 2011 Innsbruck, Austria
Parallel and Distributed Computing and Networks (PDCN 2011)

DOI: 10.2316/P.2011.719-045 131

new grid points to the data structure, as will be explained in
the next section. This paper describes the implementation
of a parallelization strategy for the Sparse Field method in
combination with the HRLE data structure.

2 Sparse Field Method with HRLE

Complete details of the Sparse Field Level Set method, to-
gether with the HRLE data structure can be found in [17].
This section serves to summarize that work and point to the
inherent parallelization complexity of this implementation.

2.1 Sparse Field Method

The Sparse Field method assumes that the surfaceS passes
between any two neighboring grid points that have differ-
ently signed Level Set values. Therefore, only these neigh-
boring points are defined and are required in calculations
of surface evolution. The defined grid point that is closest
to the Level Set surface, when compared to its oppositely-
signed neighbor, is said to be active. The set of active grid
points,L0, are used in calculating surface evolution and are
represented by

L0 :=

{

~p ∈ P : −
1

2
≤ Φ (~p) ≤

1

2

}

, (3)

whereP ⊆ Z
3 is the set of all grid points. Knowing the

Level Set values of additional layers is necessary for the
computation of derivatives. For each additional level of
derivative calculation required for conventional time inte-
gration schemes, a layer of defined Level Set values must
be added. This is performed by expandingΦ (~p) from (3)

to accept values from−
3

2
to

3

2
. All remaining Level Set

points are undefined and are not required in calculations of
surface evolution. The method is initialized by providing
the Level Set values of all grid points which have at least
one neighbor with an opposite signed Level Set value, as
well as the sign of all other grid points. The sign of the
undefined grid points is required in order to separate the
simulation domain into the volume “inside” and “outside”
the evolving surface. An example of the sparse field imple-
mentation of a two-dimensional Level Set surface is shown
in Figure 2, where the sample surface from Figure 1 is bro-
ken down into undefined and defined grid points with their
Level Set values.

2.2 HRLE Data Structure

The HRLE data structure is implemented in order to re-
duce the memory consumption of the Level Set method.
Conceptually simpler implementations are the Run Length
Encoded (RLE) data structure [18] and the Dynamic Tubu-
lar Grid (DTG) [19]. The RLE data structure stores grid
points by separately encoding the data along a single grid
direction, while the DTG data structure performs orthog-
onal projections along all grid dimensions on the set of

Figure 1. The sample surface of a triangle on a 12× 12
grid is to serve as an example.

defined grid points. The HRLE implementation combines
the best features of the RLE and DTG data structures by
employing an RLE data structure in a dimensionally recur-
sive manner [20]. It initializes all defined grid points and
their Level Set values in lexicographical order, while other
points only have their sign stored [20]. An example of the
implementation of the HRLE data structure for the two-
dimensional Level Set surface from Figure 2 is shown in
Figure 3. For each grid line along thex1 direction, an in-
dex to the corresponding run type sequence is stored in the
start indices array. Three different types of run codes can be
distinguished: undefined runs that are positive (blue), unde-
fined runs that are negative (red), and defined runs (green).
The defined runs have their corresponding grid location,
(i, j, k) stored, along with their Level Set values, as shown
in theLS valuesblock of Figure 3. Another array stores the
run breaks from which the start and end indices of a run can
be obtained. Any grid points which do not have a Level Set
value assigned are automatically added to undefined runs
in thex1 − RLE block, and only their sign(+ve or −ve)
is stored. Any further additions of defined points to the
grid is straight-forward as they are added to the ends of the
array. However, there is no natural method to parallelize
the HRLE data structure, because the data is set up serially.
Parallelization of the structure by splitting the surface into
slabs would make it difficult to add any new defined points
to the existing structure.

When a Level Set surface is advanced by one time
step, it is very likely that some previously active grid points
are no longer neighboring the surface and, therefore, must
be removed from the set of active defined grid points. It
is equally likely that some previously undefined grid points
are now the closest neighbor to the surface and should be
added to the set of defined grid points. Instead of adding

132

Figure 2. The Level Set representation of the triangle from
Figure 1 is shown.

and deleting defined grid points, the structure is re-built
from scratch after each time step [17]. The paralleliza-
tion of this data structure and implementation during sur-
face evolution is presented in the next section.

3 Parallelization Strategy

In order to take full advantage of modern CPUs, the de-
velopment of algorithms capable of multi-threaded perfor-
mance is essential. To achieve high parallel efficiency, all
computational work must be evenly distributed among the
available CPU threads. A good strategy is a dynamic load
balancing of the sparse Level Set [13], which involves split-
ting of the active grid points among available threads so
that each thread performs calculations on an equal section
of the surface, thereby splitting the work evenly. This is
not possible when using an HRLE data structure integrated
with the Sparse Field method. HRLE is a non-static data
structure not defined on the full grid, making paralleliza-
tion more complicated. In addition, any new defined grid
points can only be inserted in sequential or lexicographi-
cal order; therefore, for this data structure, parallelization
is not inherent. The method of splitting the surface into
sections and performing calcullations using one processor
thread for each chunk is similar to a method implemented
for computer graphics parallelization, where an image is
split into chunks and one processor thread is utilized to per-
form calculations on each chunk [21, 22]. The presented
solution is to build as many HRLE data structures as there
are CPU threads available, with each structure encompass-
ing an equal number of active grid points. Since the sparse
field implementation requires that the data structure be re-
built at least once for every time step, the full grid must
be re-partitioned among the HRLE data structures during

each reconstruction. This ensures that good properties of
the HRLE data structure are maintained, including fast se-
quential access and small memory requirements [17, 20],
while the work is divided evenly between available CPU
threads. With this method, all HRLE data structures have
the flexibility to add grid points to their own data set at the
same time. A problem may arise, if two HRLE data struc-
tures attempt to add the same point to their respective data
set. This is solved by partitioning the entire grid prior to
setting up the data structures.

If there areN threads available, partitioning can be
performed usingN index vectors. Each index vector points
to a sequence of consecutive grid points which make up
one complete HRLE data structure. Index vectors are used
to store grid points assigned to a single thread in the ap-
propriate HRLE structure, in addition to storing run codes
that link the structure to other threads. These run codes
are stored in parts of the data structure handled by a differ-
ent thread and, therefore, are accessed through a different
HRLE data structure. The information stored in them pro-
vides a link to the HRLE data structure which encompasses
the corresponding grid point. Therefore, if an attempt is
made to access a grid point through a data structure for
CPUx, but the point is handled byCPUy, the informa-
tion returned will re-direct access to theCPUy HRLE data
structure.

Figure 4 demonstrates an implementation of paral-
lelization using four CPU threads for the example pre-
sented in Figure 1 and Figure 2. For each HRLE data struc-
ture, there are seven possible run codes stored: four of them
are to identify which thread is responsible for a desired grid
point access, while the remaining three are the same as in
non-parallelized HRLE data structures: positive undefined
run, negative undefined run, and a defined grid point. Ob-
serving the structure of CPU 3 in Figure 4, it is evident that
the HRLE data set is built by first identifying the regions
covered by CPU 1 and CPU 2, respectively. The region
covered by CPU 3 is then constructed in the same man-
ner as a non-parallelized data structure, by identifying un-
defined runs together and defined grid points individually.
Finally, the grid points covered by CPU 4 are identified.

3.1 Data Access

When shared memory machines are used, access to the par-
allelized HRLE data structures of other threads is straight
forward. Random access is performed in two steps. Ini-
tially, it must be determined which HRLE data structure
contains the information for a desired grid point. This is
performed by a search through the index vector array and
has a complexity ofO(logN), whereN is the number
of available CPU threads. When the correct HRLE data
structure is identified, the desired grid point must then be
found, which has a complexity ofO(logND) [17], where
ND is the number of defined grid points. The total worst-
case complexity for a random accesses is thenO(logN +
logND).

133

Figure 3. HRLE Data structure for example in Figure 1.

Figure 4. Parallel version of the sample HRLE data structure from Figure 2 using four threads. Four HRLE data structures are
built with each being assigned to a CPU. An attempt is made to ensure that each HRLE data structure, and thereby each CPU,
processes an equal number of active grid points (Green). For all grid points not handled by the current CPU, run codes are
inserted instead, describing the location of the HRLE data structure which must be called upon to process those grid points.

134

Sequential access using the parallelized HRLE data
structure is also easily realizable. It is similar to the se-
quential access of a non-parallelized data structure in [17],
with the only difference being how access is handled, when
a grid point is reached which re-directs access to a different
HRLE data structure. When such a point is reached, a ran-
dom access operation is performed to find the required data
structure followed by continued sequential iterations within
that structure. Even with the additional random access, on
average, sequential access is performed in real time, re-
sulting in a linear complexity of the sparse field Level Set
method for the parallelized data structure.

4 Benchmarks

In order to test the parallel efficiency of the sparse field
Level Set method with an HRLE data structure, the sur-
face evolution of an expanding sphere is calculated. The
sphere is simulated to expand at a constant rate while cal-
culations are performed using 1, 2, 4, 8, and 16 cores of an
AMD Opteron 8435 processor, clocking at 2.6GHz. The
subsequent average calculation times for one time step and
for different sphere diametersd, measured in grid spacings,
are presented in Table 1, Table 2, and Table 3. A time step
is the time required for the full surface to advance with a
desired surface velocity. The information is summarized in
Figure 5 and Figure 6, where trends in the speedup and ef-
ficiency, respectively, obtained by increasing the number of
processors used for the calculation, is shown. The speedup
is calculated by noting how many times faster the multi-
threaded calculations are performed in comparison to a sin-
gle core. As the number of processor cores is increased,
less time is required to perform one time iteration step. Ide-
ally, every time the number of cores used is doubled, the
time required would half, leading to 100% efficiency and a
speedup equivalent to the number of cores used. However,
this is unrealistic as there are sequential parts of the code
which cannot take advantage of parallelization.

Amdahl’s law [23] suggests that the parallel efficiency
of a program decreases with increasing number of CPUs
used, as shown in

Speedup =
1

rs +
rp

n

(4)

wherers + rp = 1, rs is the sequential portion of a pro-
gram, rp is the parallelized portion of a program, andn

is the number of processors used. This equation was used
to estimate the proportion of parallel operations performed
using the presented algorithm. The results for the simula-
tion whered = 100, d = 1000, andd = 10000 are shown
in Table 1, Table 2, and Table 3 respectively.

From observation, it is evident that the sphere with
the smallest diameter,d = 100 has the lowest speedup
and efficiency, because small structures have a more sig-
nificant overhead due to thread synchronization, resulting

CPUs Time Speedup Effic. rp rs

1 60.8ms - - - -
2 32.3ms 1.88 94.2% 93.8% 6.2%
4 18.8ms 3.23 80.7% 92.1% 7.9%
8 11.6ms 5.24 65.6% 92.5% 7.5%
16 06.9ms 8.81 55.0% 94.6% 5.4%

Table 1. Benchmark for a time integration step of a sphere
expanding with constant speed of diameterd = 100. The
average single time-step computation times, speedup, and
parallel efficiency are given for a varying number of CPUs.

CPUs Time Speedup Effic. rp rs

1 6.19s - - - -
2 3.18s 1.95 97.4% 97.3% 2.7%
4 1.78s 3.48 87.0% 95.0% 5.0%
8 0.94s 6.59 81.9% 96.9% 3.1%
16 0.49s 12.64 78.2% 98.2% 1.8%

Table 2. Benchmark for a time integration step of a sphere
expanding with constant speed of diameterd = 1000. The
average single time-step computation times, speedup, and
parallel efficiency are given for a varying number of CPUs.

in poorer efficiency. As the diameter of the sphere is in-
creased by a factor of 10, tod = 1000 and then once again
to d = 10000, the surface of the sphere increases by a fac-
tor of 100, which is well reproduced by the increase in
run times. A single time step is the time required for the
entire surface to advanced during time integration, which
is why increasing the surface by 100 increases computa-
tion time by 100. Parallelization performance shows im-
provement as the surface of the sphere is increased. It can
also be observed that there is not a significant difference
in performance between the two larger diameters, because
the threshold, where a relatively small structure incurs too
much overhead, is surpassed and an accurate representation
of parallel performance can be seen. From Figure 5 Am-
dahl’s law is noticeable since speedup is increasing with
increased number of cores used, while the efficiency from
Figure 6 is decreasing, since the sequential part of the code

CPUs Time Speedup Effic. rp rs

1 636s - - - -
2 331s 1.92 96.0% 95.9% 4.1%
4 179s 3.55 89.0% 95.8% 4.2%
8 95s 6.69 83.4% 97.2% 2.8%
16 51s 12.47 78.5% 98.1% 1.9%

Table 3. Benchmark for a time integration step of a sphere
expanding with constant speed of diameterd = 10000. The
average single time-step computation times, speedup, and
parallel efficiency are given for a varying number of CPUs.

135

2 4 6 8 10 12 14 16

Number of CPUs

2

4

6

8

10

12
S

p
e
e
d

u
p

 (
s
/s

)

d=100
d=1000
d=10000

Figure 5. Speedup, when multiple processor cores are used
to calculate a sphere expanding at constant speed.d refers
to the diameter of the simulated sphere.

is gaining more influence in the overall calculation.
In the case of an expanding sphere with diameter

d = 10000, a parallel efficiency of approximately 78% is
achieved, when 16 processor cores are used. This suggests
that by implementing the parallelization strategy presented
here, approximately 90% of the program operations take
advantage of the multi-threaded structure.

4.1 Application - Topography Changing Process

The sparse field Level Set method with an HRLE data
structure was implemented for topography simulations. To-
pography simulations are useful in predicting evolutions
of wafer surfaces after applying semiconductor processing
technologies, such as etching, deposition, ion implantation,
oxidation, etc. These simulations can be very computer-
intensive, especially when large surfaces must be simu-
lated. Therefore, parallelization should be used in order
to make these large computer-intensive calculations realiz-
able and to reduce the time budget. In some instances, such
as oxidation simulations, there is a need to have multiple
Level Sets advance simultaneously at individual velocities.
When an oxide is grown on top of a silicon substrate, it ad-
vances into the substrate while at the same time expanding
into the ambient. The presented parallelization strategy was
implemented on a large geometry to obtain performance
benchmarks for a topography simulator with a single mov-
ing interface, required for deposition and etching, and with
multiple moving interfaces, required for oxidation.

The initial geometry of a benchmark example, with
Level Set dimensions of 5600×5600 grid spacings is
shown in Figure 7. The first simulation involved advancing
the top surface with a positive velocity using multiple cores
of an AMD Opteron 8435 processor, clocking at 2.6GHz.
The resulting topography is shown in Figure 8, while the

2 4 6 8 10 12 14 16

Number of CPUs

50

60

70

80

90

100

E
ffi

c
ie

n
c
y
 (

%
)

d=100
d=1000
d=10000

Figure 6. Efficiency of parallelization when multiple pro-
cessor cores are used to calculate a sphere expanding at
constant speed.d refers to the diameter of the simulated
sphere.

average time required for one calculation step, speedup fac-
tor, and efficiency are summarized in Table 4. The portion
of the simulation which implement multi-threading is ap-
proximately 90%, calculated using the minimum speedup
from Table 4 and Amdahl’s law from (4).

CPUs Time Speedup Efficiency
1 199.48s - -
2 106.79s 1.87 93.40
4 64.49s 3.09 77.33
8 32.53s 6.13 76.65
16 18.96s 10.52 65.77
24 14.84 13.44 56.00

Table 4. Simulation results for the time evolution of the
surface from Figure 8. The average time to compute one
time step, speedup resulting from multi-threading, and the
efficiency of the parallelization is shown.

In order to evaluate the effectiveness of the presented
parallelization strategy on interfaces, where multiple Level
Sets move simultaneously, the top surface from the geom-
etry shown in Figure 7 was expanded in the positive and
negative directions. The result of the simulation is shown in
Figure 9 and Figure 10. The average time required for one
calculation step, speedup factor, and efficiency are summa-
rized in Table 5. It is instantly noticeable that the simula-
tion with a dual moving interface required approximately
twice the simulation time compared to the simulation with
a single moving interface, suggesting a linear scaling when
additional Level Set surfaces must be advanced. The min-
imum portion of parallel operations, which can take ad-
vantage of multi-threading, when multiple surfaces are ad-

136

Figure 7. The initial geometry, with dimensions 1400×
1400. The Level Set grid spacing is set to 0.25, mean-
ing that the dimensions used for Level Set calculations are
5600× 5600.

Figure 8. Results after the top surface in the geometry from
Figure 7 is advanced with a positive velocity. The initial
volume is shown (green) with the surface after evolution
(red).

vanced, is once again approximately 90% calculated us-
ing the speedup from Table 5 and Amdahl’s law from (4).
These simulations suggest that the presented parallelization
strategy is effective for topography simulation processes,
whether a single interface or multiple interfaces need to be
advanced simultaneously.

5 Conclusion

A parallelization strategy was implemented for a sparse
field Level Set method using an HRLE data structure. The
general approach to parallelization of Level Sets is to split a
full Level Set grid into slabs and have one processor handle
each slab. However, the architecture used here does not al-
low for this implementation, because only a single layer of
defined grid points around the surface is stored in an HRLE
data structure. The structure requires sequential or lexico-
graphical addition of grid points, making parallelization of
a moving interface complicated. Parallelization is achieved

CPUs Time Speedup Efficiency

1 392.56 - -
2 207.93 1.89 94.40
4 129.82 3.02 75.60
8 66.70 5.89 73.56
16 38.28 10.26 64.10
24 28.95 13.56 56.50

Table 5. Simulation results for the time evolution of the
two surfaces from Figure 9. The average time to compute
one time step, speedup resulting from multi-threading, and
the efficiency of the parallelization is shown.

Figure 9. Top surface from Figure 7 after it is advanced
in two directions simultaneously. Top surface (yellow) is
advanced with a positive velocity while the bottom surface
(blue) is advanced with a negative velocity. The middle
surface (green) shows the original Level Set location.

by taking advantage of the fact that the Sparse Field Level
Set needs to be rebuilt after every time step; therefore, the
defined grid points must be divided equally among avail-
able CPU threads before each rebuilding step. Each thread
is assigned an independent HRLE data structure which is
ultimately linked with all other threads using an index vec-
tor defining the entire simulation domain. The simulations
performed on an expanding sphere and topography evolu-
tions showed that, with the presented parallelization strat-
egy, approximately 90% of the operations were performed
in parallel, taking advantage of multiple thread availabil-
ity. The presented parallelization strategy reduces the time
required for technology process simulations, making simu-
lations on large surfaces realizable.

References

[1] S. Osher and J. A. Sethian, Fronts propagating with
curvature dependent speed: Algorithms based on
Hamilton-Jacobi formulations,Journal of Computa-
tional Physics, 79(1), 1988, 12–49.

[2] J. A. Sethian,Level Set Methods and Fast Marching
Methods. (Cambridge University Press, 1999).

137

Figure 10. Close-up of the surfaces from Figure 9, show-
ing the initial surface (green) with the advanced surfaces
(yellow and blue).

[3] S. Osher and R. Fedkiw,The Level Set Method and
Dynamic Implicit Surfaces. (Springer-Verlag, New
York, 2003).

[4] P. Koumoutsakos, G.-H. Cottet, and D. Rossinelli,
Flow simulations using particles: bridging computer
graphics and CFD, inACM SIGGRAPH 2008 classes,
New York, NY, USA, 2008, 1–73.

[5] N. Foster and R. Fedkiw, Practical animation of liq-
uids, inProc. 28th Conf. on Computer Graphics and
Interactive Techniques, New York, NY, USA, 2001,
23–30.

[6] D. Enright, S. Marschner, and R. Fedkiw, Animation
and rendering of complex water surfaces, inProc.
29th Conf. on Computer Graphics and Interactive
Techniques, New York, NY, USA, 2002, 736–744.

[7] A. Belaid, D. Boukerroui, Y. Maingourd, and J.-F.
Lerallut, Phase based Level Set segmentation of ultra-
sound images, inProc. 9th Int. Conf. on Information
Technology and Applications in Biomedicine, 2009,
1–4.

[8] O. Bernard, D. Friboulet, P. Thevenaz, and M. Unser,
Variational B-spline Level-Set method for mast image
segmentation, inProc. 5th Int. Symp. on Biomedical
Imaging: From Nano to Macro, 2008, 177–180.

[9] R. Westermann, C. Johnson, and T. Ertl, Topology-
preserving smoothing of vector fields,IEEE Tran.
on Visualization and Computer Graphics, 7(3), 2001,
222–229.

[10] A. Telea and A. Vilanova, A robust Level-Set algo-
rithm for centerline extraction, inProc. Symposium
on Data Visualisation, 2003, 185–194.

[11] O. Ertl, C. Heitzinger, and S. Selberherr, Efficient
coupling of Monte Carlo and Level Set methods
for topography simulation, inProc. of Int. Conf. on
Simulation of Semiconductor Processes and Devices,
2007, 417–420.

[12] O. Ertl and S. Selberherr, Three-dimensional topog-
raphy simulation using advanced Level Set and ray
tracing methods, inProc. of Int. Conf. on Simulation
of Semiconductor Processes and Devices, 2008, 325
–328.

[13] S. P. Awate and R. T. Whitaker, An interactive paral-
lel multiprocessor Level-Set solver with dynamic load
balancing, School of Computing, (University of Utah,
Tech. Rep., 2004).

[14] D. Adalsteinsson and J. A. Sethian, A fast Level Set
method for propagating interfaces,Journal of Com-
putational Physics, 118(2), 1995, 269–277.

[15] R. T. Whitaker, A Level-Set approach to 3d recon-
struction from range data,International Journal of
Computer Vision, 29(3), 1988 203–231.

[16] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and
R. T. Whitaker, Interactive deformation and visualiza-
tion of Level Set surfaces using graphics hardware,
in Proc. 14th IEEE Visualization, Washington, DC,
USA, 2003, 75–82.

[17] O. Ertl and S. Selberherr, A fast Level Set frame-
work for large three-dimensional topography sim-
ulations, Computer Physics Communications, vol.
180(8), 2009, 1242 – 1250.

[18] B. Houston, M. Wiebe, and C. Batty, RLE sparse
Level Sets, inACM SIGGRAPH 2004 Sketches, New
York, NY, USA, 2004, 137.

[19] M. Nielsen and K. Museth, Dynamic Tubular Grid:
An efficient data structure and algorithms for high
resolution Level Sets,Journal of Scientific Comput-
ing, 26, 2006, 261–299.

[20] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and
K. Museth, Hierarchical RLE Level Set: A compact
and versatile deformable surface representation,ACM
Transactions on Graphics, 25(1), 2006, 151–175.

[21] S. Whitman, A task adaptive parallel graphics ren-
derer, in Proc. Symposium on Parallel Rendering,
New York, NY, USA, 1993, pp. 27–34.

[22] S. Whitman, Dynamic load balancing for parallel
polygon rendering,IEEE Computer Graphics and
Applications, 14(4), 1994, pp. 41–48.

[23] G. M. Amdahl, Validity of the single processor ap-
proach to achieving large scale computing capabili-
ties, inProc. Spring Joint Computer Conference, New
York, NY, USA, 1967, 483–485.

138

