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SUMMARY  This work addresses the enormous efficiency and linear-
ity potential of optimized AlGaN/GaN high-electron mobility transistors
(HEMT) in conventional Doherty linear base-station amplifiers at 2.7 GHz.
Supported by physical device simulation, the work further elaborates on
the use of AlIGaN/GaN HEMTs in high-speed current-switch-mode class-
D (CMCD)/class-S MMICs for data rates of up to 8 Gbit/s equivalent to
2 GHz RF-operation. The device needs for switch-mode operation are de-
rived and verified by MMIC results in class-S and class-D operation. To the
authors’ knowledge, this is the first time 2 GHz-equivalent digital-switch-
mode RF-operation is demonstrated with GaN HEMTs with high efficiency.
key words: Gallium Nitride, power amplifier, switch-mode, efficiency

1. Introduction

Energy harvesting is a key issue in the development of green
information and communication technology. Energy effi-
ciency is further a vital prerequisite in order to make use
of the astounding electrical RF-power potential of group
III-Nitride semiconductor devices in real communication
systems [1]. III-Nitride high-electron mobility transistors
(HEMTsSs) enable new amplifier concepts at RF-frequencies
based on their increased device speed and ruggedness and
the unique combination of speed and high breakdown volt-
age. Very high efficiency values can be achieved with con-
ventional linearized Doherty amplifiers, as shown in this
work. In addition, new III-N amplifier can be part of more
advanced transceiver concepts, as depicted in Fig. 1. The
aim of this work is to harvest efficiency and to reduce com-
ponent usage in the chain from the digital output-1/Q of any
communication system. The schematic of the transceiver
chain in a base station is given in Fig. 1. The potential ad-
vantage of using switch-mode amplifiers is a more efficient
organization from the I/Q-output of the digital signal pro-
cessing (DSP) to the analog antenna output. The early D/A-
conversion can be avoided and the digital signal is main-
tained up to the power amplifier potentially allowing for in-
creased efficiency.
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Fig.1  Concepts of transceiver chains.

2. Device Technology and Simulation

Gallium Nitride HEMTs provide the outstanding properties
of high-breakdown voltage in combination with the capabil-
ity of very fast switching. Derived from an optimized analog
power bar process, three process variants were used for the
investigation of advanced broadband switching with the aim
to reach 2 GHz operation.

2.1 Epitaxy and Technology

The epitaxial structures used in this work were grown by
metal-organic chemical vapor deposition (MOCVD) on 3-
inch semi-insulating SiC substrates. The layers consist
of a highly-resistive c-plane GaN buffer, followed by an
Alp2rGag 78N barrier and finally a thin GaN cap layer. Room
temperature Hall measurements on the two-dimensional
electron gas (2DEG) formed at the buffer to barrier inter-
face resulted in a sheet resistance, a sheet carrier concen-
tration, and a mobility of 500€Y/sq, 8 X 102e¢m~2, and
1600 cm?/(Vs), respectively. After epitaxial growth, ohmic
contacts were formed, showing a low contact resistance of
0.2Qmm [3]. The nitride-assisted T-gate was used with
three different gate lengths of 0.5 ym, 0.25 ym, and 0.15 pm,
and was defined by e-beam lithography and trench etching
into the SiN passivation [2]. Table 1 gives an overview
on performance parameters of the three process variants in-
vestigated in this paper. The comparison is performed on
the same epitaxy, while contact spacings and pitches are
matched to the needs of the individual process nodes. Re-
sults on the powerbar capabilities of the process with a gate
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Table 1
applied.

Some analog features of the AlIGaN/GaN device technologies

Gate length [pm] 05 | 025 | 0.15
Operation bias V] 50 28 20

BVagp [V] 160 | 100 20
fr [GHz] 15 32 50
PAE % 65 55 29

@ frequency [GHz] 2 10 27

length of 0.5 um have been reported elsewhere, e.g., [2]. In
analog class-A-B operation, the process yields a very high
PAE of up to 65%, as given in Table 1. Reasonably-high
analog efficiency figures are given for two other gate lengths
for higher frequencies of 10 GHz and 27 GHz for reference.

Furthermore the coplanar MMIC-process includes
NiCr based 50 €)/sq thin film resistors, metal-insulator-metal
(MIM) capacitors as well as a thick plated Au-based air
bridge technology.

2.2  Device Simulation of Switch-Mode HEMTSs

To clarify the needs for switch-mode operation, the
AlGaN/GaN devices are analyzed by means of two-
dimensional hydrodynamic simulations using Minmos-NT,
which was successfully employed for the development of
AlGaN/GaN HEMTs [4], [S]. Material properties, such as
band energies, carrier mobilities, and carrier energy relax-
ation times are properly modeled. The densities of the po-
larization charges at the channel/barrier interface and at the
barrier/cap interface are determined by calibration against
the experimental data to be 9% 102 cm=2 and —2x 102 cm™2,
respectively. Self-heating effects are accounted for by using
substrate thermal contact in the simulation.

Devices with T-gates of 0.25 um length are analyzed
with respect to their input capacitance, their transconduc-
tance, and with respect to their gate-to-channel separa-
tion. For switch-mode operation, several trade-offs have
to be considered, which differ from the analog needs.
Enhancement-mode devices are very desirable in order to
simplify biasing. Thus, the cap and part of the barrier layer
under the gate of the EHEMT can be recessed by Cl,-plasma
etching. At the same time, fast current-mode switching re-
quires low on-resistances and low-capacitances. Further,
high-speed switching with high-oversampling requires low
capacitances to reduce the dynamic switching losses. As ex-
ample of the optimization, Fig. 2 gives the simulated trans-
fer characteristics as a function of barrier thickness under
the gate. The simulation shows the impact of the change of
the threshold voltage with etch depth.

Figure 3 further gives the simulated gate-source capac-
itance Cg as a function of barrier thickness. This is impor-
tant to quantitatively estimate the change in the input capac-
itance for switch-mode devices. Since the gate capacitance
depends on the gate-channel distance, we perform several
simulations with variable recess depths, i.e., variable bar-
rier thickness ty,, under the gate. As expected, a shift in
the threshold voltage is observed (Fig.2), and g, (not ex-
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Fig.2  Simulated and measured transfer characteristics as a function of
barrier thickness under the gate.
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Fig.3  Simulated transfer C as a function of barrier thickness under the
gate.

plicitly shown) increases with decreasing t,,, due to the lack
of charge control for thicker layers. Figure 3 shows that
the gate-source capacitance Cg increases with decreasing
thar- The simulations in agreement with measurements fur-
ther show that the fr remains relatively constant with barrier
variation. The transconductance g, and input capacitance
change simultaneously. Three conclusions can be drawn
from Fig.2 and Fig.3. First, enhancement-mode devices
can be achieved with a reasonable barrier thickness. Sec-
ond, the input capacitance C, increases significantly with
the reduction of the barrier thickness, which is a disad-
vantage for devices being driven in current-mode switch-
ing. However, also the C,, to Cog ratio improves with
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reduced barrier thickness. Third, as the transconductance
also increase accordingly, the current-drive capability of the
switch-mode FETs improves. Overall, moving the thresh-
old voltage closer to 0V improves the switching capabili-
ties even without actually reaching enhancement-mode op-
eration. For a given cut-off frequency, it is further desirable
to have a high transconductance in order to improve the ca-
pability to drive parasitic lines in a current-mode amplifier.
Last, reduction of the on-resistance R,, is key to minimize
ohmic switching losses while maintaining reasonable de-
vice pinch-off at high-bias. In this study this is achieved by
proper scaling of the contact separations for reduced gate-
lengths accordingly.

3. GaN Doherty Amplifiers

Still based on silicon LDMOS and conventional GaN
depletion-mode HEMTs, Doherty amplifiers are the
workhorse of ourdays base-station replacing more conven-
tional class-A-B amplifiers for linear efficiency reasons [6].
To that end a symmetric Doherty amplifier based on GaN
HEMTs was realized and was linearized under realistic base
station conditions. The fundamental gate periphery of the
amplifier is W, = 2 X 32mm. The AlGaN/GaN HEMTs is
based on a gate length of 0.5 um in this case with a thresh-
old voltage of —3 V. The baseline technology refers to the
non-recessed version in Fig.2. The powerbar devices are
packaged in conventional ceramic packages. The image of
the complete amplifier is given in Fig. 4. The devices are bi-
ased at Vpg = 30 V. The peak amplifier was biased in class-C
Vgs = -4V, while the carrier amplifier was biased in class-
A-B equivalent to a quiescent current of Ip ; = 100 mA/mm.
At a high frequency of 2.7 GHz a small-signal gain of 9 dB
is obtained.

One-carrier W-CDMA performance with digital pre-
distorsion (DPD) and clipping reaches an average output
power of 44.9 dBm (30.9 W) and a peak power of 50.5dBm
(112W) at 2.7 GHz. The linearized spectrum at 2.7 GHz is

Fig.4 Image of the symmetric GaN Doherty amplifier.
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given in Fig. 5. The markers for the 5 MHz and 10 MHz off-
set from the carrier are indicated. The measured associated
drain efficiency (DE) of the linearized operation is >45%
at 2.7 GHz and the 3GPP-ACLR specifications are met with
—47dB at 5MHz and with —55dB at 10 MHz offset. This
example shows the excellent potential of conventional GaN
FETs under realistic operating conditions up to a high fre-
quency of 2.7 GHz with excellent linear PAE.

4. Switch-Mode Core MMICs

More advanced amplifier concepts such as class-S ampli-
fiers have been suggested, e.g., in [7], however, operating
at 450 MHz only. It is the aim of this work to demonstrate
switch-mode core chips for data rates of >5 Gbits/s equiva-
lent to 2.14 GHz operation, i.e., realistic mobile communi-
cation frequencies. Some aspects of circuit design of core
chips based on a gate length of 0.25 um were reported in
[8]. For reference, the schematic is given in Fig. 6. The in-
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Fig.5  Output power spectrum of the GaN Doherty amplifier at 2.7 GHz.
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Fig.7  Micrograph of a CMCD MMIC, chip size 2 mm X 2 mm.

put stage of the driver is biased externally. The output stage
is biased with the DC-Vpg. The major application of such
an MMIC PA is either a current-mode class-S operation or
a current-mode class-D operation. In the experiment for es-
timating the class-D or class-S operation a square wave in-
put signal (class-D) or a BPDS modulated signal (class-S)
were applied to a dual-stage common source amplification
circuit. The gate of the driver is biased at a typical DC-bias
in class-A (Vgs = —1.3 V), which is adjusted via an external
bias-Tee and the the two bias V7, and V7, .

Figure 7 gives the micrograph of a broadband ampli-
fier core chip in differential configuration investigated for
various gate technologies in the following. For class-S op-
eration band pass delta-sigma (BPDS) modulated signals re-
quest a very high signal bandwidth, which is the reason for
applying a technology with a gate length as low as 0.15 um.
The frequency spectrum of the BPDS signal is defined from
nearly DC to at least 4th harmonic due to a four times sig-
nal oversampling in generating the BPDS signal. A typical
spectrum in class-S operation is given in Fig. 8 for a data
rate of 5.2 Gbit/s. The main areas of interest include the loss
mechanisms at high-data rates and the dependence of PAE
and output power as a function of bias.

4.1 MMIC Circuit Design and Broadband Measurements

Circuit simulation and design were carried out using Agi-
lent’s ADS simulation environment including our in-house
developed GaN HEMT large signal model. Because of the
very high signal bandwidth of the modulated input signal,
no conventional matching circuit can be applied to the in-
put/output of the MMIC. Thus, the particular amplifiers can
be operated at any bitrate within their particular bandwidth
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Fig.8  Output spectrum under class-S operation for 5.2 Gbit/s.

determined mainly by the active device technology. Circuit
design consist of waveform shaping for the particular maxi-
mum bitrate of the individual MMIC.

Broadband measurements were performed on a high-
bandwidth (50kHz to 40 GHz) measurement setup. The
input signal source consists of an Anritsu MP1758A pat-
tern generator with a series-connected preamplifier. A
high power attenuator was used as broadband 50 out-
put load. The input and output bias networks were chosen
very carefully to preserve the minimum and maximum avail-
able frequency of the measurement setup. A 50 GHz Ag-
ilent sampling scope (86100 with 83484A) combined with
a software-based spectral S-parameter correction was uti-
lized for broadband measurements of the waveforms. All
data given in the following refer to measured broadband sig-
nals without any filtering, which, however, has to be applied
for proper class-D/S operation in the final amplifier mod-
ule. The measurements were taken for one amplifier of the
differential amplifier pair shown in Fig. 7. For a full differ-
ential amplifier including a filter, a doubling in output power
with nearly no decrease in efficiency is expected, as evalu-
ated by circuit simulations. As an example for the signals,
Fig.9 gives the time-domain measurements at 0.9 Gbit/s,
and 4 Gbit/s, respectively, for a core chip with a gate length
of 0.15 um.

4.2 Core Chip Realization

Power amplifier core-chip CMCD-MMICs based on GaN
HEMTs with gate lengths of 0.5 um, 0.25 ym, and 0.15 yum
using advanced III-N MMIC processes are compared in this
work. The CMCD-MMICs are designed in a dual-stage
configuration with a gate width of 2 X 1.2 mm (for all gate
lengths). The stages are mirrored for differential operation,
as shown in Fig. 7.

4.3 Digital Class-D Operation
The class-D operation is induced by a periodic square wave

input signal. The measured output bit-sequence at a data rate
of 0.9 and 4 Gbit/s in square-wave operation was already
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Fig.9  Time domain measurements in current-mode class-D operation at
0.9 Gbit/s and 4 Gbit/s at an operation bias Vps = 15 V.
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Fig.10  Output and PAE power vs. bitrate in class-D operation.

given in Fig. 9 for a device with a gate length of 0.15 um. We
observe a voltage swing of 28 V at a DC-bias of Vpg = 15 V.
The dependence of the switch-mode output power, broad-
band drain efficiency (DE), and broadband power-added ef-
ficiency (PAE) on bit rate in square-wave class-D operation
is given in Fig. 10 for half of the circuit shown in Fig.7.
We use a calibrated and frequency corrected spectrum ana-
lyzer as areceiver for the broadband signal between near DC
and 18 GHz. The passive losses in the set-up are accounted
for likewise. The efficiency quantities drain efficiency (DE)
and power-added efficiency (PAE) are calculated from the
total broadband output and input power and the DC-power.
The figure yields a maximum PAE of 74% at 0.9 Gbit/s and
53% at 4 Gbit/s. The output power level reaches 3-3.5W
for a gate width of 1.2 mm, which is equivalent to an out-
put power density of up to 2.9 W/mm at Vpg = 15 V. For a
given bias, the impact of the dynamic switching losses for
this high-bit rate operation can be deduced from this figure.

Figure 11 gives the dependence of output power and
PAE as a function of operation bias at 900 MHz in class-D
operation, again for a gate length of 0.15 um. An increase
of the output power to S W is observed when increasing the
operation bias, and likewise, the maximum voltage swing
of the switch. The efficiency drops for two reasons: first,
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Fig.11  Output power and PAE vs. DC-voltage Vpsat 900 MHz
(1.8 Gbit/s) in class-D operation.
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Fig.12  Output and PAE power vs. bitrate in class-S operation for Vpg =

I5V.

the design is optimized with respect to the reduction of the
switching losses at a particular operation bias; second, and a
bit more subtle: although the broadband device is not really
matched to 50Q load in an analog microwave sense, how-
ever, when increasing the operation bias, the average mis-
match of the HEMT impedance over frequency moves away
from the 50 Q load offered by the output line, which reduces
PAE.

4.4 Digital Class-S Operation

For class-S operation a numerical generated 128k BPDS bit
stream related to a 1-tone carrier at the specific fundamental
frequency is used for the input signal. Figure 12 gives output
power and PAE vs. bitrate for a MMIC, again with a gate
length of 0.15 um, measured up to 8 Gbit/s.

In this case for the same bit rate the PAE values are
higher than in class-D and reach 63% at 5 Gbit/s. This can
explained by the pulse-length modulation of the class-S sig-
nal, which has lower and higher frequency contributions, so
that the devices are not always operated at the critical maxi-
mum of the frequency range.
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Table2 MMIC comparison in class-D operation at 900 MHz
(1.8 Gbitys).
lg [um] 0.5 0.25 0.15
W, [mm] 1.2 1.2 1.2
Vbs
20V | PAE (DE) | 59% (67%) | 62% (69%) | 68% (74%)
20V Pour 4.0W 43W 5.1W
15V | PAE(DE) | 59% (71%) | 62% (13%) | 67% (17%)
15V Pour 2TW 28W 32W
Table3 MMIC comparison in class-D operation at 450 MHz
(0.9 Gbitys).
lg 0.5 um 0.5 um
W, 2mm 1.2mm
Vbs
20V | PAE (DE) | 70% (79%) | 69% (716%)
20V Pour 6.0W 49W
15V | PAE(DE) | 66% (80%) | 67% (80%)
15V Pour 3.6 W 31w

5. MMIC Technology Comparison at 900 MHz
(1.8 Gbit/s)

Among the MMICs discussed in the last section, a system-
atic comparison is performed including all three gate pro-
cesses. Table 2 compares CMCD-MMIC:s in class-D oper-
ation for a data rate of 900 MHz. Several trends typical for
switch-mode operation are observed: for a given bias and
data rate the efficiency and output power increase with re-
duced gate lengths due to the improvement of the switching
losses and the reduction of of the on-resistance. In this com-
parison, 900 MHz is the highest frequency for which mea-
surements for all three gate lengths can be taken, particu-
larly with respect to the gate lengths of 0.5 um. One gen-
eral limitation of the power measurements is the voltage and
power limitation of the broadband bias-tees (up to 40 GHz),
which are limited to 5 W and 20V, thus measurements be-
yond these values are not taken.

Larger gate widths allow switching of higher currents
and thus increased output power levels. However, larger
gate widths also mean a reduction in speed and thus effi-
ciency for a given data rate. Table 3 gives the comparison of
two MMICs with the same gate length of 0.5 um in class-D
operation at 450 MHz. In this case the speed of the device
is sufficient and only then the output power increases with
gate width for nearly identical PAE and DE values.

6. Conclusions

In summary, this works demonstrates the enormous poten-
tial in efficiency and linearity potential of optimized Al-
GaN/GaN HEMTs in both conventional linear and switch-
mode applications. Based on device simulations, the dif-
ferent requirements of AlIGaN/GaN HEMTs for the switch-
mode operation become visible, where threshold voltage,
R ,n-reduction, and capacitance reduction are dominant and
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have a direct impact on PAE and DE of the RF-power ampli-
fier. Further, GaN Doherty base-station amplifiers demon-
strate the enormous linearity potential at high operation fre-
quencies of 2.7 GHz.

The use of AlIGaN/GaN HEMTs in high-speed current-
mode class-D/class-S MMICs for data rates of up to 8 Gbit/s
in switch-mode operation equivalent to 2 GHz RF-operation
shows the potential of GaN processes scaled to gate length
of 0.15 um for current-mode switching and the related effi-
ciency vs. bitrate trade-offs. Very high switching efficien-
cies are reached for data rates as high as 8 Gbit/s, while
the relative drop in PAE and DE suggests further reduction
of the on-resistance and the parasitic capacitances for high-
efficiency operation
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