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a b s t r a c t

Electromigration failure is a major reliability concern for integrated circuits. The continuous shrinking of
metal line dimensions together with the interconnect structure arranged in many levels of wiring with
thousands of interlevel connections, such as vias, make the metallization structure more susceptible to
failure. Mathematical modeling of electromigration has become an important tool for understanding
the electromigration failure mechanisms. Therefore, in this work we review several electromigration
models which have been proposed over the years. Starting from the early derivation of Black’s equation,
we present the development of the models in a somewhat chronological order, until the recent develop-
ments for fully three-dimensional simulation models. We focus on the most well known, continuum
physically based models which have been suitable for comprehensive TCAD analysis.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Electromigration is the process of mass transport caused by the
momentum transfer between conducting electrons and metal
atoms. As atoms migrate along the line, at sites of flux divergences
material accumulation or depletion takes place. Typically, in re-
gions of depletion voids are formed and grow, first causing a signif-
icant resistance increase in the line and, finally, leading to line
severing.

According to the International Technology Roadmap for Semi-
conductors (ITRS) 2008 Update [1], the copper dual-damascene
technology process will continue to be applied for fabrication of
on-chip interconnects for the next technological nodes. The metal
wiring pitch in integrated logic circuits will reach as down as
64 nm for the 32 nm node, and 44 nm for the 22 nm node. At the
same time, the expected operating current densities can reach
2:11 MA=cm2 and 2:80 MA=cm2, respectively [1]. In addition, the
interconnect structure is arranged in several levels of wiring with
thousands of interlevel connections such as vias. Due to this contin-
uous scaling of on-chip interconnects, where high current densities
and temperature operating conditions are unavoidable, electromi-
gration will continue to be a key reliability issue, and the prediction
of the long term interconnect behavior is a major necessity.

Since the late 1960s, several models have been proposed to
describe electromigration. The main problem is that electromigra-
tion is influenced by a wide diversity of physical phenomena and
depends on a large number of intrinsic and extrinsic effects.

Moreover, the complex interconnect geometries and technological
process related features of modern interconnects, such as a typical
dual-damascene line of Fig. 1, make modeling even more
challenging.

Mathematical modeling can significantly contribute to the
understanding of electromigration failure mechanisms. It can be
an important tool for explaining several experimental observations
and, ultimately, it can provide an improved basis for design and
fabrication of reliable metallizations.

In this paper we present various electromigration models which
have appeared in the last decades. We start from the very simple,
one-dimensional models which consider only the diffusional term
and the electromigration itself to describe the vacancy concentra-
tion behavior along a simple line. We then proceed to more sound
models incorporating the effects of mechanical stress. The com-
plexity gradually increases as we describe more general models,
suitable for TCAD analysis of two- and realistic three-dimensional
interconnect structures. Here, the effect of fast diffusivity paths
and the connection of mechanical stress build-up with material
transport and sites of vacancy annihilation or generation, like grain
boundaries, are presented. Finally, we discuss the void nucleation
condition followed by the description of void evolution models,
placing particular emphasis on the available numerical methods
which are suitable for TCAD.

2. Black’s equation

Based on a very simple model Black [2–4] was first to derive an
expression for the time to failure of a metal line subjected to
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electromigration. He considered that the mean time to failure, MTF,
is inversely proportional to the rate of mass transport, Rm,

MTF / 1
Rm

; ð1Þ

and that the rate of mass transport is proportional to the momen-
tum transfer between thermally activated ions and conducting
electrons,

Rm / neDpNa; ð2Þ

where ne is the density of conducting electrons, Dp is the momen-
tum transfer from the electrons to the metal atoms, and Na is the
density of thermally activated ions. Furthermore, assuming that
both the electron density as well as the momentum transfer are
proportional to the current density, j,

ne / j; Dp / j; ð3Þ

and that the activated ions follow an Arrhenius equation

Na / expð�Ea=kTÞ; ð4Þ

the mean time to failure is modeled as

MTF ¼ A

j2 exp
Ea

kT

� �
; ð5Þ

where A is a constant which comprises the material properties and
the geometry of the interconnect [2,4], Ea is the activation energy, T
is the temperature, and k is Boltzmann’s constant.

It was observed that not all experimental results followed (5),
but they could be fitted by allowing a variable current density
exponent. Therefore, Black’s equation was modified to [5]

MTF ¼ A
jn exp

Ea

kT

� �
; ð6Þ

where the current density exponent, n, can be experimentally
determined.

It is interesting to note that the original Eq. (5) predicted a fail-
ure time proportional to the inverse square of the current density,
even though mass transport due to electromigration had been
shown to be linearly dependent on the current density [6]. This is-
sue was discussed by several authors [5,7], however, the explana-
tion for the square dependence was elucidated only several years
later, when various theoretical works [8–13] considerably contrib-
uted to a better understanding of the electromigration behavior.
An exponent close to 1 indicates that the lifetime is dominated
by the void growth mechanisms, i.e. the time for a void to grow
and lead to failure represents the major portion of the lifetime
[9,10], while a value close to 2 indicates that void nucleation is
the dominant phase of the electromigration lifetime [8,11–13].

Eq. (6) has been used for lifetime estimation and extrapolation
to operating conditions for 40 years now. However, in a recent
publication Lloyd [14] discussed the application of the modified
Eq. (6) and concluded that it may lead to significant errors in the
lifetime extrapolation. These errors arise from the assumption that
the fitting parameters A; Ea, and n obtained from the accelerated
tests can be directly applied for the lifetime extrapolation. As Lloyd
[14] shows, the experimental measurement of the above parame-
ters does not consider important additional temperature and also
pre-existing stress dependences, which yields incorrect parameter
values and, consequently, lifetime extrapolation.

Although Black’s equation provides useful insight into electro-
migration failure, it does not allow a thorough understanding of
the underlying physics related to the electromigration behavior
for which more sophisticated physically based models are
required.

3. Electromigration induced material transport equations

Electromigration refers to the transport of material caused by
the momentum transfer from conducting electrons to metal atoms
[6]. Nevertheless, the total atomic migration is influenced by other
physical mechanisms. In general, electromigration constitutes a
diffusion–convection problem, where atomic transport along the
interconnect line occurs due to a combination of several driving
forces. Since the atomic migration occurs via a vacancy exchange
mechanism, the material transport can be described in terms of a
vacancy flux. The total vacancy flux can be generally written as

Jv

!
¼ �Dv rCv �

jZ�je
kT

Cv E
!
� Q �

kT2 CvrT þ fX
kT

Cvrr
� �

; ð7Þ

where Dv is the vacancy diffusivity, Cv is the vacancy concentration,
Z� is the effective charge number, e is the elementary charge, E

!
is

the electric field, Q � is the heat of transport, f is the vacancy relax-
ation factor, X is the atomic volume, r is the hydrostatic stress, k is
Boltzmann’s constant, and T is the temperature. This equation con-
tains all driving forces for material transport, namely, the diffu-
sional term given by the gradient of the vacancy concentration,
the electromigration itself, and the driving forces due to gradients
of temperature and gradients of mechanical stress.

In sites of flux divergence vacancies can accumulate or vanish,
and the material balance is given by

@Cv

@t
¼ �r � Jv

!
þG; ð8Þ

where G represents a generation or annihilation term.
Eqs. (7) and (8) are the basic continuum equations which de-

scribe the total mass transport that occurs along an interconnect
line. Below we present several works which have appeared in order
to model the electromigration behavior. We start the description
from the very simple, one-dimensional models which consider
only the diffusional term and the electromigration itself to describe
the vacancy concentration behavior along a simple line, and we
gradually advance towards the more complete TCAD models which
take into account the effect of fast diffusivity paths, connect the
mechanical stress build-up to sites of vacancy annihilation or gen-
eration, and are able to handle complex three-dimensional inter-
connect structures. Then, we discuss the void nucleation
condition followed by the description of void evolution models
and available numerical approaches.

3.1. One-dimensional diffusive models

The model proposed by Shatzkes and Lloyd [8] was the first that
rigorously derived the interconnect lifetime with an inverse square

Fig. 1. Typical copper dual-damascene interconnect line.
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dependence on current density. Considering the influence of diffu-
sion and electromigration only on the vacancy flux, the continuity
Eq. (8) along the interconnect length direction can be written as

@Cv

@t
¼ Dv

@2Cv

@x2 �
Dv jZ�jeqj

kT
@Cv

@x
; ð9Þ

where the source term G ¼ 0 is used.
For a semi-infinite line under the boundary conditions

Cvð�1; tÞ ¼ Cv0 and Jvð0; tÞ ¼ 0; ð10Þ

which means that the vacancy concentration at x ¼ �1 is fixed at
an initial equilibrium value, Cv0, and that there is a perfect blocking
boundary ðJv ¼ 0Þ at x ¼ 0, the solution of (9) at the blocking bound-
ary is given by Laplace transformations [8]

Cvð0; tÞ
Cv0

¼ 1þ erfbþ 2 b2ð1þ erfbÞ þ bffiffiffiffi
p
p expð�b2Þ

� �
; ð11Þ

where

b ¼ jZ
�jeqj
2kT

ffiffiffiffiffiffiffiffi
Dv t

p
: ð12Þ

Assuming that the failure occurs, when the vacancy concentration
reaches a given critical value Cvf significantly higher than the initial
equilibrium value Cv0, and that b� 0, then (11) is approximated [8]
by

Cvf =Cv0 � 4b2 ¼ jZ�jeqj
kT

� �2

Dv tf : ð13Þ

Since the diffusion coefficient is expressed by the Arrhenius relation

Dv ¼ Dv0 exp � Ea

kT

� �
; ð14Þ

where Dv0 is the pre-exponential factor for vacancy diffusivity, (13)
yields the mean time to failure of the form

MTF ¼ AT2

j2 exp
Ea

kT

� �
: ð15Þ

Note that the above equation is similar to the original Black’s Eq. (5),
except for the multiplying term T2, and it also predicts a mean time
to failure with an inverse square current density dependence. This
is a result of the assumption that the failure takes place, when
the vacancy concentration reaches a given critical value, which cor-
responds, in fact, to a void nucleation condition.

A more interesting solution of (9) is obtained for a finite line
with blocking boundary conditions at both ends of the line, i.e.

Jvð0; tÞ ¼ Jvð�L; tÞ ¼ 0; ð16Þ

where l is the line length, so that the solution becomes [15]

Cvðx; tÞ
Cv0

¼ A0 �
X1
n¼1

An exp �Bn
Dv

L2 t þ a
2

x
L

� �
; ð17Þ

where

a ¼ jZ
�jeqjL
kT

; ð18Þ

the steady-state solution is determined by the term

A0 ¼
a

1� expð�aÞ exp a
x
L

� �
; ð19Þ

and

An ¼
16npa2½1� ð�1Þn expða=2Þ�

ða2 þ 4n2p2Þ2
sin np x

L

� �
þ 2np

a
cos np x

L

� �� �
;

ð20Þ

Bn ¼ n2p2 þ a2=4: ð21Þ

Fig. 2 shows the vacancy concentration evolution with time at the
blocking boundary at x ¼ 0 for a semi-infinite and a 100 lm long
line with a � 3:4. The semi-infinite line and the finite line solution
agree well for early times and significantly deviate at longer times.
Using the parameters given in Table 1 the vacancy concentration in
the finite line already saturates after about 10 min. This is a very
short time compared to the failure times obtained from experi-
ments, which are in the order of several hours.

Fig. 3 shows the vacancy concentration along the finite line at
different times. As vacancies drift from the anode end to the cath-
ode end of the line a gradient in vacancy concentration develops,
which counters the electromigration flux. As a result, the net va-
cancy flux is reduced, until it vanishes, and the steady-state condi-
tion given by (19) is reached.

Such a short time to reach the steady-state was previously ob-
served by Rosenberg and Ohring [19]. Their electromigration mod-
el is similar to that given by (9), but it includes a source term so
that
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Fig. 2. Vacancy concentration at the blocking boundary at x = 0 for the semi-infinite
line, (11), and the finite-line, (17).

Table 1
Parameters used in the calculations.

Parameter Value Reference

Dv0 0:052 cm2=s [16]
Ea 0.9 eV [17]
Z� �5.0 [18]
q 1:69� 10�6 X cm [16]

j 2 MA=cm2 –
L 100 lm –
T 573 K –
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Fig. 3. Vacancy concentration along the line at different times according to (17).
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@Cv

@t
¼ Dv

@2Cv

@x2 � Dv
jZ�jeE

kT
@Cv

@x
� Cv � Cv0

s
; ð22Þ

where Cv0 is the equilibrium vacancy concentration and s is the
characteristic vacancy relaxation time. The last term of the right-
hand side of this equation represents a source function which mod-
els vacancy annihilation and generation. It means that vacancies are
annihilated, if their concentration is larger than the equilibrium va-
lue, or produced, if their concentration is smaller than the equilib-
rium one. The vacancy relaxation time, s, characterizes the
efficiency of the sites acting as sink/sources, in such a way that
smaller values of s result in shorter times for the vacancy concen-
tration to reach the steady-state condition, and vice versa.

It was observed that the damage site locations were related to
specific grain boundary configurations, in such a way that most
of the failures occurred at sites of significant change in the grain
size [20]. Considering the intersection of two grains forming a
grain boundary, as shown in Fig. 4, Rosenberg and Ohring analyzed
the vacancy supersaturation that can be achieved at the grain
boundary, when the grains have different properties [19]. It means
that differences in the diffusivities or in the number of diffusion
pathways on each grain can lead to a higher flux divergence at
the grain boundary. At steady-state ð@Cv=@t ¼ 0Þ both, the vacancy
concentration and the flux, are continuous along the grain bound-
ary interface

C1
vðx ¼ 0Þ ¼ C2

vðx ¼ 0Þ and J1
vðx ¼ 0Þ ¼ J2

vðx ¼ 0Þ; ð23Þ

so that the solution of (22) yields for each grain [19]

S1ðxÞ ¼
C1

vðxÞ � Cv0

Cv0
¼ Sð0Þ expð�k1xÞ; x < 0

S2ðxÞ ¼
C2

vðxÞ � Cv0

Cv0
¼ Sð0Þ expð�k2xÞ; x > 0

ð24Þ

where Sð0Þ is the vacancy supersaturation at x ¼ 0, given by

Sð0Þ ¼ k1D1
v � k2D2

v

D2
vE2 � D1

vE1

 !
kT
jZ�je� 1

" #�1

; ð25Þ

and

k1 ¼ �
jZ�jeE1

2kT
� jZ�jeE1

2kT

� �2

þ 1
D1

vs1

" #1=2

k2 ¼ �
jZ�jeE2

2kT
þ jZ�jeE2

2kT

� �2

þ 1
D2

vs2

" #1=2
ð26Þ

Using the parameters given in Table 1 and assuming the activation
energies E1

a ¼ 0:8 eV and E2
a ¼ 1:0 eV for the left and right grain,

respectively, the vacancy supersaturation along the grains for dif-
ferent vacancy relaxation times is shown in Fig. 5. We can see that
the supersaturation significantly decreases as the vacancy relaxa-
tion time decreases. Furthermore, the maximum supersaturation
is rather small, even for longer vacancy relaxation times. This
means that the maximum supersaturation is significantly depen-
dent on s, that is, it is significantly dependent on the effectiveness
of the vacancy sink/source. As a consequence, high vacancy super-

saturation cannot be obtained near vacancy sinks, since vacancies
are annihilated as soon as the local vacancy concentration becomes
higher than its equilibrium value.

Based on the classical homogeneous nucleation theory Rosen-
berg and Ohring [19] showed that the energy barrier for void for-
mation would be extremely high for the calculated vacancy
supersaturations. Therefore, the authors recognized that void
nucleation by vacancy condensation could not occur, unless heter-
ogeneous nucleation sites were present.

The time development of the vacancy supersaturation at the
grain boundary is presented in Fig. 6. The time to reach the stea-
dy-state condition is in the order of seconds, which is too short
compared to the typical failure times. Even for much larger va-
cancy relaxation times the time to reach the steady-state is in
the order of minutes, at most.

These observations led Rosenberg and Ohring to conclude that
void formation due to electromigration was likely to be fast, so that
the electromigration lifetime was supposed to be dominated by
void growth mechanisms, like void growth at a grain boundary tri-
ple point or by grain boundary grooving [19,21].

The aforementioned models, where material transport only due
to gradients of concentration and due to electromigration itself is
considered, have two main shortcomings: the time scale to reach
the steady state vacancy supersaturation is too short and the max-
imum vacancy supersaturation is very low, which hinders void for-
mation by means of vacancy condensation. Therefore, a critical
vacancy concentration cannot be used to determine the failure of
the interconnect. As will be shown in the next sections, these

Fig. 4. Grains with different properties forming a grain boundary.
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Fig. 5. Steady-state vacancy supersaturation for different values of the character-
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shortcomings can only be resolved with the introduction of
mechanical stress in the model equations.

4. Electromigration and mechanical stress

In the previous section was shown that the drift of vacancies to-
wards the cathode end of an interconnect line due to electromigra-
tion leads to accumulation of vacancies in this region and, at the
same time, leads to vacancy depletion at the anode end. Since there
is a small relaxation of the lattice surrounding a vacancy, vacancy
accumulation would produce volume contraction at the cathode. In
turn, the depletion of vacancies would produce volume expansion
at the anode end. However, due to the constraints imposed by the
surrounding layers, namely, the capping layer, the barrier layer,
and the passivation in copper dual-damascene interconnects, these
volumetric changes cannot be accommodated, which results in the
development of mechanical stress in the line. At the cathode end
tensile stress is produced, while compressive stress develops at
the anode end of the line. As will be shown below, this stress gra-
dient acts as an additional driving force for material transport and
must be taken into account in the vacancy flux equation. Moreover,
mechanical stress is a key parameter for the void nucleation
condition.

4.1. The Blech effect

Blech [22–24] designed an experiment where conductor islands
were deposited onto a titanium nitride (TiN) film and stressed at a
high current density. As the conductor resistivity was much lower
than that of the TiN layer, the conductor stripe would carry most of
the current and the resulting movement of the ends of the stripe
could be measured. In this way, the electromigration induced drift
velocity is determined by

vd ¼
DajZ�jeqj

kT
; ð27Þ

where Da is the atomic diffusivity.
Blech observed that only the upstream end (in relation to the

electron flow) of the line moved according to (27), and that the up-
stream end stopped moving, when the stripe reduced to a certain
length. Also, he observed that no drift could be detected below a
threshold current density.

These observations can be explained by considering the flux due
to electromigration and the gradient of chemical potential via a
gradient of mechanical stress [22–25] according to

Jv ¼
DvCv

kT
jZ�jeqj�X

@r
@x

� �
; ð28Þ

where X is the atomic volume and r is the hydrostatic stress. This
equation shows that a gradient of mechanical stress acts as driving
force against electromigration. Thus, electromigration stops, when
the opposing stress gradient, commonly referred to as ‘‘back stress”,
equals the electromigration driving force, so that Jv ¼ 0. This stea-
dy-state condition is the so-called ‘‘Blech Condition”, given by

@r
@x
¼ jZ

�jeqj
X

: ð29Þ

Integrating (29) over the length of the interconnect line yields

rðxÞ ¼ r0 þ
jZ�jeqj

X
x; ð30Þ

where r0 is the stress at x ¼ 0. This equation shows that the stress
varies linearly along the line, when the backflow flux equals the
electromigration flux.

Given that the maximum stress the conductor line can with-
stand is rth, a critical product for electromigration failure can be
stated as

ðjLÞc ¼
Xðrth � r0Þ
jZ�jeq : ð31Þ

This is the so-called ‘‘Blech Product”. The critical product provides a
measure of the interconnect resistance against electromigration
failure and several experimental works have reported that the crit-
ical product for modern copper interconnects is in the range from
2000 to 10,000 A/cm [26–29].

From the above expression, for a given current density, j, we can
determine a critical line length, so that shorter lines will not fail
due to electromigration. This is known as ‘‘Blech Length”, given by

lB ¼
Xðrth � r0Þ
jZ�jeqj

: ð32Þ

Similarly, for a given line length, L, the maximum current density
that can be applied for which electromigration failure does not oc-
cur is

jc ¼
Xðrth � r0Þ
jZ�jeqL

: ð33Þ

An important consequence of the Blech effect is that the jL product
during electromigration tests has to be significantly higher than the
critical product ðjLÞc for the corresponding test structure. Otherwise,
the test structure might fail at longer times than it would normally
do, giving a false sense of safety [30]. Another point to be men-
tioned is that the presence of residual stresses from the fabrication
process reduces the stress which has to be produced by electromi-
gration in order to reach the maximum value the line can with-
stand. This results in smaller values for the Blech length and for
the maximum operating current density than that given by (32)
and (33), respectively [30].

4.2. Electromigration induced stress

Although Blech had shown that electromigration transport was
closely related to mechanical stress development, the first model
that connected the rate of stress generation to electromigration
was proposed by Kirchheim [11]. He added the gradient of
mechanical stress as a driving force in the total vacancy flux equa-
tion, so that

Jv ¼ �Dv
@Cv

@x
� jZ

�jeqj
kT

Cv þ
fX
kT

Cv
@r
@x

� �
; ð34Þ

where f ¼ Xv=X. Thus, the continuity equation can be written as

@Cv

@t
¼ � @

@x
�Dv

@Cv

@x
� jZ

�jeqj
kT

Cv þ
fX
kT

Cv
@r
@x

� �� �
� Cv � Cveq

s
:

ð35Þ

The last term is a generation/annihilation function similar to that
proposed by Rosenberg and Ohring [19], as shown in Section 3.1.
However, Kirchheim used the more general expression for the equi-
librium vacancy concentration in a grain boundary [31]

Cveq ¼ Cv0 exp
ð1� f ÞXr

kT

� �
; ð36Þ

which connects the equilibrium vacancy concentration with
mechanical stress.

The volumetric strain in a grain produced by the generation of
vacancies is [11]

DV
V
¼ ð1� f ÞX d

d
DCv ; ð37Þ
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where ð1� f ÞX is the volume change due to lattice relaxation, when
a vacancy is treated as a substitutional atom with smaller volume
(0 < f < 1), d is the grain boundary thickness, d is the grain diame-
ter, and DCv is the generated vacancy concentration. Thus, the strain
rate is given by

1
V
@V
@t
¼ ð1� f ÞX d

d
Cv � Cveq

s
; ð38Þ

which together with Hooke’s law yields

@r
@t
¼ Bð1� f ÞX d

d
Cv � Cveq

s
; ð39Þ

where B is the appropriate modulus.
This equation shows that the stress build-up is related to the

deviation of the vacancy concentration from its equilibrium value
and that s can have a significant impact on the stress development.
It is important to note that this model allows different mechanisms
of vacancy annihilation or generation to be described, such as anni-
hilation/production in the grain boundary itself, in adjacent grain
boundaries or at dislocations within the grain bulk. These lead to
smaller, median, and larger values of the characteristic vacancy
relaxation time s, respectively.

Eqs. (35) and (39) compose a non-linear system of differential
equations which has to be solved numerically. Nevertheless, Kirch-
heim derived analytical solutions for some limiting cases and iden-
tified three main phases for vacancy and stress evolution [11]. The
first phase corresponds to a short period of time, where the initial
stress is very low. Therefore, the equilibrium vacancy concentra-
tion remains unaffected and the vacancy concentration develops
until a quasi steady-state condition is reached. The quasi steady-
state phase is quite long, and the vacancy concentration does not
change very much, while the stress grows linearly with time. It
lasts until the stress becomes large enough to affect the equilib-
rium vacancy concentration. Then, a non-linear increase of stress
with time is observed and the vacancy concentration approxi-
mately follows the development of the equilibrium vacancy con-
centration, which means that vacancies and stresses are in
equilibrium and the true steady-state condition has been reached.

Moreover, Kirchheim [11] showed that, if the electromigration
lifetime is determined by the time to reach a certain critical stress,
the current density exponent of Black’s equation varies from n ¼ 1
at low stresses (the time to failure is determined by the quasi stea-
dy-state period) to n ¼ 2 for higher critical stresses (the time to
reach the true steady-state condition determines the lifetime).

A somewhat simplified model for the stress development in a
line subject to electromigration was derived by Korhonen et al.
[12]. They consider that the generation/recombination of vacancies
by dislocation climb mechanisms either in grain boundaries or at
lattice dislocations changes the concentration of lattice sites, CL,
producing stress according to Hooke’s law

dCL

CL
¼ � dr

B
: ð40Þ

Using the source term [13,32]

G ¼ @CL

@t
; ð41Þ

the vacancy continuity equation can be written as

@Cv

@t
¼ � @Jv

@x
� CL

B
@r
@t
: ð42Þ

Assuming that the vacancy concentration is in equilibrium with the
mechanical stress via [31]

Cv ¼ Cveq ¼ Cv0 exp
Xr
kT

� �
; ð43Þ

(42) becomes

CvBX
CLkT

þ 1
� �

CL

B
@r
@t
¼ @

@x
DvCv

kT
X
@r
@x
� jZ�jeqj

� �� �
; ð44Þ

with Jv given by (28).
Korhonen et al. observed that ðCv=CLÞðBX=kTÞ 	 1 at typical

electromigration test conditions. This means that most of the
transported vacancies initiate climbing dislocation processes that
produce mechanical stress, while just a very small number of
vacancies is needed to maintain the local equilibrium concentra-
tion [12]. Thus, the above approximation leads to

@r
@t
¼ @

@x
DaBX

kT
@r
@x
� jZ

�jeqj
X

� �� �
; ð45Þ

where Da ¼ DvCv=CL [33].
For a line of length L with blocking boundary conditions

Jvð0; tÞ ¼ Jvð�L; tÞ ¼ 0; ð46Þ

and for a constant Da, the solution of (45) is given by [12,34]

rðx; tÞ ¼ jZ
�jeqjL
X

1
2
þ x

L
� 4

X1
n¼0

m�2
n exp �m2

n
j
L2 t

� �
� cos mn

x
L

� �" #
;

ð47Þ

where we have substituted

j ¼ DaBX
kT

; ð48Þ

and used the notation mn ¼ ð2nþ 1Þp.
Following the same approach as Korhonen et al., Clement et al.

[13,32] derived an equivalent equation in terms of vacancies,

@Cv

@t
¼ DaBX

kT
@2Cv

@x2 �
jZ�jeqj

kT
@Cv

@x

 !
: ð49Þ

This equation has the same form as (9) from the Shatzkes and Lloyd
formulation, but with Dv replaced by DaBX=kT . Therefore, the solu-
tion for a finite line with blocking boundary conditions at both ends
is the same as given by (17)–(21), but with the aforementioned
replacement. Since it was assumed that vacancies are in equilib-
rium with stress, the stress can be calculated from (43) as

rðx; tÞ ¼ kT
X

ln
Cvðx; tÞ

Cv0

� �
; ð50Þ

where Cvðx; tÞ is determined by the solution of (49).
Assuming that the electromigration failure is determined by the

time to reach a given stress magnitude, the above models predict a
mean time to failure of the form

MTF ¼ BðTÞ
j2 exp

Ea

kT

� �
: ð51Þ

where an inverse square dependence of the current density is again
obtained. The coefficient BðTÞ is temperature dependent, so that
BðTÞ / T2 for Korhonen’s formulation [12] and BðTÞ / T3 according
to Clement’s formulation [32].

Fig. 7 shows the stress development with time at x ¼ 0 accord-
ing to Korhonen’s solution, (47), using the parameters from Table 1
together with Da ¼ 10�6Dv ;B ¼ 50 GPa, and X ¼ 1:18� 10�29 m3

[12]. Note that the time scale of stress build-up is in the order of
several hours, rather than a few minutes as predicted by the mod-
els of Section 3.1. This shows the importance of taking into account
the mechanical stress in the model, including the stress depen-
dence in the sink/source term of the continuity equation. The stress
distribution along the line for several times is presented in Fig. 8.
At steady-state the stress varies linearly, as predicted by Blech
[22–24]. We can see that high stress can develop in the intercon-
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nect line, which is a critical requirement for void nucleation
[35,36].

5. TCAD approach for electromigration simulation

The models presented in the previous section greatly contrib-
uted to the understanding of the electromigration behavior. Their
main advantage is that analytical solutions can be derived for
stress evolution during electromigration. However, these solutions
are based on several simplifications and apply for idealized cases
only. The impact of the complex structure of modern interconnects
and general constraints imposed by the surrounding layers on the
stress evolution cannot be obtained. Therefore, the development of
TCAD approaches has become more and more important, as they
have allowed numerical simulations of complete two- [16,37–42]
and three-dimensional [43–45] interconnect structures taking into
account various physical effects related to electromigration in a
consistent manner.

In general, electromigration modeling and simulation consti-
tutes a multi-physics problem which can be subdivided in smaller
parts. Typically, electromigration induced failures show two dis-
tinctive phases [46]. In the first one no electromigration generated
voids can be observed in the interconnect and no significant resis-
tance change of the line occurs. This phase lasts until a void is
nucleated. Then, the second phase starts, where the void can
evolve in several different ways, until it finally grows to a critical
size causing a significant resistance increase or completely sever-
ing the interconnect line. As different physical phenomena are
responsible for each phase of failure development, electromigra-
tion modeling is normally subdivided into the void nucleation

phase and the void evolution phase. This is depicted in the typical
simulation scheme of Fig. 9. In this way the total electromigration
lifetime is the sum of the time for a void to nucleate plus the time
for the void to develop, until it leads to the interconnect failure.

The electro-thermal analysis has to be performed in order to ob-
tain the electric potential and temperature distribution in the
interconnect. Then, the material balance equation taking into ac-
count the various driving forces for mass transport has to be
solved, followed by the solution of the mechanical problem. This
procedure is repeated until the critical stress for void nucleation
is reached. Once a void is formed an initial mesh adaptation may
be performed. Since the void changes the local electric field and
current density, the electro-thermal analysis has to be again car-
ried out, before the void evolution is actually tracked. Depending
on the numerical approach a remeshing routine might be executed.
This procedure is repeated continuously, until the interconnect
resistance increases to a given threshold value which determines
the interconnect failure. This variety of physical effects turns
numerical simulations of electromigration into a complex problem
which can be further complicated by the consideration of the dif-
ferent material layers existent in a complete interconnect structure
and also by the introduction of the microstructure.

As mentioned before, the connection between material trans-
port with mechanical stress in a general framework is a key issue
for electromigration simulation. Stresses result from deformations
of the metal line volume. Povirk [47] and Rzepka et al. [48] consid-
ered that mass accumulation or depletion in the metal line leads to
an inelastic strain rate of the form

@ei
ij

@t
¼ Xðr � Jv

!
Þdij; ð52Þ

where dij is Kronecker’s symbol.
Sarychev et al. [49] proposed an even more general formulation,

where the total inelastic strain rate has a contribution from va-
cancy accumulation/depletion,

@em
ij

@t
¼ 1

3
fX r � Jv

!
� �

dij; ð53Þ

and a contribution from vacancy generation/annihilation,

@eg
ij

@t
¼ 1

3
ð1� f ÞXGdij; ð54Þ
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Fig. 7. Stress build-up at x ¼ 0 according to Korhonen’s model.
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Fig. 9. Schematic procedure for electromigration simulation composed of a void
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yielding the total inelastic strain rate

@ei
ij

@t
¼ 1

3
X½fr � Jv

!
þð1� f ÞG�dij: ð55Þ

Assuming that the metal line deforms elastically, so that

rij ¼
X

kl

Cijklekl; ð56Þ

where Cijkl is the stiffness matrix, and using the small displacement
approximation,

eij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
; i; j ¼ 1;2;3 ð57Þ

from the mechanical equilibrium equation,

X3

j¼1

@rij

@xj
¼ 0; i ¼ 1;2;3 ð58Þ

the deformation of the line as a function of the inelastic strain pro-
duced by electromigration can be calculated by [49]

lr2ui þ ðkþ lÞ @
@xi
r �~uð Þ ¼ B

@

@xi
trðei

ijÞ; i ¼ 1;2;3 ð59Þ

where ~u ¼ ðu1;u2;u3Þ is the displacement vector, k and l are the
Lamé constants, B is the bulk modulus, and tr ei

ij

� �
refers to the trace

of the inelastic strain.
The key characteristic of the above approach is that it forms a

three-dimensional self-consistent model which connects material
balance with line deformation. In this way, the impact of the com-
plete interconnect geometry and imposed boundary conditions on
the stress evolution can be described. Furthermore, all components
of the stress tensor can be determined.

Sarychev’s model was the basis of several works on simulation
of stress evolution due to electromigration [37–39,50] in two-
dimensional lines. However, it does not take into account fast dif-
fusivity paths and specific vacancy annihilation/generation rates at
the different sites where these processes occur. This was accom-
plished by Sukharev et al. [16,40–42].

Sukharev et al. [16] wrote the continuity equation, (8), sepa-
rately for bulk and interfaces,

@Cbulk
v
@t

¼ �r � Jv

!
bulk

@Cint
v

@t
¼ �r � Jv

!
int þ Gint

ð60Þ

where the interfaces, in general, refer to grain boundaries, the Cu/
capping layer interface, and the Cu/barrier layer interface. The
fluxes along bulk and interfaces are the same as given in (7), but
with Dv replaced by the corresponding diffusion coefficient. In this
way the vacancy flux along each path is characterized by its own
diffusivity. Another important point is that each interface which
acts as vacancy sink/source can be described by a specific vacancy
annihilation/generation rate.

Sukharev et al. [16] also introduced the concept of plated atoms
to describe the atom exchange between bulk and interfaces. He
suggested that the event of vacancy generation or annihilation is
simultaneously accompanied by atom plating or removal from
the grain boundary region, respectively. Therefore, the rate of atom
plating/removal is given by the same source function as for
vacancies,

Gint ¼ �
Cint

v � Cveq

s
: ð61Þ

However, considering the plated atoms to be immobile (the atomic
mobility is far smaller than the vacancy mobility), the plated atom

continuity equation for bulk and interfaces, respectively, are given
by [16]

@Cbulk
a

@t
¼ 0

@Cint
a

@t
þ Gint ¼ 0

ð62Þ

where Ca refers here to the plated atom concentration.
Based on this concept, Sukharev et al. [16] suggested for the

electromigration induced strain

ei
ij ¼ X½�ð1� f ÞðCv � Cv0Þ þ ðCa � Ca0Þ�dij; ð63Þ

where Ca0 is the plated atom concentration at the zero-stress condi-
tion. This equation shows a close connection between the local
strain with the vacancy concentration and the plated atom concen-
tration. However, Sukharev et al. [16] observed that the increment
of the plated atom concentration is the major responsible cause
for stress build-up.

A somewhat different approach for modeling the grain bound-
ary as a vacancy source/sink was proposed by Ceric et al. [45].
The grain boundary, as depicted in Fig. 10, is treated as a separate
region which can trap or release vacancies according to the flux
divergence, so that the generation/recombination of vacancies is
described by

G ¼
Jv;1 � Jv;2

dgb
: ð64Þ

The incoming and outgoing fluxes that result in generation/annihi-
lation processes are given by [45,51]

Jv;1 ¼ xT Cveq � Cim
v

� �
C1

v �xRCim
v

Jv;2 ¼ �xT Cveq � Cim
v

� �
C2

v þxRCim
v

ð65Þ

where xT is the trapping rate of vacancies from both neighboring
grains, xR is the release rate, Cim

v is the trapped vacancy concentra-
tion, and Cveq is the equilibrium vacancy concentration in the grain
boundary. The combination of (64) with (65) yields

G ¼ � @Cim
v

@t
¼ 1

sgb
Cveq � Cim

v 1þ 2xR

xTðC1
v þ C2

vÞ

" #( )
; ð66Þ

where

1
sgb
¼ xTðC1

v þ C2
vÞ

dgb
: ð67Þ

This model has allowed the simulation of a whole interconnect line
structure to be carried out in a rather complete way by also taking
into account the effects of material interfaces and grain boundaries.

Fig. 10. Schematic grain boundary from Ceric et al. [45].
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It has been shown that high stress can develop at grain boundaries
away from the cathode end of the line [45], where voids have fre-
quently seen to nucleate [46,52–55]. Sukharev et al. showed that
the failure mechanism dramatically changes according to the dom-
inant diffusivity path [16,41,42,56,57]. When the copper/capping
layer interface is the dominant diffusivity path, the failure typically
occurs by a void that forms at this interface, migrates to the cathode
end of the line, and grows [55]. However, if the copper/capping
layer goes through a strengthening process [57,58], in such a way
that the diffusivity along this path is reduced to the same level as
that of grain boundaries, grain boundary diffusion and diffusion
along the copper/barrier layer interface play a more important role.
As a consequence, void nucleation and growth at the bottom of the
via becomes the dominant failure mode [41,42,56–58].

6. Void nucleation condition

Initially, void nucleation was attributed to the accumulation of
vacancies at sites of flux divergence caused by their drift due to
electromigration. As the vacancy concentration at a particular site
reached a certain critical magnitude, vacancy condensation would
lead to the formation of a void [8–10,40,43,44,59,60]. However, an
unrealistically high vacancy supersaturation would be necessary
for spontaneous void formation by vacancy condensation [19,61].
Therefore, according to classical thermodynamics homogeneous
void nucleation by a vacancy condensation mechanism cannot be
supported under electromigration.

Meanwhile, several works investigated the impact of mechani-
cal stress on void nucleation at various conditions [62–65]. The
importance of mechanical stress build-up in an interconnect line
under electromigration was recognized, so that the development
of a critical stress became the major criterion for void formation
[11,12,32,39,45]. Nevertheless, the stress threshold value was still
an open issue, varying from work to work.

Gleixner et al. [36] carried out a thorough analysis of the nucle-
ation rates at various locations within an interconnect line, namely,
homogeneous nucleation by vacancy condensation, nucleation at a
grain boundary, at the line sidewall in the presence and absence of
an intersecting grain boundary, and at an interface notch. For all
cases the nucleation rates are far too low. Therefore, none of these
mechanisms can lead to void formation.

Flinn [35] proposed that a void could form at a pre-existing free
surface. Free surfaces can result from contamination during the
line fabrication process, which hinders the bounding of the sur-
rounding layer to the metal surface. Assuming a circular flaw of ra-
dius Rp, the critical stress for void nucleation becomes [35]

rth ¼
2cs

Rp
; ð68Þ

where cs is the surface free energy of the metal.
Clemens et al. [66] showed that the above equation is valid as

long as the void grows in the contaminated region. However, it is
possible that the void extends beyond the flaw area, as shown by
Fig. 11, once the equilibrium contact angle, hc , is reached. This
equilibrium contact angle is determined by the interfacial energy
balance and lies in the range 0 < hc < 90
. In this case, the thresh-
old stress is given by [36,66]

rth ¼
2cs sin hc

Rp
; ð69Þ

which may represent a small decrease in the nucleation energy
barrier.

The critical stress is significantly reduced as the flaw area in-
creases. For instance, for a flaw radius as small as 10 nm we obtain
rth � 340 MPa [45], which can be certainly reached by thermal

stresses alone. If we consider that the contaminated region can ex-
tend trough the whole line width, for a line 100 nm wide we get
rth � 70 MPa. Such a stress magnitude is quite low and can be eas-
ily obtained in an interconnect line under electromigration.

7. Void evolution

The development of fatal voids, i.e. voids that trigger the line
failure is the ultimate cause for the electromigration induced inter-
connect failure [67,68]. The failure criterion is typically set as a
maximum resistance increase that is tolerated for the correspond-
ing interconnect line. Once a void is nucleated it can evolve, until it
causes a significant resistance increase or even completely severs
the line.

The void evolution phase can encompass several processes: a
void can migrate along the interconnect [52,55], interact with the
local microstructure [55,69,70] and grow, or even heal [55,71], un-
dergo morphologic changes, assuming wedge-like shape or slit-like
shape [58], before it definitely triggers interconnect failure. Fur-
thermore, multiple voids can form in a line, so that their migration
and agglomeration at a specific critical site can be the mechanism
responsible for the interconnect failure [52–54].

The void surface acts as an additional path for atomic migration.
The chemical potential of an atom on the void surface is given by
[21,72,73]

ls ¼ l0 þXðw� csjÞ; ð70Þ

where l0 is a reference chemical potential, w ¼ r : e=2 is the elastic
energy density of the material adjacent to the void, cs is the surface
free energy and j is the curvature of the void surface. Thus, the
atomic flux along the void surface due to gradients in chemical po-
tential plus electromigration has the form

J
!

s ¼ �
Dsds

kT
ðrsls þ ejZ�jE

!
sÞ ð71Þ

where Ds is the surface diffusivity, ds is the surface thickness, E
!

s is
the electric field tangential to the void surface, and rs denotes
the gradient along the surface. By mass conservation the normal
velocity at any point on the surface is given by [72,73]

vn ¼ �rs � J
!

s: ð72Þ

Void evolution due to electromigration is a complex dynamic pro-
cess, for which modeling is a challenging task and, moreover, repre-
sents a moving boundary problem. Analytical solutions can only
describe the asymptotic behavior of the moving boundary [61,74–
79], since, in general, the shape changes which the void experiences

Fig. 11. Schematic void nucleation at an interface site of weak adhesion according
to Clemens et al. [66] and Gleixner et al. [36].
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cannot be analytically resolved. Therefore, a more general treat-
ment demands the application of numerical methods and special
techniques for tracking the void. Below we present some major con-
tributions to void evolution modeling and associated numerical
methods.

7.1. Sharp interface models

Arzt et al. [80] and Kraft and Arzt [81] neglected the effect of
elastic energy and considered a two-dimensional case, so that
(71) becomes

Js ¼
Dsds

kT
Xcs

@j
@s
� ejZ�jqjs

� �
ð73Þ

where js is the surface component of the current density. Thus, the
surface velocity can be written as

vn ¼ �
Dsds

kT
@

@s
Xcs

@j
@s
� ejZ�jqjs

� �
: ð74Þ

Void evolution is simulated by a numerical scheme which combines
the finite element method (FEM) and the finite difference method
(FDM). FEM is used to obtain the temperature and current density
distribution in the vicinity of a void in a finite line. These results
are used to solve the void motion equation, (74), by FDM. Then,
the new void shape is remeshed. This procedure is iterated several
times in order to describe the whole void evolution process and ob-
tain the final void shape [81].

In such an approach there is no exchange flux between the void
with its surrounding. Consequently, the void shape changes, but it
cannot grow and its volume remains constant. Kraft and Arzt over-
came this problem by introducing an artificial growth rate after the
FD calculation and before the remeshing procedure [81]. They
found out that shape change is triggered as the void spans about
half of the line width, as shown in Fig. 12. Moreover, it depends
on the growth rate, in such a way that lower growth rates tend
to lead to slit-like voids, while higher growth rates tend to yield
wedge-shaped voids.

Fridline and Bower [82] applied a similar model, but introduced
an anisotropic diffusion coefficient of the form

Dsðh; TÞ ¼ D0ðTÞf1þm½1� cosðnh� h0Þ�g; ð75Þ

where h is the angle between the tangent to the void surface and the
current direction, m determines the degree of anisotropy, n deter-
mines the crystallographic symmetry, and h0 represents the orien-
tation of the line with respect to the crystal planes. The model is
solved by a two-step FEM, where first the voltage distribution is cal-
culated, followed by the solution of the surface motion equation.
Also, a remeshing procedure is continuously applied using an
advancing front algorithm as the void changes its shape [82]. It
was shown that even a small anisotropy in surface diffusivity can

lead to a large shape change of the void and that the crystal orien-
tation with respect to the line direction is an important factor
regarding the void shape and evolution tendency, as depicted in
Fig. 13.

The models above were further developed by Xia et al. [83], who
took also into account the effects of mechanical stress on the void
evolution. The normal velocity of the surface of the void is written
in two-dimensions as

vn ¼ �
Dsds

kT
�X

@2w
@s2 þXcs

@2j
@s2 þ ejZ�j @u

@s

 !
; ð76Þ

where the electromigration term is expressed through the electric
potential u. The calculation of the elastic energy density is per-
formed by solving the mechanical Eqs. (56)–(58). A FEM approach
using adaptive mesh generation and an advancing front algorithm
to track the void evolution is applied.

Xia et al. showed that the void remains circular and migrates
along the line, if the surface energy prevails. However, if the driv-
ing force associated to electromigration and/or the elastic strain
energy dominate over the surface energy, the void tends to col-
lapse into a slit or to break down into smaller voids. Therefore,
electromigration and elastic strain energy gradients act in a coop-
erative manner, promoting void instability. Fig. 14 shows the

Fig. 12. Void shape change is triggered as it spans about half of the line width [81].

(a)

(b)

(c)

(d)

Fig. 13. Void shape for different crystal orientations [82]. (a) h0 ¼ p=2, (b) h0 ¼ p,
(c) h0 ¼ 0, (d) h0 ¼ 3p=2.
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development of such an instability. The same results were ob-
tained with three-dimensional simulation performed by Zhang
et al. [84], who used essentially the same model and numerical
approach.

These effects can be described by considering the dimensionless
quantities [75–77]

v ¼ ejZ�jE1r2
0

Xcs
; ð77Þ

K ¼ r2r0

Ecs
; ð78Þ

where r0 is the initial radius of the void, E1 is the electric field ap-
plied in the line, r is the applied stress, and E is Young’s modulus.
The above equations represent a relative measure of the influence
of the driving forces on the void evolution, and the competition be-
tween them dictates the direction of void development. Small val-
ues indicate that the surface energy term dominates, so that the
void tends to be stable and relax to a rounded shape. On the other
hand, when the quantities above become large, the electromigra-
tion and/or the elastic energy gradient term dictates the void evolu-
tion in such a way that the void tends to collapse into a slit-like
shape. Thus, there is a critical vc and Kc so that for v < vc and
K < Kc the void remains rounded, and for v > vc or K > Kc the void
can collapse into a slit [75–77].

A significant improvement in the capabilities of void evolution
simulation was carried out by Bower and Shankar [85]. In their
model the interaction between the void with its local surrounding
is also included, so that exchange fluxes between grain boundaries,
or interfaces, with the void are considered. Thus, the model in-
cludes the effects of grain boundary diffusion, grain boundary slid-
ing and migration, as well as surface diffusion. Bower and Shankar
showed that a void de-pins from the grain boundary, when the sur-
face evolves much faster than the grain boundary. On the other
hand, if the surface and the grain boundary migrate at similar rates
the void remains pinned at the grain boundary. Fig. 15 shows a
void growing along the grain boundary. Void growth takes place
due to existent flux divergences at grain boundary triple points
or at surfaces connected to the void [85].

The common drawback of these models is that they all use finite
difference or finite element schemes, which require a continuous
explicit void surface tracking and, consequently, a continuous
remeshing and interpolation procedure. This approach is quite
complicated to implement and computationally very demanding.
Therefore, it can be satisfactorily applied only for two-dimensional
cases and cannot be further extended.

7.2. Diffuse interface model

The shortcoming of the sharp interface models were overcome
by Mahadevan and Bradley [86,87] with the application of the
so-called phase field or diffuse interface model. The main advan-
tage of this method is that the void surface is implicitly repre-
sented by a field parameter. In this way, void evolution is
described by the evolution of the field parameter, so that explicit
surface tracking is not needed.

The field parameter, /, separates the void phase from the solid
phase. It assumes a value / ¼ þ1 in the solid phase, / ¼ �1 in the
void phase, and varies over a narrow interfacial layer between the
solid and void surface, �1 < / < þ1. Defining the free energy of
the line as a functional Fð/;r/; eÞ, the chemical potential is ex-
pressed in the form [88]

l ¼ dF
d/

: ð79Þ

Using (79), Eq. (71) can be expressed as J
!

s ¼ J
!

sð/Þ and the evolu-
tion of the field parameter is governed by a Cahn–Hilliard equation
of the form [88]

@/
@t
¼ �r � J

!
sð/Þ: ð80Þ

A thorough implementation of this method for two-dimensional
simulations was carried out by Bhate et al. [72,73,89]. All driving
forces for atomic migration are included in the modeling and, more-
over, a slight modification of (80), given by

@/
@t
¼ �r � J

!
sð/Þ þ G; ð81Þ

is employed, where G accounts for the exchange flux between the
bulk and the void surface.

Eq. (81) is numerically solved using an implicit finite element
scheme, together with the associated mechanical and electrical
equations. In order to adequately describe the order parameter in
the narrow interfacial layer surrounding the void phase Bhate
et al. use hierarchically structured meshes. The order parameter
equation is solved on a finer mesh which is obtained by refinement
of a coarser mesh, the latter employed for the electrical and
mechanical calculations [72,73,89]. The aforementioned meshes
are static in the entire simulation domain, and they are stored dur-
ing the whole simulation cycle.

Another implementation of the diffuse interface model was per-
formed by Ceric et al. [90–92]. In their implementation electromi-
gration and surface curvature gradients are taken into account,
while the elastic strain energy term is neglected. As in the work

(a) (b)

(c) (d)

Fig. 14. Void evolution due to stress and electric field for v ¼ 10 and K ¼ 0:1 [83].

(a) (b)

(c) (d)

Fig. 15. Void growing along a grain boundary due to flux divergences [85].

R.L. de Orio et al. / Microelectronics Reliability 50 (2010) 775–789 785



of Bhate et al. [72,73], Ceric et al. used a FEM scheme for solving
the Cahn–Hilliard equation. Fig. 16 shows void migration accompa-
nied by a slight shape change in a two-dimensional via structure.

Differently from Bhate’s method, Ceric’s numerical approach
implements an adaptive mesh algorithm to generate a fine mesh
area around the void surface and a coarse mesh at locations where
high resolution of the order parameter is not needed. This is de-
picted in Fig. 17. The local refinement allows regions of high curva-
ture and high gradients to be properly resolved. However, the
adaptive mesh procedure is prohibitively demanding for three-
dimensional simulations.

The main advantage of the diffuse interface model is that the
implicit description of the void surface may avoid surface tracking
procedures. Moreover, the consideration of surface and elastic
strain energy in the model is straightforward, and boundary condi-
tions can be automatically incorporated into the scheme without
the need to be enforced at the void surface. The main drawback
is that a very fine mesh is needed around the void in order to ade-
quately describe the field parameter at the narrow interfacial layer
between the void and the metal. The result is an increased com-
plexity for the numerical implementation.

7.3. Level set method

Another method which has appeared as possible solution for
three-dimensional implementations is the Level Set Method

(LSM) [93]. In microelectronics the level set method has been
mostly applied for topography simulations, like etching and depo-
sition processes [94,95]. In this method the void surface, C, is
implicitly represented by the level set of a given function,

C ¼ f~rj/ð~rÞ ¼ cg; ð82Þ

for a given constant c. Void evolution is described by a Hamilton–Ja-
cobi equation,

@/
@t
þ vnkr/k ¼ 0; ð83Þ

where / represents the level set function and vn is the normal sur-
face velocity. The velocity field accounts for the physical effects act-
ing on the moving boundary, as given by (72), and dictates the
evolution of the level set.

A level set formulation for two-dimensional grain boundary
grooving due to surface diffusion driven by electromigration and
local curvature gradients was proposed by Khenner et al. [96,97].
Based on these works, Nathan et al. [98] carried out numerical sim-
ulations of electromigration drift velocity, given by an Arrhenius
expression,

vd ¼ v0 exp � Ea

kT

� �
; ð84Þ

and showed that the simulated drift velocities were in excellent
agreement with experimental results.

Using a similar approach Averbuch et al. [99] simulated void
evolution under curvature gradients and electromigration forces,
as given by (74), for several initial void shapes, like elliptic, trian-
gular, and square voids. The level set equation, (83), was solved
using a finite difference discretization on a regular grid and a sec-
ond-order Runge–Kutta time integration scheme [96,97,99]. It was
shown that under weak electric fields an arbitrary initial shape be-
comes circular and the void migrates in the direction of the applied
electric field. For strong electric fields the circular void becomes
unstable and it evolves to slit-like shapes. These results are similar
to those obtained by Xia et al. [83].

Cacho et al. [100] describe a two-dimensional void surface by

C ¼ x; yj/ðx; yÞ ¼ 1
2

	 

; ð85Þ

where / ¼ 1 in the metal and / ¼ 0 in the void. Since the normal
velocity given by (74) does not consider mass exchange between
the void and the metal line, the authors redefine the surface flux as

J
!

s ¼ �
DvCv

kT
ðXcsrsjþ ejZ�jrsuÞ; ð86Þ

where J
!

s here refers to a vacancy flux. The vacancy diffusion coef-
ficient is expressed as

Dv ¼ dð/ÞDs þ /Db
v ; ð87Þ

where dð/Þ is a smooth function of /;Ds represents the vacancy dif-
fusivity at the void surface, and Db

v is the vacancy diffusivity in the
bulk. With these modifications the vacancy continuity equation, (8),
becomes

@Cv

@t
¼ �/r � Jv

!
�dð/Þrs � J

!
s þ /G; ð88Þ

where Jv
!

is given by (7). In the metal bulk, / ¼ 1 and dð/Þ ¼ 0, and
the equation above reduces to the usual continuity equation, (8). At
the same time / ¼ 0 and dð/Þ ¼ 0 in the void, so that the equation
reproduces the surface velocity, (72). Thus, Cacho et al. express the
normal velocity as

vn ¼ �signðN � N0ÞK
@N
@t

����
����; ð89Þ

Fig. 16. Void migration and shape change driven by electromigration [90].

Fig. 17. Adaptive mesh procedure refines the mesh around the void surface, in such
a way that high resolution for the order parameter can be obtained [90].
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where N ¼ Cv=Cv0;N0 is a given critical vacancy concentration, and
K is a constant.

Recently, Ceric et al. [101] studied void evolution under the
influence of electromigration and the surface energy gradient using
the level set method for three-dimensional simulations. Initially, a
void is considered to nucleate at a junction between a grain bound-
ary and the copper/capping layer interface which is a natural free
adhesion patch. The void then moves in the direction of the current
flow, until a second grain boundary is reached. The grain boundary
acts as a fast diffusivity path. Thus, an additional incoming flux of
vacancies from the grain boundary leads to void growth through
the line thickness and further shape change. This void evolution
process is shown by Fig. 18. This simulation result demonstrate a
decisive impact of the microstructure on the void evolution mech-
anisms and, consequently, failure development [101].

The level set method is a powerful method for simulating mov-
ing boundary problems, offering the advantage that the moving
boundary can be implicitly represented, in such a way that surface
tracking is avoided. Several algorithms for level set calculations
have been proposed [102–104]. The level set equation is typically
solved on rectangular grids, which may be a limitation for simula-
tion of general complex structures. However, some works have
been recently published where the level set method is imple-
mented for unstructured triangulated meshes in connection to
mass transport and mechanics [105–107].

8. Summary and outlook

We discussed a wide variety of electromigrations models which
have been proposed since the electromigration phenomenon was
first identified. We started from the early basic derivation of Black’s
equation and gradually presented the development of the models
as they became more and more complete. It is clear that electromi-
gration modeling is a rather complex and challenging task. The
models for the nucleation phase have successfully incorporated a
wide variety of physical effects on the material transport equations
in connection with mechanics, like the influence of microstructure
and material interfaces acting not only as fast diffusivity paths, but
also as sites for vacancy annihilation and generation, for fully
three-dimensional cases. This allowed the prediction of the stress
build-up in an interconnect line and to explain several experimen-
tal observations regarding the preferable nucleation sites and void
nucleation conditions. In turn, the void evolution models have en-
abled to track void growth and shape changes in an interconnect,
relating the void development mechanisms to the stress conditions
at which the line is subjected to and, moreover, to the local line
structure and properties. We showed that different numerical ap-
proaches have been used for the void evolution phase. The main
difficulty here is that the void surface has to be ‘‘tracked” as the
void evolves. This requires special numerical techniques and algo-
rithms. The diffuse interface model and level set method appear to
be best suited, since the void is implicitly represented, therefore,
avoiding the prohibitively demanding explicit surface tracking
procedures.

To sum up, physical electromigration modeling has allowed to
interpret several experimental observations. On the other hand,
we feel the connection of numerical simulations performed by
the available tools to lifetime extrapolation and to lifetime statisti-
cal distribution is currently loose. Improvements in this area is of
crucial importance for a sound reliability prediction of metalliza-
tions for the next technological nodes.
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