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Abstract

The electronic properties of graphene nano-ribbons in

the presence of line-edge roughness scattering are studied.

The conductance, the mean free path, and the localization

length of carriers are analytically derived using an effec-

tive mass model for the band structure. The model devel-

oped provides a deep insight into the operation of graphene

nanoribbon devices in the presence of line-edge roughness.

The effects of geometrical parameters on the conductance

of graphene nanoribbons are estimated assuming a diffu-

sive transport regime. However, in the presence of disorder,

localization of carriers can occur, which can significantly

reduce the conductance of the device. The effect of local-

ization on the conductance of rough nanoribbons is studied

analytically. Since this regime is not suitable for the opera-

tion of electronic devices, one can employ these models to

obtain critical geometrical parameters to suppress the local-

ization of carriers in graphene nanoribbon devices.

1. Introduction

Graphene, a planar single sheet of carbon atoms ar-

ranged in a honeycomb lattice, has recently attracted major

attention due to its remarkable electronic properties [1–7].

One of the most interesting characteristics of graphene is

the high carrier mobility, even at room temperature [8]. In

order to use graphene, which is a gap less material, for elec-

tronic applications a gap should be induced. By applying

geometrical confinement an energy gap can be achieved.

These structures are called graphene nanoribbons (GNRs).

The band gap of GNRs depends on the chirality and the

width of ribbon. To obtain a band gap larger than 0.1eV,

which is essential for electronic applications, the width of

the ribbon must be scaled below 10nm. However, at this

scale the mobility of GNRs can be degraded due to the

presence of the line-edge roughness. Experimental data

show that the line-edge roughness is the dominant scattering

mechanism for GNRs with a width below 50nm [9]. With

increasing roughness amplitude or length of the ribbon the

transport regime can be changed from diffusive to localiza-

tion. In this regime carrier transport occurs mostly by tun-

neling between localized states along the device. In the dif-

fusive regime the conductance of the ribbon decreases lin-

early with device length, whereas, in the localization regime

it decreases exponentially with the ribbon’s length [10].

For the given roughness parameters, one can avoid this

regime by appropriately selecting geometrical parameters.

Therefore, for designing GNR based devices and optimiz-

ing their characteristics, the role of geometrical and rough-

ness parameters on the functionality of such devices must

be clearly understood. In this work, new models for the

mean free path and the localization length have been analyt-

ically derived. Our model can also predict the appearance

of localization in GNRs for the given geometrical parame-

ters. Excellent agreement with experimental data indicates

the validity of our compact model.

2. The Electronic Band Structure

It has been shown that a three nearest neighbor

tight binding approximation along with an edge-distortion

correction can accurately predict the band structure of

GNRs [11]. The band structure of an armchair GNR can

be written as [12]:

E±

n (kx) ≈ ±
√

(EG,n/2)2 + (h̄vn)2k2x , (1)

with

EG,n ≡ 2
[

γ1 (2 cos(nθ) + 1) + γ3 (2 cos(2nθ) + 1)

+
4 (γ3 +∆γ1)

N + 1
sin2(nθ)

]
(2)

and

v2n =

(

3acc
h̄

)2
[

− 1

2
γ1 cos(nθ)

{

γ1 + γ3 (2 cos(2nθ) + 1) +
4(γ3 +∆γ1)

N + 1
sin2(nθ)

}

− γ3

{

γ1 + 2γ3 cos(2nθ) +
4(γ3 +∆γ1)

N + 1
sin2(nθ)

}

]

(3)
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θ =
π

N + 1
(4)

In Eq. (1), + and − represent the conduction and the va-

lence bands, respectively,N is the total number ofA andB-

type carbon atoms in each chain of the ribbon (see Fig. 1),

n = 1, · · · , N denotes the subband index, and EG,n is the

band gap and EC,n the band edge energy of the nth sub-

band. The first and the third nearest neighbor hopping pa-

rameters are γ1 ≈ −3.2eV and γ3 ≈ −0.3eV, respectively.

∆γ1 ≈ −0.2eV is the correction to the first nearest neigh-

bor due to edge-distortion [12]. Applying a Taylor expan-

sion to Eq. (1) the band structure of an armchair GNRs can

be approximated by an effective mass model as:

E±

n (kx) ≈ ±
(

EG,n

2
+

(h̄vnkx)
2

EG,n

)

= ±
(

EG,n

2
+
h̄2k2x
2m∗

n

)
(5)

where m∗
n is the effective mass of subband n and is given

by:

m∗

n =
EG,n

2v2n
. (6)

Using the effective mass model, the density of states per

unit length for n-th subband can be written as:

ρn(E) =
4

2π

(

∂E

∂k

)−1

=

√
2m∗

n

πh̄

Θ(E − EG,n/2)
√

E − EG,n/2

(7)

3. Line-Edge Roughness Scattering

Using the Fermi-golden rule the transition rate of elec-

trons due to line-edge roughness from subband n with an

Figure 1: The structure of a GNR with armchair edges and

the x − y coordinate system. The edges of the GNR are

terminated by hydrogen atoms

initial wave-vector kx, represented by |n, kx〉, to another

subband n′ with a final wave-vector k′x, represented by

|n′, k′x〉, can be written as:

Sn,n′(kx, k
′

x) =

2π

h̄
|〈n′, k′x|HLER|n, kx〉|2δ(En′(k′x)− En(kx))

(8)

The delta function states the energy conservation, where

line-edge roughness scattering is assumed to be an elastic

process. Due to open boundaries in the longitudinal direc-

tion (x-axis) and confinement along the transverse direction

(y-axis), the electron wave functions are given by:

ψ(x, kx) = 〈x|n, kx〉 =
1√
L
φn exp(ikxx) . (9)

HereL is the length of the ribbon. We assume that the band-

edges of the ribbon are modulated by the width fluctuations

due to line-edge roughness. Therefore, the perturbation po-

tential is given by [13]:

HLER(x) = δEC,n = − c

W 2
δW

= −δW (x)

W
EC,n

(10)

δW (x) denotes the width fluctuations andW = 〈W (x)〉 is
the average width of the ribbon. The line edge roughness

can be described by an auto correlation function as:

R(x1, x2) = 〈δW (x1)δW (x2)〉

= ∆W
2 exp

(

− |x |
∆L

)

(11)

∆W is the root mean square of the fluctuation amplitude

and ∆L is the roughness correlation which is a measure

of smoothness. We assume two rough edges for the rib-

bon. Under the condition that the roughnesses of theses two

edges are uncorrelated, the transition rate can be obtained

as:

Sn(kx, k
′

x) =

π

h̄

E2
G,n

W 2L

∆W
2
∆L

1 + q2∆L
2
δ(En′(k′x)− En(kx))

(12)

Here q = kx − k′x. To obtain the condactance and the

mean free path of GNRs the relaxation time due to line-

edge roughness must be evaluated. Using Eq. (12) and

1/τn(kx) =
∑

k′

x

Sn(kx, k
′
x) (1− cosα) the relaxation

time for electrons in some subband n with a wave vector

kx is given by

τn(E) =

(

W

∆W

)2

×

h̄2
(

1 + 8m∗
n(E − EG,n/2)∆L

2/h̄2
)√

E − EG,n/2

2
√
2m∗

nE
2
G,n∆L

(13)

where the summation runs over all final states k′x, and α is

the angle between the initial and final wave-vectors.
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Figure 2: Comparison between the numerical results and

the analytical models for the localization length as a func-

tion of energy for EF = 0.6EC, ∆L = 3nm, ∆W =
0.3nm, and T = 300K.

4. Localization of Carriers

In the absence of scattering, carrier transport is in the

ballistic regime. In this regime the conductance is inde-

pendent of the device length. In the presence of scattering,

transport of carriers is in the diffusive regime, where the

conductance is inversely proportional to the device length

(L):

G(E) ≈ G0

1

1 + L/λ(E)

(

− ∂f

∂E

)

(14)

with G0 = 2q2/h. In this regime the mean free path

of carriers can be defined as: λ(E) = vg(E)τ(E) [14].

vg,n = h̄−1∂E/∂k =
√

2(E − EC,n)/m∗
n is the group ve-

locity of the respective subband. However, in the presence

of disorder the carrier wave packet can be scattered back

and forth between potential barriers and standing waves

along the device can develop. In this regime, referred to as

localization regime, the transport of carriers takes place by

tunneling between localized states and the conductance of

the ribbon decreases exponentially with the ribbon’s length

[10]:

G(E) ≈ G0 exp

[

− L

ξ(E)

](

− ∂f

∂E

)

(15)

It has been shown that the localization length in quasi-one

dimensional devices is related to the mean free path by [15]:

ξn(E) ≈ Nch(E)λn, whereNch(E) denotes the number of

active conducting channels at some energy E.
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Figure 3: The localization length as a function of the GNR

width for different roughness amplitudes ∆W for ∆L =
3nm, EF = 0.6EC, and T = 300K

4.1. Localization Length and Mean Free Path

Using Eq. (13) and replacing vg,n, the mean free path

due to line-edge roughness scattering can be obtained as:

λn(E) = vg,n(E)τn(E) =

(

W

∆W

)2

×

h̄2
(

1 + 8m∗
n(E − EG,n/2)∆L

2/h̄2
)

(E − EG,n/2)

2m∗
n∆LE2

G,n

(16)

In a device with large splitting of the subbands and non-

degenerate statistics the first subband contributes mostly to

the total carrier transport, i.e. Nch = 1. In this case one can
approximate the localization length as ξ(E) ≈ λ(E). As

shown in Fig. 2, the localization length is very small for

carriers close to the conduction band and increases as the

kinetic energy of the carrier increases.

If the ribbon has a large effective mass (narrow GNRs)

or a large correlation length, the localization length and the

mean free path scale as: λ, ξ ∝W 2, see Fig. 3.

The conductance of GNRs in the diffusive and localiza-

tion regime is compared in Fig. 4 and Fig. 5 according

to the geometrical parameters. Fig. 4 indicates that at the

same width the localization of carriers is more pronounced

in longer GNRs. Fig. 5 shows that at the same length the

localization is more pronounced in narrower GNRs.

5. Conclusions

GNRs with band gaps suitable for electronic applica-

tions have a width below 10nm. In this regime line-edge

roughness is the dominant scattering mechanism. Under

this condition analytical models for the mean free path, and
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Figure 4: Comparison of conductance in the localization

(solid-curves) and diffusive regime (dash-dot-curves) as a

function of the width. ∆W = 0.5nm, ∆L = 3nm, EF =
0.6EC, and T = 300K

the localization length of carrier in GNRs are derived. Us-

ing these analytical models the dependences of the conduc-

tance and the localization length on the geometrical and

roughness parameters are studied. Employing theses mod-

els one can appropriately select the geometrical parameters

for optimizing the performance of GNR based electronic

devices.
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