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Abstract— The sp3d5s*-spin-orbit-coupled tight-binding model 
and linearized Boltzmann transport theory is applied to calculate 
the electrical conductivity, the Seebeck coefficient, and the power 
factor of silicon nanowires (NWs) with diameters D<12nm. Using 
experimentally measured values for the lattice thermal 
conductivity we estimate the room temperature thermoelectric 
figure of merit to be ZT~1. 
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I. INTRODUCTION 
The ability of a material to convert heat into electricity is 

measured by the dimensionless figure of merit 
ZT=σS2T/(ke+kl), where σ is the electrical conductivity, S is the 
Seebeck coefficient, and ke and kl are the electronic and lattice 
part of the thermal conductivity, respectively. As a result of 
suppressed phonon conduction, large ZT improvements have 
been recently reported for nanostructures, compared to the 
raw materials’ values [1, 2, 3, 4]. In silicon, although the bulk 
material has a ZTbulk ~ 0.01, the ZT of silicon NWs was 
experimentally demonstrated to be ZT~0.5. Most of this 
improvement resulted from suppressed phonon conduction (kl). 
It has been suggested, on the other hand, that low 
dimensionality can be beneficial for increasing the power 
factor (σS2) as well, offering an additional ZT enhancement [5, 
6, 7]. The sharp features in the low-dimensional density of 
states as a function of energy, DOS(E), can improve S, as this 
quantity is proportional to the energy derivative of DOS(E). 

In this work the sp3d5s*-spin-orbit-coupled tight-binding 
model [8, 9, 10, 11] is used to calculate the electronic 
structure of silicon NWs. Linearized Boltzmann transport 
theory is applied, including all relevant scattering mechanisms, 
to calculate the electrical conductivity, the Seebeck coefficient, 
and the power factor [12, 13]. We examine n-type nanowires 
of diameters D=3nm to D=12nm at different doping 
concentrations, in [100], [110], and [111] transport 
orientations, as shown in Fig. 1. Using experimental values for 
the lattice thermal conductivity in NWs, the expected ZT value 
is computed. We find that at room temperature, 
dimensionality benefits to the power factor due to 
bandstructure changes alone are possible when the NW 
diameter is scaled below 7nm. At those dimensions, however, 

surface roughness scattering strongly degrades the 
conductivity, and finally the power factor is actually degraded. 

II. APPROACH 
The NWs’ bandstructure is calculated using the 20 orbital 

spin-orbit-coupled tight-binding model sp3d5s*-SO [8, 9, 10, 
11]. In this model each atom in the NW is described by 20 
orbitals, including spin-orbit-coupling. The NW description is 
built on the actual zincblende lattice, and each atom is 
properly accounted for the calculation. It accurately captures 
the electronic structure and the respective carrier velocities, 
and inherently includes the effects of quantization and 
different orientations. The model provides an accurate 
estimate of the electronic structure, while being 
computationally affordable. It was extensively used in the 
calculation of the electronic properties of nanostructures with 
excellent agreement to experimental observations on various 
occasions [11]. 

We examine infinitely long cylindrical n-type NWs, i) of 
diameters D=3nm (ultra scaled) to D=12nm (approaching 
bulk), ii) in [100], [110] and [111] transport orientations, and 
iii) different doping levels. No relaxation is assumed for the 
NW surfaces in this study. Figures 2a and 2b show the 
electronic dispersions of NWs in [100] with diameters D=3nm 
and D=12nm respectively. Figures 2c and 2d show the 
electronic dispersions of NWs in [111] with D=3nm and 
D=12nm, respectively. The electronic structure of ultra   
narrow NWs is sensitive to the diameter and orientation [7, 
11]. Differences in the shapes of the dispersions between 
wires of different orientations and diameters, in the number of 
subbands, as well as the relative differences in their placement 
in energy, will result is different electronic properties. It was 
suggested by bandstructure considerations alone, that low 

[100] [110] [111]Fig. 1. Cross sections of the nanowires analysed. The [100], [110] and 
[111] orientations. The nanowire surface is assumed to be passivated. 



 
dimensionality would benefit the power factor. Indeed, in 
some cases this is possible. In Fig. 3 we show the power factor 
versus doping for the [111] n-type NW for different diameters, 
though under ballistic transport considerations. In this way, 
only the effect of bandstructure is captured. As the diameter 
scales from D=12nm to D=3nm the power factor increases by 
~2X. As we will see further on, however, when scattering 
mechanisms are included this advantage is lost. 

To extract the thermoelectric coefficients for each wire 
considering all relevant scattering mechanisms, linearized 
Boltzmann theory is applied. The electrical conductivity (σ), 
the Seebeck coefficient (S), and the electronic part of the 
thermal conductivity (ke) are calculated as:  
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The transport distribution ( )EΞ  is defined as [12, 13]:            
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 is the bandstructure velocity, ( )n xkτ  

is the momentum relaxation time for an electron in the 
specific kx-state and subband n, and: 
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is the density of states for 1D subbands (per spin). The 
momentum relaxation rates are extracted using Fermi’s 
Golden rule as: 
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In this work we used the velocity ( )xv k  instead of the 

momentum kx in the last parenthesis of Eqn. 4. The two are 
equivalent in the parabolic band case, but by using the 
velocity we can also capture curvature variation effects. The 
phonon scattering rate is given by: 
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In the case of elastic ADP scattering, after applying 
equipartition, the rate is given by: 
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where 9eVADPD = is the acoustic phonon deformation 
potential, ρ is the mass density, υs is the speed on sound in Si, 
Nω is the number of phonons given by the Bose-Einstein 
distribution, and 1/ nmA is the atomistically extracted 
waveform factor. For inter-valley (IV) scattering we include 

Fig. 3. The power factor versus the doping concentration in n-type 
[111] NWs with D=12nm down to D=3nm in decrements of 1nm. 
Ballistic transport is considered. 

(a) (b)

(c) (d)

Fig. 2. The electronic structure of n-type NWs for different diameters 
(D) and orientations. (a) D=3nm in [100]. (b) D=12nm in [100]. (c) 
D=3nm in [111]. (d) D=12nm in [111]. 



 
all relevant g- and f-processes with parameters given in [15]. 

For surface roughness scattering SRS, we assume a 1D 
exponential autocorrelation function for the roughness given 
by [16]: 

          ( ) ( ) 2 /2' CL
rmse
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with ∆rms = 0.48nm and LC = 1.3nm [17]. The scattering 
strength is derived from the shift in the band edges with 

quantization cE
x

∆
∆

 [18]. Although, this is a simplified way of 

treatment of SRS (ignores the effect of the wavefunction 
shape deformation on the interface), it is a valid 
approximation for ultra scaled channels, where the dominant 
SRS mechanism is the band edge variation [18, 19, 20]. The 
transition rate in this case can be derived as [19]: 
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where  'x xk kβ = −  and ( ' )E Eδ − is the delta-function.  
For the screened ionized impurities scattering we employ a 

simple 3D model, in which the potential is: 
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Here we have made two approximations: i) We have 
considered a 3D scattering potential, where in reality 2D 
solution of the poisson equation should have been employed 
over the cross section of the NW. This approximation is not 
valid for low doping, but in that case this scattering 
mechanism is not important. ii) We have considered a 
constant wavefunction overlap over the space, which 
simplifies the integral calculations using the wave form factor 
integral 1/ .nmA The spatially constant form factor 
approximation is also more valid at higher concentrations, 

where impurity scattering becomes important [21]. These 
approximations significantly reduce the computational and 
memory cost of the simulation, allowing the treatment of 
larger NW diameters. Considering a more rigorous treatment 
of impurity scattering, by removing these assumptions does 
not change our results for the thermoelectric coefficients 
significantly. The transition rate is given by: 
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where NI is the number of impurities in the normalization 
volume, also considered to be NI = n0. 
   We consider bulk phonons, and bulk Si scattering selection 
rules. Figure 4 shows the electronic structure of a cylindrical 
NW in the [110] transport orientation. There are three two-
fold degenerate valleys in the dispersion relation, one placed 
at the Γ point, and two placed off-Γ. Elastic and inelastic 
scattering processes are included (including both f- and g-
processes for all six relevant phonon modes in Si), as 
indicated in Fig. 4. The processes are treated using the bulk Si 
selection rules. For example, each valley in Fig. 4 is two-fold 
degenerate, but only intra-valley scattering is allowed, i.e. 
each valley scatters only within itself. Therefore, inelastic 
processes are allowed not only between, but also within the Γ 
and off-Γ valleys of the 1D dispersion. 

III. RESULTS 
Figure 5 shows the thermoelectric coefficients for the [111] 

n-type NW for diameters D=12nm and D=3nm versus the 
electron concentration with all scattering mechanisms 
considered. We have chosen this particular NW as an example, 
however, the basic features apply for the rest of the n-type 
NW orientations as well. Figure 5a shows the conductivity of 
the two NWs. The conductivity of the smaller diameter is 
degraded due to stronger phonon scattering originating from 
the larger form factor (inversely proportional to the NW’s 
area), but more importantly from the effect of SRS, which is 
particularly strong as the diameter decreases. Figure 5b shows 
the   Seebeck coefficient of the NWs. The Seebeck coefficient 
at the same 3D electron density is larger for the smaller 
diameter NWs. This indicates the beneficial effect of 
dimensionality also shown in Fig. 2. In the case of Fig. 2, 
however, under ballistic conditions the conductivity is not 
reduced with diameter. This increase in the Seebeck 
coefficient is what causes the increase in the power factor (S is 
scattering independent at first order). Figure 5c shows the 
power factor which is overall reduced for the smaller diameter 
NWs. This indicates that the reduction in conductivity 
dominates over the increase of the Seebeck coefficient. 

Although we have used the [111] NW as an example, 
similar conclusions also apply for NWs in the other transport 
orientations. Figure 5 shows the ZT values as a function of the 
electron concentration for the [100] (dash-dot), [110] (dash) 
and [111] (solid) transport orientation NWs. We show results 
for D=3nm and D=12nm. To calculate ZT we have used a 
constant value for the lattice part of the thermal conductivity 
kl=2W/mK. This is an experimentally measured value for 

ωh

ωh

ωh

ωh

Fig. 4. The electronic structure of the n-type, D=3nm, [110] NW with 
the scattering mechanisms indicated. Intra-valley elastic and inter-
valley inelastic processes are considered (between/within the three 
valleys), following the bulk silicon scattering selection rules.  



NWs of diameters D~15nm [1, 22, 23]. This value can be 
even smaller for smaller diameters, as well as orientation-
dependent [24], but we use it only to provide an estimate for 
the expected ZT. Our calculated ZT values are of the order   of 
ZT~1, which is in agreement with other reports, both 
theoretical [25] and experimental [1, 2]. The ZT trends follow 
the power factor trend, and the performance of the smaller 
diameter NWs is reduced compared to that of the larger ones. 
Some orientation dependence is observed, for example the 
peak of the D=12nm [100] NW is higher than the peaks of the 

rest. For the smaller diameters the [110] performs somewhat 
better (at least for concentrations below1019/cm3). The 
differences, however, are in general small, and subject to the 
specific values used for the scattering parameters.      

IV. CONCLUSIONS 
The thermoelectric coefficients (σ, S, σS2, ke, ZT) are 

calculated for n-type silicon NWs in different transport 
orientations for diameters from D=3nm to D=12nm using the 
linearized Boltzmann approach. The sp3d5s*-SO TB model 
was used for the electronic structure calculation. Although, 
under ideal (ballistic) conditions, diameter scaling below 7nm 
can enhance the power factor of Si NWs by up to 2X [7], 
enhanced scattering (especially SRS) at those diameter scales 
weaken this possibility. The reduction in the conductivity is 
stronger than the increase in the Seebeck coefficient, and the 
overall power factor and ZT are reduced. 
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