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We investigate the properties of ballistic fin-structured silicon spin 
field-effect transistors. The spin transistor suggested first by Datta 
and Das employs spin-orbit coupling to introduce the current 
modulation. The major contribution to the spin-orbit interaction in 
silicon films is of the Dresselhaus type due to the interface-induced 
inversion symmetry breaking. The subband structure in silicon 
confined systems is obtained with help of a two-band k·p model 
and is in good agreement with recent density functional 
calculations. It is demonstrated that fins with [100] orientation 
display a stronger modulation of the conductance as function of 
spin-orbit interaction and magnetic field and are thus preferred for 
practical realizations of silicon SpinFETs. 
 

Introduction 
 
The spectacular increase of computational speed and power of modern integrated circuits 
is supported by the continuing miniaturization of semiconductor devices’ feature size. 
With scaling approaching its fundamental limits, however, the semiconductor industry is 
facing the challenge to introduce new innovative elements and engineering solutions and 
to improve MOSFET performance. Employing spin as an additional degree of freedom is 
promising for boosting the efficiency of future low-power nanoelectronic devices, with 
high potential for both memory (1) and logic (2) applications.  
 

Silicon, the main element of microelectronics, possesses several properties attractive 
for spin-driven applications: it is composed of nuclei with predominantly zero spin and is 
characterized by small spin-orbit interaction. Because of that the spin relaxation in silicon 
is relatively weak, which results in large spin life time a (3,4). In experiments, coherent 
spin propagation through an undoped silicon wafer of 350μm thickness was demonstrated 
(5). Coherent spin propagation over such long distances makes the fabrication of spin-
based switching devices in the near future increasingly likely. 

 
The original proposal for the spin transistor by Datta and Das (6) employs the spin-

orbit coupling for current modulation. The current modulation appears due to spin 
precession in an effective magnetic field caused by the spin-orbit interaction. Due to the 
structural inversion asymmetry induced by the effective electric field in the conducting 
channel, the strength of the spin-orbit interaction becomes a function of the gate voltage.  

 
The electrons with a non-zero spin polarization are injected from the ferromagnetic 

source contact into the channel. The total current through the device depends on the 
relative angle between the magnetization direction of the drain contact eD and the electron 
spin polarization at the drain end of the conducting channel. Because the angle of the spin 
precession depends on the gate voltage, the total current through the device is modulated 
by the gate voltage.  
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The effective Hamiltonian of the spin-orbit interaction due to the structural-induced 
inversion asymmetry along the z-axis is usually considered to be of the Rashba type: 

 

/)( xyyxR ppH σσα −= ,             [1] 
where α  is the effective electric field dependent parameter of the spin-orbit interaction, 

yxp ,  are the electron momentum projections, and yx,σ  are the Pauli matrices.  
 

The weak strength of the spin-orbit interaction would be an obstacle to employ silicon 
for building a spin field-effect transistor similar to the one suggested by Datta and Das. 
As it is demonstrated in recent papers (7,8), the Rashba term [1] is indeed relatively small 
in silicon films inside SiGe/Si/SiGe heterostructures. Interestingly, in both perfect (001) 
silicon structures (7) and the silicon structures with interfacial disorder (8) there is 
another contribution to the spin-orbit interaction. Compared to the Rashba term, this 
contribution is approximately ten times larger, it depends strongly on the electric field, 
and it is described by the effective Hamiltonian  

 

/)( yyxxD ppH σσβ −= ,                     [2] 
which is of the Dresselhaus type. The value of the spin-orbit interaction β is estimated as 
0.5 10-12 eVcm at the built-in field 0.5 105 V/cm, in agreement with the experimental 
value (9). The spin-orbit interaction of such strength is sufficiently strong to investigate 
the possibility to build a silicon spin FET. 
 

The stronger spin-orbit interaction, however, leads to an increased spin relaxation. 
The D’yakonov-Perel’ mechanism is the main spin relaxation mechanism in systems with 
the degeneracy between the electron dispersion curves for the two spin projections lifted. 
In quasi-one-dimensional electron structures, however, the complete suppression of the 
spin relaxation was predicted (10).  

 
Indeed, in case of the elastic scattering only back-scattering is allowed. Reversal of 

the electron velocity and momentum results in the inversion of the effective magnetic 
field direction in [2]. Therefore, the precession angle does not depend on scattering along 
the carrier trajectory in the channel, but is a function of the channel length only. Thus, 
spin-independent elastic scattering does not result in additional spin decoherence.  

 
Model 

 
We investigate the properties of ballistic fin-structured silicon spin field-effect 

transistors (SpinFETs). The SpinFET consists of the ferromagnetic source and drain 
electrodes connected by a silicon fin. The strength β of the spin-orbit interaction [2] 
depends on the electric field which is induced by applying a voltage to the gate. The 
Hamiltonian in the ferromagnetic regions which sandwich the silicon region are (11) 
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where L is the channel length, mF the effective mass in the contacts, zσ  is the Pauli 
matrix, and )1/(2 2

0 PPEh F += , with P<1 being the spin polarization and EF the Fermi 
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energy. The plus/minus sign in [4] stands for parallel/anti-parallel configuration of the 
contact magnetization. 
 

In order to circumvent the impedance mismatch problem between the metal 
electrodes and the semiconductor channel and to facilitate spin current injection in the 
channel (5) the delta-function barriers of strength U are introduced at the interfaces 
between the contacts and the channel (11). Contrary to (11), the spin-orbit interaction is 
taken in the Dresselhaus form [2] relevant for silicon (7,8). The Hamiltonian in the 
silicon region 0<x<L, for [100] and [110] fin orientations, is 
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where mn is the nth subband effective mass, nEδ  is the band mismatch between the nth 

subband in the channel and the source and drain contacts, B is the magnetic field, μB is 
the Bohr magneton, g is the Landé factor, and γσγσσ sincos*

yx += , with γ defined as 
the angle between the magnetic field and the fin direction. 

 
Results 

 
In our studies silicon fins have a square cross-section with (001) horizontal faces. The 
parabolic band approximation is not sufficient in thin and narrow silicon fins. In order to 
compute the subband structure in silicon fins we employ the two-band k·p model 
proposed in (12), which has been shown to be accurate up to 0.5eV above the conduction 
band edge (13). The resulting Schrödinger differential equation with the Hamiltonian 
(12), with the confinement potential appropriately added, is discretized using the box 
integration method and solved for each value of the conserved momentum px along the 
current directions using efficient numerical algorithms available through the Vienna 
Schrödinger-Poisson framework (VSP) .  
 

Fig.1 demonstrates the dependence of the subband minima as function of the fin 
thickness t, for the lowest four subbands. The fin orientation is along [110] direction. The 
dependence of the splitting between the unprimed subbands with decreasing t, which are 
perfectly degenerate in the effective mass approximation, is clearly seen. Splitting 
between the valleys in a [100] fin can be ignored (14). In contrast, the dependence of the 
effective mass of the ground subband in [100] fins on t is more pronounced as compared 
to [110] fins. Results of density-functional calculations (14) confirm the mass 
dependences obtained from the k·p model (Fig.2). 

 
With the values of the effective masses and subband offsets obtained we study the 

conductance G through the system, for parallel and anti-parallel configurations of the 
contacts.  Fig.3  shows  the dependence of tunneling magnetoresistance (TMR) defined as 

 

TMR≡
↑↓

↑↓↑↑ −
G

GG
,                [7] 
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Figure 1.  Subband minima as a function of [110] fin thickness t. 
 

for [100] and [110] oriented fins with t=1.5nm on the value of spin-orbit interaction. Fins 
of [100] orientation display stronger dependence on β and are thus preferred for practical 
realizations of silicon SpinFETs. This is due to the fact that the scale of the TMR 
dependence on the spin-orbit interaction is determined by the characteristic wave vector 

2/βnD mk = . Because the effective mass in [110] fins is substantially smaller than in 
[100] structures, one needs a larger variation of β in order to acquire the same variation 
of kD. 

 
 

Figure 2. Ground subband effective mass dependence on t in [100] and [110] fins 
obtained with the k·p method (filled symbols) and with the first-principle calculations 
(14) (open symbols). The discrepancy between the curves is due to surface passivation 
and structure relaxation present in the first principles calculations (14) but not in k·p. 
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Figure 3. TMR dependence on the value of the Dresselhaus spin-orbit interaction 
parameter for t=1.5nm, B=0T, P=0.4, z=5 ( //2 FF EmUz = ). 
 

Thanks to the Dresselhaus form of the spin-orbit interaction, the TMR of [110] fins is 
most affected by the magnetic field along the transport direction (Fig.4), while the 
magnetic field orthogonal to the transport direction influences the TMR of [100] fins 
(Fig.5). Also, the TMR in [100] fins is most modified by the external magnetic field, 
which provides an additional option to tune the performance of the silicon SpinFET. 

 

 
  

Figure 4. TMR dependence on the value of the Dresselhaus spin-orbit interaction 
parameter for a [110] fin with t=1.5nm, (P=0.4, z=5) in a magnetic field B=3T parallel to 
the transport direction. 
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Figure 5. TMR dependence on β for a [100] fin with t=1.5nm, (P=0.4, z=5) in a magnetic 
field B=3T in [010] direction. 
 

Conclusion 
A possibility to build a SpinFET by using silicon fins is investigated. The spin-orbit 

interaction due to the interface-induced inversion symmetry breaking is taken in the 
Dresselhaus form. It is shown that [100] fins are more suitable for practical realizations 
of silicon SpinFETs. 
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