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We investigate numerical solution schemes for the semiconductor Boltzmann transport
equation using an expansion of the distribution function in spherical harmonics. A com-
plexity analysis shows that traditional implementations using higher-order expansions
suffer from huge memory requirements, especially for two- and three-dimensional devices.
To overcome these complexity limitations, a compressed matrix storage scheme using Kro-
necker products is proposed, which reduces the asymptotic memory requirements for the
storage of the system matrix significantly. The total memory requirements are then dom-
inated by the memory required for the unknowns. Numerical results demonstrate the
applicability of our method and confirm our theoretical results.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

While in the early years of the semiconductor industry macroscopic models such as the drift–diffusion model or the
hydrodynamic model have been sufficient for device simulation, accurate simulations of modern nanoscale devices require
the use of more precise models. As long as quantum mechanical effects in transport direction are not dominant, the micro-
scopic electron transport may be described by the Boltzmann transport equation (BTE), which may be considered to be the
most appropriate semi-classical description of electrons in a semiconductor.

A direct solution of the BTE has been pursued for several decades and many ingenious techniques have been developed
for this purpose. However, direct solution approaches are limited by the high dimensionality of the problem: Three spatial
dimensions and three momentum dimensions lead to a six-dimensional problem already for stationary simulations, thus
only coarse grids can be used for direct solutions [1–3]. Therefore, the most commonly used technique is the non-determin-
istic Monte Carlo method, primarily because it is very flexible and allows one to incorporate modeling details such as com-
plicated band structures and scattering processes. The main disadvantage of the Monte Carlo method is its computational
cost, especially when attempting to reduce the statistical noise in the low density tails of the distribution function [4,5].

As an alternative to the stochastic Monte Carlo method and high-dimensional direct approaches, the deterministic spher-
ical harmonics expansion method of first order was introduced in the early 1990s for one-dimensional devices [6,7]. Later,
the method was extended to arbitrary expansion order [4,8] and two spatial dimensions [9–12]. Furthermore, numerous
contributions from the physics point of view [13–17] and some results from the mathematics point of view [18–23] are
available. However, there are only a few contributions on improvements of the treatment of the discrete system of equations
[24,25].
. All rights reserved.
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The major challenge for SHE are the still huge memory requirements reported already for two-dimensional devices [26].
The reason is that the model contains up to three spatial variables and an additional energy variable leading to an increased
set of space-energy grid points (x,e) and spherical expansion coefficients. In particular, for three-dimensional device simu-
lations, this requires the discretization in a four-dimensional (x,e)-space with a tuple of unknowns associated with each grid
point, which is out of reach even for modern computers. In current implementations, most of the required memory is used
for the storage of the global system matrix. In this paper we propose a method to reduce the memory required by the system
matrix such that most of the memory is actually consumed by the unknowns of the system. On a machine with 8 Gb of mem-
ory, this allows us to store 109 unknowns, which is by two orders of magnitude higher than the largest SHE simulations re-
ported so far [26]. Therefore, the method proposed in this work paves the way for three-dimensional device simulations
using a SHE approach.

This work is organized as follows: We briefly review the derivation of the SHE equations in Section 2. In Section 3 we show
that the unknown expansion coefficients are only weakly coupled, which leads to a very sparse system matrix for the discret-
ized equations. The decoupling of spherical harmonics expansion coefficient interactions from the underlying discretization is
used in the main section of this work (Section 4) to derive a matrix compression scheme using sums of Kronecker products,
which reduces the memory requirements for the system matrix considerably. Section 5 shows how non-spherical bands can
be incorporated into the matrix compression scheme, while Section 6 deals with the inclusion of stabilization schemes and
Section 7 discusses the handling of boundary conditions. The selection of appropriate linear solvers is discussed in Section
8. Numerical results are given in Section 9, confirming our theoretical results. Finally, we conclude in Section 10.

2. SHE of the BTE

We briefly sketch the equations resulting from a SHE of the BTE, following the derivation given in more detail by Junge-
mann et al. [27]. Here and in the following, function arguments are suppressed whenever appropriate to increase the read-
ability of the equations. The electron distribution is described by a distribution function f(x,k, t), where x 2 R3 is the position
in real space, �hk 2 R3 is the momentum vector (with modified Plack constant ⁄) and t > 0 denotes time. The distribution func-
tion is assumed to fulfill the BTE
@f
@t
þ v � rxf þ 1

�h
F � rkf ¼ Qffg;
where v =rke/�h is the group velocity induced by the band energy e(k) (relative to its minimum) and F = �rx(qw + eb) is the
effective force acting on a particle with charge q = ±e (where e is the modulus of the electron charge and the positive sign
refers to holes and the negative one to electrons) induced by the quasi-static potential w and the band edge eb. The scattering
operator Q is assumed to be linear and given by
Qffg ¼ Xs

ð2pÞ3
Z

sðx;k0;kÞf ðx;k0; tÞ � sðx;k;k0Þf ðx;k; tÞdk;
where Xs denotes a sample volume. According to Fermi’s Golden Rule, the scattering terms are assumed to be of the form
sðx;k0;kÞ ¼ 1
Xs

X
g

cgðx;k0;kÞd eðkÞ � eðk0Þ � �hxg
� �

;

where we have assumed for simplicity that the energy transfer ⁄xg for each scattering process g does not depend on the
initial and final wave vector.

For reasons of numerical stability it is advantageous to define the generalized energy distribution function [27]
gðx; e; h;u; tÞ ¼ 2Zðe; h;uÞf ðx;kðe; h;uÞ; tÞ; ð1Þ
where the generalized density of states Z for one spin direction is given by
Zðe; h;uÞ ¼ jkj
2

ð2pÞ3
@jkj
@e

:

In the following it is assumed that the mapping e ´ k is a bijection, otherwise a spherical harmonics expansion can not be
carried out on equi-energy surfaces.

We expand the generalized distribution function into orthonormal and real valued spherical harmonics Yl,m(h,u), and
truncate after (L + 1)2 terms:
gðx; e; h;u; tÞ �
XL

l¼0

Xl

m¼�l

gl;mðx; e; tÞYl;mðh;uÞ: ð2Þ
The expansion coefficients are obtained from the generalized distribution function by the projections
gl;mðx; e; tÞ ¼
Z

Yl;mðh;uÞgðx; e; h;u; tÞdX ¼ 2
Z

Yl;mðh;uÞZðe; h;uÞf ðx;kðe; h;uÞ; tÞdX;
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where the integration is carried out over the unit sphere, X is the solid angle and dX = sinh dh du. Equations for the coef-
ficients gl,m are directly obtained from a projection of the BTE, resulting in
@gl;m

@t
þrx � jl;m þ

@F � jl;m

@e
� F � Cl;m ¼ Q l;mfgg; ð3Þ
where the generalized current density
jl;mðx; e; tÞ ¼
Z

vgYl;m dX ð4Þ
and the angular force coupling term
Cl;mðx; e; tÞ ¼
Z

1
�hjkj

@Yl;m

@h
eh þ

1
sin h

@Yl;m

@u
eu

� �
g dX ð5Þ
have been introduced, and eh and eu denote the angular unit vectors. The projection of the scattering operator Ql,m{g} is de-
tailed below. We substitute (2) into (4) and (5) and then substitute these into (3). Using Einstein’s summation convention,
we obtain the system of partial differential equations
@gl;m

@t
þ v l0 ;m0

l;m � rxgl0 ;m0 þ
@F � v l0 ;m0

l;m gl0 ;m0

@e
� F � Cl0 ;m0

l;m gl0 ;m0 ¼ Q l;mfgg ð6Þ
for all l = 0, . . . , L, m = �l, . . . , l, where
v l0 ;m0

l;m ðeÞ ¼
Z

vYl;mYl0 ;m0 dX; ð7Þ

Cl0 ;m0

l;m ðeÞ ¼
Z

1
�hjkj

@Yl;m

@h
eh þ

1
sin h

@Yl;m

@u
eu

� �
Yl0 ;m0 dX: ð8Þ
Prior to projection of the scattering operator, we split Q{f} = Qin{f} � Qout{f}, where
Q inffg ¼ Xs

ð2pÞ3
Z

sðx;k0;kÞf ðx;k0; tÞdk0;

Qoutffg ¼ Xs

ð2pÞ3
Z

sðx;k;k0Þf ðx;k; tÞdk:
Under the assumption of velocity randomizing scattering rates [5], a spherical harmonics projection leads to [27]
Q in
l;mðx; e; tÞ ¼

X
g

sl0 ;m0;in
l;m;g gl0 ;m0 ðx; e� �hxg; tÞ;

sl0 ;m0;in
l;m;g ðx; eÞ ¼

1
Y0;0

Zl;mðeÞcgðx; e� �hxg; eÞd0;l0d0;m0 ð9Þ
and
Qout
l;m ðx; e; tÞ ¼ sl0 ;m0;out

l;m gl0 ;m0 ðx; e; tÞ;

sl0 ;m0;out
l;m ðx; eÞ ¼ 1

Y0;0

X
g

Z0;0ðe� �hxgÞcgðx; e; e� �hxgÞdl;l0dm;m0 ; ð10Þ
where d denotes the Kronecker delta, the upper and lower signs refer to scattering to higher and lower energies respectively,
and
Zl;m ¼
Z

X
Zðe; h;uÞYl;m dX: ð11Þ
Substitution of the projected scattering terms into (6) yields the full system of partial differential equations
@gl;m

@t
þ v l0 ;m0

l;m � rxgl0 ;m0 þ
@F � v l0 ;m0

l;m gl0 ;m0

@e
� F � Cl0 ;m0

l;m gl0 ;m0 ¼
X

g
sl0 ;m0;in

l;m;g gl0 ;m0 ðx; e� �hxg; tÞ � sl0 ;m0;out
l;m gl0 ;m0 ðx; e; tÞ ð12Þ
for all l = 0, . . . , L and m = �l, . . . , l.
In the case of several energy bands, a BTE has to be written for each band and scattering rates between these subbands

have to be given. In the following we assume a single energy band only. This allows us to keep the expressions simpler, but it
does not imply that our approach is limited to a single energy band only.
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3. Sparse coupling for spherical energy bands

The representation (12) obscures the physical interpretation of the individual terms, but it exposes the full coupling struc-
ture. If all coupling coefficients v l0 ;m0

l;m ; Cl0 ;m0

l;m ; sl0 ;m0;in
l;m;g and sl0 ;m0;out

l;m were multiples of the Kronecker delta dl;l0dm;m0 , all equations
would be decoupled and could be solved individually. Conversely, nonzero coupling coefficients for all quadruples (l,m, l0,m0)
indicate a tight coupling, which usually complicates the solution process. This is in analogy to systems of linear equations: If
the system matrix is diagonal, the solution is found immediately, but if the matrix is dense, typically a lot of computational
effort is required to solve the system.

According to (9) and (10), the scattering coefficients sl0 ;m0;in
l;m;g and sl0 ;m0;out

l;m vanish except for the case that l0 = m0 = 0 or l = l0,
m = m0, respectively. This leads to a very weak coupling: The first term couples all differential equations with g0,0, while
the second term does not couple any equations at all. Moreover, under the assumption of spherical energy bands, the gen-
eralized density of states is spherically symmetric, hence Zl,m � 0 for (l,m) – (0,0). Consequently, the scattering terms do not
couple any unknowns in this case. The remainder of this section is thus devoted to the investigation of the couplings induced
by v l0 ;m0

l;m and Cl0 ;m0

l;m (see (7) and (8)).
For general band structures, the symmetry of the underlying processes leads to the following result.

Theorem 1 (Jungemann et al.). For a spherical harmonics expansion up to order L = 2I + 1 with I 2 N, there holds for all i,
i0 2 {0, . . . , I}, m 2 {�i, . . . , i} and m0 2 {�i0, . . . , i0}
v2i0 ;m0

2i;m ¼ v2i0þ1;m0

2iþ1;m ¼ 0; C2i0 ;m0

2i;m ¼ C2i0þ1;m0

2iþ1;m ¼ 0:
The essence of this theorem is that all nonzero coupling coefficients possess different parities in the leading indices. This
small structural information about the coupling was already used for a preprocessing step for the solution of the discretized
equations in [27].

Under the assumption of spherical energy bands, i.e. eðkÞ ¼ ~eðjkjÞ, the velocity v, the modulus of the wave vector jkj and
the generalized density of states only depend on the energy e, but not on the angles h, u. Consequently, we rewrite
v l0 ;m0

l;m ðeÞ ¼ vðeÞ
Z

Yl;meeYl0 ;m0dX ¼: vðeÞal0 ;m0

l;m ; ð13Þ

Cl0 ;m0

l;m ðeÞ ¼
1

�hjkj

Z
@Yl;m

@h
eh þ

1
sin h

@Yl;m

@u
eu

� �
Yl0 ;m0dX ¼:

1
�hjkjb

l0 ;m0

l;m : ð14Þ
The coupling between index pairs (l,m) and (l0,m0) is determined by the integral terms al0 ;m0

l;m and bl0 ;m0

l;m only. It turns out that the
coupling is rather weak:

Theorem 2. For spherical energy bands, the following holds true for indices l, l0 2 {0, . . . , L}, m 2 {�l, . . . , l} and m0 2 {�l0, . . . , l0}:
1. If v l0 ;m0

l;m is nonzero, then l 2 {l0 ± 1} and m 2 {±jm0j ± 1,m
0
}.

2. If Cl0 ;m0

l;m is nonzero, then l 2 {l0 ± 1} and m 2 {±jm0j ± 1,m
0
}.

The proof is given in Appendix B; it makes use of recurrence relations and orthogonalities of trigonometric functions and
associated Legendre functions.

Theorem 2 is very important for large order expansions: the total number of unknown expansion coefficients is (L + 1)2,
but according to 9, 10 and 12, each gl,m is directly coupled with at most ten other coefficients. The weak coupling stated in
Theorem 2 has already been observed for less general situations in earlier publications [4,10].

4. System matrix compression for spherical energy bands

In this section we investigate the discretization of the projected SHE system (12) for spherical energy bands.
Substitution of (13) and (14) into (12) yields
@gl;m

@t
þ al0 ;m0

l;m � vrxgl0 ;m0 þ F
@vgl0 ;m0

@e

� �
� bl0 ;m0

l;m � F
gl0 ;m0

�hjkj ¼
X

g
sl0 ;m0;in

l;m;g gl0 ;m0 ðx; e� �hxg; tÞ � sl0 ;m0;out
l;m gl0 ;m0 : ð15Þ
Let us consider a spatial discretization for gl,m in the (x,e)-space using a finite element or finite volume scheme: We se-
lect a space of trial functions U with basis ðuiÞ

N
i¼1 and a space of test functions V with basis ðvjÞ

N
j¼1, making the usual

assumption of equal dimensionality of the two spaces. The particular choice of these spaces depends on the particular
finite element or finite volume scheme, but it does not affect the next steps. Moreover, a compression scheme for finite
difference methods is obtained analogously by taking suitable limits in the choice of basis functions in the distributional
sense.
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A weak form of (15) is derived as usual by multiplication with a test function and integration over the whole domain. We
make the ansatz
gl;m ¼
XN

i¼1

ai;l;mðtÞuiðx; eÞ;
so that we have to solve for the N � (L + 1)2 unknowns ai;l,m(t). For the numbering of the unknowns, we introduce the mapping
pL : N� f0; . . . ; Lg � f�L; . . . ; Lg ! N;

ði; l;mÞ# iðLþ 1Þ2 þ l2 þ lþm;
ð16Þ
which is a bijection for �l 6m 6 l. More general mappings of the form (i, l,m) ´ i(L + 1)2 + j(l,m) for a bijection j from
admissible values for l, m into the set {0, . . . , (L + 1)2 � 1} such as j(l,m) = l2 + l + m can also be used.

Similar to finite element and finite volume methods, we define the matrix valued bilinear mapping w : U � V !
RðLþ1Þ2�ðLþ1Þ2 by
wðu;vÞð Þjðl;mÞ;jðl0 ;m0Þ ¼
Z

@u
@t

dl;l0dm;m0 þ
X
l0 ;m0

al0 ;m0

l;m � vrxuþ F
@vu
@e

� �
�
X
l0 ;m0

bl0 ;m0

l;m � F
u

�hjkj þ
X
l0 ;m0

sl0 ;m0;out
l;m u

2
4

�
X

l0 ;m0 ;g

sl0 ;m0;in
l;m;g uðx; e� �hxg; tÞ

3
5vdxde; ð17Þ
where the integration is carried out over the simulation domain. Depending on the actual discretization method, the integral
terms may be rearranged using integration by parts, but this does not affect the following arguments. In the above definition
of the bilinear mapping, the time derivative may be discretized by a backward Euler scheme or omitted when considering
steady states.

With the numbering (16), the system matrix for the discrete system is given by
S ¼

wðu1;v1Þ wðu2;v1Þ . . . wðuN;v1Þ
wðu1;v2Þ wðu2;v2Þ . . . wðuN;v2Þ

..

. ..
. . .

. ..
.

wðu1;vNÞ wðu2;vNÞ . . . wðuN ;vNÞ

0
BBBB@

1
CCCCA; ð18Þ
which is the common matrix structure for Galerkin methods such as the finite element method. Moreover, the sparsity of S
becomes now apparent: If there is no common support of ui and vj (taking into account shifts by ±⁄xg along the energy axis
coming from the scattering operator), the full block w(ui,vj) vanishes, see (17). Note that, in general, w(ui,vj) – w(uj,vi) and
therefore S is not symmetric, which must be taken into account for the selection of a proper linear solver.

For a complexity analysis, we introduce the following notation.

Definition 1. Given a triangulation T and trial and test spaces U, V with basis ðuÞNi¼1 and ðvÞNj¼1, respectively, we define the
sparsity indicator
Csparse :¼ max
v2fv1 ;...;vNg

u 2 fu1; . . . ;uNg 9ðx; eÞ 2 Gj : uv – 0 or 9g : uðx; e� �hxgÞv – 0
� 	

 

;
where the notation jAj denotes the number of elements of the set A and G is the simulation domain in the (x,e)-space.
From the definition of Csparse we directly see that there are at most Csparse blocks in each row of the block structure (18) of

the system matrix S. In the following we assume that the triangulations are sufficiently regular such that Csparse does not
increase when the mesh is refined. With Landau’s notation, we assume that Csparse ¼ Oð1Þ. This allows us to show the follow-
ing statement about memory requirements.

Theorem 3. Assume spherical energy bands, a spherical harmonics expansion up to degree L and a discretization of the (x,e)-
domain using N degrees of freedom. Then it holds:

1. A straightforward assembly of the matrix S, defined in (18), needs a storage of CsparseN(L + 1)4 entries.
2. There exists an assembly of S needing a storage of 11CsparseN (L + 1)2 entries only.
Proof. The matrix S is of size N(L + 1)2 � N(L + 1)2. In each of the N rows of the block structure (18) there are at most Csparse

blocks. Each block is of dimension (L + 1)2 � (L + 1)2, hence there are at most CsparseN(L + 1)4 nonzero entries in S, which
proves the first statement. Since each block in the block structure is sparse due to Theorem 2, 9 and 10, each block carries
at most 11(L + 1)2 nonzero entries, thus there are in fact at most 11CsparseN(L + 1)2 nonzero entries in S. h
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Jungemann et al. [27] observed that the expansion order L has to be at least three to five in order to obtain good results
for e.g. electron velocities in a silicon bipolar transistor. In [26] expansions up to order nine have been compared for a
n+nn+ diode including magnetic fields. For such a high-order simulation with L = 9, a straightforward assembly leads to
10,000CsparseN entries, whereas the number of nonzero entries is at most 1,100CsparseN entries, thus more than 90% of the
memory is wasted in a straightforward assembly.

Even though a careful assembly reduces the required memory at L = 9 by an order of magnitude, total memory require-
ments of 11CsparseN(L + 1)2 entries are still considerable. Compared to a finite element or finite volume scheme for the Pois-
son equation with memory requirements CsparseN, the coupling between the expansion coefficients in the SHE equations
requires memory of an additional factor 11(L + 1)2. For a high-order expansion such as L = 9, this additional factor is 1100.
This leads to huge memory requirements for two-dimensional devices and has rendered the simulation of three-dimensional
devices using a higher-order SHE model impossible so far.

In the following, we derive a matrix compression scheme that requires much less memory. Writing al0 ;m0

l;m ; Cl0 ;m0

l;m and F(x) in
components,
al0 ;m0

l;m ¼

ðal0 ;m0

l;m Þ1
ðal0 ;m0

l;m Þ2
ðal0 ;m0

l;m Þ3

0
BBB@

1
CCCA; bl;m;l0 ;m0 ¼

ðbl0 ;m0

l;m Þ1
ðbl0 ;m0

l;m Þ2
ðbl0 ;m0

l;m Þ3

0
BBB@

1
CCCA; FðxÞ ¼

F1ðxÞ
F2ðxÞ
F3ðxÞ

0
B@

1
CA;
a rearrangement of (17) leads to the following nine integrals
wðu;vÞð Þjðl;mÞ;jðl0 ;m0Þ ¼ dl;l0dm;m0

Z
@u
@t

vdxdeþ
X
l0 ;m0

Z
sl0 ;m0;out

l;m uvdxde�
X

l0 ;m0 ;g

Z
sl0 ;m0;in

l;m;g uðx; e� �hxg; tÞvdxdeþ
X3

p¼1

�
X
l0 ;m0

ðal0 ;m0

l;m Þp
Z

v @u
@ðxÞp

þ Fp
@vu
@e

 !
vdxde�

X3

p¼1

X
l0 ;m0

ðbl0 ;m0

l;m Þp
Z

Fp
u

�hjkjvdxde: ð19Þ
The crucial observation is that after substitution of the scattering terms (9) and (10) into (19), all summands are products in
which one factor only depends on l, m, l0 and m0, and the other factor involves the integrals and depends only on the indices of
uj and vi. In particular, the full system matrix (18) can be written as
S ¼
X9

i¼1

Q i 	 Ri; ð20Þ
where 	 denotes the Kronecker product (cf. Appendix A for the definition). The spatial discretization matrices Q1, . . . , Q9 are
given by
ðQ 1Þi;j ¼
Z
@uj

@t
vi dxde; ð21Þ

ðQ 2Þi;j ¼
1

Y0;0

Z
Z0;0ðe� �hxgÞcgðe; e� �hxgÞujvi dxde; ð22Þ

ðQ 3Þi;j ¼ �
1

Y0;0

Z
Z0;0cgðe� �hxg; eÞujðx; e� �hxg; tÞvi dxde; ð23Þ

ðQ pÞi;j ¼
Z

v
@uj

@xp�1
þ Fp�1

@vuj

@e

� �
vi dxde; p ¼ 4;5;6; ð24Þ

ðQ pÞi;j ¼ �
Z

Fp�4
uj

�hjkjvi dxde; p ¼ 7;8;9; ð25Þ
and the coupling matrices R1, . . . , R9 by
ðR1Þjðl;mÞ;jðl0 ;m0 Þ ¼ dl;l0dm;m0 ; ð26Þ
ðR2Þjðl;mÞ;jðl0 ;m0 Þ ¼ dl;l0dm;m0 ; ð27Þ
ðR3Þjðl;mÞ;jðl0 ;m0 Þ ¼ dl;l0dm;m0dl0 ;0dm0 ;0; ð28Þ

ðRpÞjðl;mÞ;jðl0 ;m0 Þ ¼ ða
l0 ;m0

l;m Þp�3; p ¼ 4;5;6; ð29Þ

ðRpÞjðl;mÞ;jðl0 ;m0 Þ ¼ ðb
l0 ;m0

l;m Þp�6; p ¼ 7;8;9: ð30Þ
Hence, we can represent the full system matrix S, which has up to 11CsparseN (L + 1)2 nonzero entries, by nine matrices Q1, . . . ,
Q9 (with at most CsparseN entries each) and nine matrices R1, . . . , R9 (with at most 4(L + 1)2 entries each due to the fact that for
given (l,m), each component of al0 ;m0

l;m and bl0 ;m0

l;m couples with at most four other pairs (l0,m0)). Since the matrices R1, R2 and R3

do not need to be stored at all, we can store S in a compressed form using 24(L + 1)2 + 9CsparseN entries only. As (L + 1)2 is for
two- and three-dimensional devices typically much smaller than the degree of freedom N, the total memory requirements
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for S can be reduced down to the order 9CsparseN ¼ OðNÞ. This leads to the situation that the number of unknowns N(L + 1)2 is
the only limitation with respect to memory for high-order expansions. Even in the case of very high-order expansions such
as L = 19, still 312,500 grid nodes can be used in (x,e)-space in order to fit all unknowns into one gigabyte of memory in dou-
ble precision.

5. Non-spherical energy bands

The matrix compression described in the previous section relies on the factorizations (13) and (14) of the coupling terms
v l0 ;m0

l;m ðeÞ and Cl0 ;m0

l;m ðeÞ, whose factors depend on the energy or on the indices l, m, l0 and m0. Moreover, it was used that the
expansion coefficients Zl,m in (11) vanish for nonzero l or m using spherical energy bands. However, in the case of non-spher-
ical energy bands, the velocity and the modulus of the wave vector as well as the generalized density of states depend on the
energy and on the angles.

In order to decouple the radial (energy) contributions from the angular ones, we perform a spherical projection up to or-
der L0 of the coupling terms by approximating
vðe; h;uÞ �
XL0

l00¼0

Xl00

m00¼�l00
v l00 ;m00 ðeÞYl00 ;m00 ðh;uÞ; ð31Þ

1
�hjkðe; h;uÞj �

XL0

l00¼0

Xl00

m00¼�l00
Cl00 ;m00 ðeÞYl00 ;m00 ðh;uÞ; ð32Þ
where the expansion coefficients are given for e > 0 by
v l00 ;m00 ðeÞ ¼
Z

vðe; h;uÞYl00 ;m00 ðh;uÞdX;

Cl00 ;m00 ðeÞ ¼
Z

1
�hjkðe; h;uÞjYl00 ;m00 ðh;uÞdX:
For simplicity, the expansion order L0 is the same for both v l0 ;m0

l;m and Cl0 ;m0

l;m . It depends on the complexity of the band structure;
values of L0 = 4 have been reported to yield a good approximation of the non-spherical energy bands of interest [28].

The expansion order of the generalized density of states Z, which is also assumed to be equal to L0 for simplicity, is implic-
itly coupled to the expansion order L of the distribution function by (9). Thus, even if Z is expanded up to order L0 > L, only
expansion terms up to order L can be considered. For this reason we assume in the following that L P L0.

Substitution of the expansions (31) and (32) into (7) and (8) yields
v l0 ;m0

l;m ¼ v l00 ;m00 ðeÞ
Z

Yl;mYl0 ;m0Yl00 ;m00 dX ¼: v l00 ;m00 ðeÞal0 ;m0

l;m;l00 ;m00
;

Cl0 ;m0

l;m ¼ Cl00 ;m00 ðeÞ
Z

@Yl;m

@h
eh þ

1
sin h

@Yl;m

@u
eu

� �
Yl0 ;m0Yl00 ;m00 dX ¼: Cl00 ;m00 ðeÞbl0 ;m0

l;m;l00 ;m00 ;
so that we obtain in both cases a sum of (L0 + 1)2 decoupled terms. This is in contrast to the case of spherical energy bands,
where the sum degenerates to a single term. Repeating the steps from the previous section, the system matrix S can be writ-
ten similar to (20) in the form
S ¼
X2þðLþ1Þ2þ6ðL0þ1Þ2

i¼1

Q i 	 Ri: ð33Þ
The coupling matrices R3; . . . ;R2þðLþ1Þ2 arising from the in-scattering term consist of a single entry only. For coupling matrices

involving al0 ;m0

l;m;l00 ;m00
, with row indices j(l,m) and column indices j(l0,m0) for each pair (l00,m00), the entries are directly obtained

from the Wigner 3jm-symbols, cf. Appendix C. The sparsity of the coupling matrices, arising from bl0 ;m0

l;m;l00 ;m00 in the same way as

for al0 ;m0

l;m;l00 ;m00
, is not clear at present, but we presume that the structure is similar. Since the total memory required for the cou-

pling matrices induced by bl0 ;m0

l;m;l00 ;m00 is still negligible even if they are dense, we assume for simplicity dense spherical harmon-
ics coupling matrices, so (L + 1)4 memory is required for each. With this, the system matrix can be stored using at most
2þ ðLþ 1Þ2 þ 6ðL0 þ 1Þ2
h i

ðLþ 1Þ4 þ CsparseN
h i

¼ OððL02 þ L2ÞðL4 þ NÞÞ ð34Þ
matrix entries. With L4
 N and L � L0 P 3 in typical applications, the total memory requirements for the system matrix are
roughly 7(L + 1)2CsparseN, which is at first sight similar to the memory requirements for the uncompressed system matrix for
spherical energy bands, cf. Theorem 3. However, due to symmetries present in non-spherical energy bands, several coupling
coefficients vanish [28]. As a consequence, the estimate 7(L0 + 1)2CsparseN considerably overestimates the true memory
requirements, and the proposed scheme still results in significant savings compared to setting up the full system matrix.
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6. Stabilization schemes

Due to the strong gradients in the distribution function and the large numerical range of values, spurious oscillations in
the numerical approximation show up if no stabilization scheme is applied [27,4]. For very small devices, a combination of
staggered grids, the maximum entropy dissipation scheme (MEDS) [21] and the H-transform [9] was reported by Hong et al.
[26] to yield stable numerical results. In the following we extend our matrix compression scheme such that it can be used
with these stabilization schemes.

For staggered grids, unknowns associated with spherical harmonics of even order are associated with different basis than
unknowns associated with odd order spherical harmonics. Consequently, for the Neven even order unknowns we select a

space of trial functions Ueven with basis ðueven
i ÞN

even

i¼1 and a space of test functions Veven with basis ðveven
j ÞN

even

j¼1 . Similarly, a space

of trial functions Uodd with basis ðuodd
i Þ

Nodd

i¼1 and a space of test functions Vodd with basis ðvodd
j Þ

Nodd

j¼1 is chosen for the Nodd odd
order unknowns. The total trial space is U = Ueven � Uodd and the test space V = Veven � Vodd.

Moreover, we first enumerate the even order unknowns and test functions and then the odd order unknowns and test
functions. Unknowns associated with the same trial function are enumerated consecutively similar to (16). Repeating the
steps in Section 4, the full system matrix S can be written in the block-structure
S ¼ See Seo

Soe Soo

� �
¼
Xp

i¼1

Q ee
i 	 Ree

i Q eo
i 	 Reo

i

Q oe
i 	 Roe

i Q oo
i 	 Roo

i

 !
: ð35Þ
The even-to-even coupling matrix See and the odd-to-odd coupling matrix Soo are square matrices and determined according
to Theorem 1 or Theorem 2 only by the projected time derivative @gl,m/@t and the projected scattering operator Ql,m{g}. The
even-to-odd coupling matrix Seo is non-square and determined by the free-streaming operator with sparsity pattern given by
Theorem 2. The odd-to-even coupling matrix Soe is also non-square and determined by the free-streaming operator and for
non-spherical bands also by the scattering operator Ql,m{g}, cf. (9).

The spatial matrices Q ee
i ; Q eo

i ; Q eo
i and Q oo

i in (35) are obtained by evaluating the underlying bilinear mapping for a basis
of trial functions from Ueven and Uodd and a basis of test functions from Veven and Vodd respectively. Similarly, the spherical
coupling matrices Ree

i ; Reo
i ; Reo

i and Roo
i are obtained by taking only the rows and columns of Ri that correspond to even or

odd harmonics respectively.
Since the coupling structure of the scattering operator is explicitly given in (9) and (10), the structure of See and Soo is as

follows:

Theorem 4. For spherical harmonics expansions in steady state, the following statements for staggered grids hold true:
1. The matrix Soo is diagonal.
2. For spherical energy bands without considering inelastic scattering, See is also diagonal.

This structural information is very important for the construction of solution schemes in the next section.
To employ the H-transform, variables are changed from (x,e) to ð~x;HÞ by the transformation
~x ¼ x; H ¼ eþ qwðxÞ;
where w denotes the electrostatic potential and q is the charge of the carriers (negative for electrons, positive for holes).
Since this transformation effects only the (x,e)-space, the decouplings (13) and (14) are unchanged and the proposed matrix
compression scheme can be applied. Clearly, the expressions (21)–(25) for the spatial matrices Qi have to be adapted due to
the application of the H-transform, but can be derived in analogy to the derivation in Section 4.

Similarly, an application of MEDS modifies the odd order equations only and does not interfere with the decoupling given
by (13) and (14). Thus, the entries in Q oe

i and Q oo
i as in (35) are modified, but the matrix compression scheme can be applied

without additional difficulties.

7. Boundary conditions

So far we have considered the discretization of the resulting system of partial differential equations in the interior of the
simulation domain. At the boundary, suitable conditions need to be imposed and incorporated into the proposed compres-
sion scheme.

At all non-contact boundaries, homogeneous Neumann boundary conditions are imposed [4,27,26], which can be directly
included in the proposed compression scheme, because no additional boundary terms appear on non-contact boundaries if
the weak formulation (17) is integrated by parts. Using a box discretization scheme, this means that box contributions out-
side the simulation domain are simply ignored.

At the contact boundaries, two different types of boundary conditions are typically imposed. The first type are Dirichlet
boundary conditions [4], where the distribution function is set to a Maxwell distribution. Hence, the generalized energy dis-
tribution function g0,0 is set according to (1) and (2), while gl,m is set to zero at the contact for (l,m) – (0,0). This it either
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enforced by replacing the corresponding matrix row with unity in the diagonal and zeros elsewhere, and setting the appro-
priate value at the load vector, or by directly absorbing the known values to the load vector. For the proposed compression
scheme, the second way is of advantage, because in that case boundary conditions do not alter the matrix structure.

The second type of contact boundary conditions is a Robin-type generation/recombination process [27]
cl;mðeÞ ¼ �
gl;mðeÞ � Zl;mðeÞf eqðeÞ

s0
;

where feq denotes the equilibrium Maxwell distribution, or, similar in structure, a surface generation process of the form [26]
Cs ¼ f eqðk0Þhðv � nÞ þ f ðk0Þhð�v � nÞ
� �

v � n;
where h denotes the step function and n is the unit surface normal vector pointing into the device. This type of boundary
conditions leads to additional entries in the system matrix due to the additional surface boundary integrals, hence the com-
pressed matrix scheme has to account for them. We propose to write the system matrix in the form
S ¼ Sinner þ Scontact; ð36Þ
where Sinner contains the discretized equations for all interior points as given by (20), (33) or (35), and Scontact consists of the
discretized contact boundary terms. Since the number of contact boundary points is much smaller than the total number of
grid points N, the sparse matrix Scontact can be set up without compression scheme and the additional memory requirements
are negligible.

The additional matrix Scontact in (36) can be easily included in the following derivations, especially since it can be written
as a sum of Kronecker products again, as one can easily verify. Therefore, Dirichlet boundary conditions are considered in the
following for reasons of clarity.
8. Solution of the linear system

The matrix compression scheme introduced in the previous sections is of use only if the resulting scheme can be solved
without recovering the full matrix again. Such a reconstruction is, in principle, necessary if direct solvers such as the Gauss
algorithm are used, because the matrix structure is altered in a way that destroys the block structure. For many popular iter-
ative solvers from the family of Krylov methods, it is usually sufficient to provide matrix–vector multiplications. Conse-
quently, we first discuss methods to compute the matrix–vector product Sx for a given vector x in the case that the
system matrix S is given in the compressed form
S ¼
Xp

i¼1

Q i 	 Ri:
The number of summands p and the entries of Qi and Ri depend on the underlying band structure and discretization schemes
as discussed in the previous sections.

It is well known that a row-by-row reconstruction of the compressed matrix S is not efficient. Therefore, we decompose
the vector x into N blocks of size (L + 1)2 by
x ¼
x1

..

.

xN

0
BB@

1
CCA ¼XN

j¼1

ej 	 xj; ð37Þ
where ej is the jth column vector of the identity matrix. The matrix–vector product can now be written as
Sx ¼
Xp

i¼1

Q i 	 Ri

" # XN

j¼1

ej 	 xj

" #
¼
Xp

i¼1

XN

j¼1

ðQ iejÞ 	 ðRixjÞ:
The product Qiej is simply the jth column of Qi with, say, Csparse entries on average. The computation of Rixj requires roughly
4(L + 1)2 additions and multiplications. Building the Kronecker product of the intermediate vectors Qiej and Rixj and adding
nonzero entries to the resulting vector requires Csparse(L + 1)2 operations for each index pair (i, j). Thus, Oðð4þ CsparseÞpNL2Þ �
OðCsparsepNL2Þ additions and multiplications are needed in total, since in typical situations Csparse� 4.

For spherical energy bands (p = 9), the matrix–vector multiplication requires slightly less computational effort than the
uncompressed case, where the scalar prefactor is 11. Thus, the proposed matrix compression reduces both the computational
effort and memory requirements. Non-spherical bands lead to larger values of p as discussed in Section 5, thus leading to a
higher computational effort for the matrix–vector multiplications compared to the uncompressed case. Nevertheless, the
additional computational effort is increased only moderately, while the memory requirements are significantly reduced.

Due to the coupling structure, recent publications report the elimination of odd order unknowns in a preprocessing step
[27,26]. Moreover, it has been shown that for a first-order expansion the system matrix after elimination of odd order un-
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knowns is an M-matrix [26]. Furthermore, numerical experiments indicate a considerable improvement in the convergence
of iterative solvers.

For a matrix structure as given by (35), a direct elimination of odd order unknowns would destroy the representation of
the system matrix S as a sum of Kronecker products. Writing the system as
Sg ¼ See Seo

Soe Soo

� �
ge

go

� �
¼

re

ro

� �
ð38Þ
with the vector of unknowns g split into ge and ge as unknowns associated with even and odd order harmonics respectively
and analogously for the right hand side vector r, the elimination of odd order unknowns is carried out using the Schur
complement:
ðSee � SeoðSooÞ�1SoeÞge ¼ re � SeoðSooÞ�1ro: ð39Þ
Since Soo is according to Theorem 4 a diagonal matrix, the inverse is directly available. The other matrix–vector products are
carried out as discussed in the beginning of this section.

In contrast to a matrix–vector multiplication with the full system matrix S, where the proposed matrix compression
scheme requires approximately the same computational effort, a matrix–vector multiplication with the condensed matrix
(See � Seo(Soo)�1Soe) is more expensive than a matrix–vector multiplication with a fully set up condensed matrix. To estimate
the additional effort, we assume that the number of even spherical harmonics is equal to the number of odd spherical har-
monics and is given by (L + 1)2/2, which is a good approximation for L P 5. Since See is diagonal or at least close to diagonal,
the most computational effort is needed for the computation of Seo(Soo)�1 Soege. Neglecting the cost of inverting the diagonal
matrix Soo, the operation boils down to the computation of two matrix–vector products. Summing up, a runtime penalty for
matrix vector multiplication of a factor slightly above two is expected.

The total memory needed for the SHE equations is essentially given by the memory required for the unknowns, which
adds another perspective on the selection of the iterative solver. From (17) we see that the system matrix S is not symmetric,
since Cl0 ;m0

l;m – Cl;m
l0 ;m0

. Moreover, numerical experiments indicate that the matrix S is indefinite, thus many popular solvers can-
not be used. A popular solver for indefinite problems is GMRES [29,30]. It is typically restarted after, say, s steps, denoted by
GMRES (s). This method was used in recent publications on SHE simulations [27,26]. For a system with N0 unknowns, the
memory required during the solution process is OðsN0Þ. In typical applications, in which the system matrix is uncompressed,
this additional memory is approximately the amount of memory needed for the storage of the system matrix; thus, it is not a
major concern. However, using the proposed matrix compression scheme, the memory needed for the unknowns is domi-
nant, so the additional memory for GMRES (s) directly pushes the overall memory requirements from OðNL2Þ to OðsNL2Þ.
The number of steps s is typically chosen between 20 and 30 as smaller values may lead to smaller convergence rates or
the solver may even fail to converge within a reasonable number of iterations. Hence, we conclude that GMRES (s) might
be too expensive for SHE simulations. Instead, iterative solvers with smaller memory consumption such as BiCGStab [31]
should be used.
9. Numerical results

In the preceding sections we have derived asymptotic memory requirements for large expansion orders L and high num-
bers of spatial degrees of freedom N with L2
 N. In this section we report the CPU times observed from our in-house SHE
simulator running on a single core of a machine with a Core 2 Quad 9550 CPU.

All simulations were carried out for a stationary two-dimensional device on a regular staggered grid with 5 � 50 � 50
nodes in (x,H)-space for various expansion orders. We assumed spherical energy bands and applied the H-transform and
MEDS for stabilization. A fixed potential distribution was applied to the device to obtain comparable results. For self-consis-
tency with the Poisson equation using a Newton scheme, similar results can in principle be obtained by application of the
matrix compression scheme to the Jacobian.
Table 1
Memory requirements for the uncompressed and the compressed system matrix compared to the memory needed
for the unknowns for different expansion orders L on a grid in the three-dimensional (x, H)-space with 5 � 50 � 50
nodes.

L S
P

Q i 	 Ri Unknowns

1 3.7 MB 4.7 MB 0.2 MB
3 28.4 MB 4.7 MB 1.4 MB
5 83.1 MB 4.7 MB 3.5 MB
7 168 MB 4.8 MB 6.6 MB
9 263 MB 4.8 MB 10.7 MB
11 470 MB 4.8 MB 15.7 MB
13 709 MB 4.9 MB 21.6 MB
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Fig. 1. Memory used for the uncompressed and the compressed system matrix for different expansion orders L on a three-dimensional (x,H)-grid with
12.500 nodes.
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First we compared memory requirements for the storage of the system matrix. We extracted the total number of entries
stored in the matrix, multiplied by three to account for row and column indices and assumed 8 bytes per entry. In this way,
the influence of different sparse matrix storage schemes is eliminated. The results in Table 1 and Fig. 1 clearly demonstrate
the asymptotic advantage of our approach: While no savings are observed at L = 1, memory savings of a factor of 18 are ob-
tained already at an expansion order of L = 5. At L = 13, this factor grows to 145. In particular, the memory requirement for
the matrix compression scheme shows only a weak dependence on L and is determined only by the additional memory
needed for the coupling matrices Ri in (26)–(30). With increasing expansion order L, the additional memory requirements
for the compressed scheme grow quadratically with L (because there are (L + 1)2 spherical harmonics of degree smaller or
equal to L), but even at L = 13 the additional memory compared to L = 1 is less than one megabyte. Consequently, the mem-
ory used for the unknowns dominates even for moderate values of L, cf. Fig. 2.

In order to quantify the impact of the matrix compression on the runtime performance of iterative solvers, execution
times for the matrix–vector multiplications are compared in Fig. 3. Execution times for the full system matrix and the con-
densed system matrix, where unknowns associated with odd order spherical harmonics have been eliminated, are depicted.
For the lowest expansion order L = 1, matrix compression does not pay off, the execution times are by a factor of two larger.
This is due to the additional structural overhead of the compressed scheme at expansion order L = 1, where no compression
effect occurs. However, for larger values of L, the matrix compression scheme leads to faster matrix–vector multiplications
with the full system of linear equations as predicted in Section 8. The predicted asymptotic performance gain of a factor
slightly above one can readily be seen.

Comparing execution times for the condensed system, where odd order unknowns have been eliminated in a preprocess-
ing step, the runtime penalty for matrix–vector multiplication is a factor of 15 at L = 1, but in this case there is no compres-
sion effect anyway. At L = 5, the runtime penalty is only a factor of three and drops to slightly above two at L = 13.

As discussed in Section 8, GMRES leads to higher memory requirements than many other Krylov methods such as BiCG-
Stab. A comparison of additional memory required by GMRES (50), GMRES (30), GMRES (10) and BiCGStab is shown in Table 2
and Fig. 4. For GMRES (s), our implementation used s + 1 auxiliary vectors of the same length as the vector of unknowns,
while BiCGStab uses six auxiliary vectors of that size. It can clearly be seen that the memory required by GMRES (50) is
by one order of magnitude larger than the memory needed for the compressed system (i.e. second and third column in Table
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  2  4  6  8  10  12  14R
el

at
iv

e 
M

em
or

y 
fo

r S
ys

te
m

 M
at

rix
 (%

)

Expansion Order L

Standard Scheme
Compressed Scheme

Fig. 2. Memory used for the system matrix in relation to the total amount of memory used (i.e. system matrix, unknowns and right hand side vector).



 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10

Ex
ec

ut
io

n 
tim

e 
(m

s)

Expansion Order L

Standard Scheme
Compressed Scheme

Fig. 3. Comparison of execution times (milliseconds) for matrix–vector multiplication at different expansion orders L for the fully set up system matrix and
the proposed compressed matrix scheme. Both the full system of linear equations and the condensed system with odd order unknowns eliminated in a
preprocessing step are compared.

Table 2
Additional memory requirements of the linear solvers GMRES (s) with different values of s and BiCGStab compared to the memory needed for the unknowns.

L GMRES (50) GMRES (30) GMRES (10) BiCGStab Unknowns

1 10.2 MB 6.2 MB 2.2 MB 1.2 MB 0.2 MB
3 71.4 MB 43.4 MB 15.4 MB 8.4 MB 1.4 MB
5 178.5 MB 108.5 MB 38.5 MB 21.0 MB 3.5 MB
7 336.6 MB 204.7 MB 72.6 MB 39.6 MB 6.6 MB
9 545.7 MB 331.7 MB 117.7 MB 64.2 MB 10.7 MB
11 800.7 MB 486.7 MB 172.7 MB 93.5 MB 15.7 MB
13 1101.6 MB 669.6 MB 237.6 MB 129.6 MB 21.6 MB
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Fig. 4. Additional memory requirements of the linear solvers GMRES (s) with different values of s and BiCGStab compared to the memory needed for the
unknowns.
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1) and BiCGStab. On the other hand, without system matrix compression, the additional memory needed by GMRES (50) is
comparable to the memory needed for the system matrix and is thus less of a concern.

The convergence of iterative solvers strongly depends on the condition number of the system matrix, which can be sub-
stantially improved by preconditioners. Recent publications on SHE [27,17] used a black-box incomplete LU factorization
preconditioner with threshold (ILUT), which requires approximately the same amount of memory than the full system ma-
trix and is thus not attractive for the proposed approach. On the other hand, simpler preconditioners such as a diagonal or a
Jacobi preconditioner do not lead to convergence even for devices under moderate bias. Thus, the construction of good pre-
conditioners taking the structural information in the proposed matrix compression scheme into account is recognized but
postponed to future work.
10. Conclusions

We investigated the coupling structure of the SHE equations and showed the weak coupling of the expansion coefficients.
This guarantees that the total memory requirements for the storage of the system matrix, obtained from a discretization
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with N degrees of freedom in (x,e)-space and SHE order L, is of orderOðNL2Þ in contrast toOðNL4Þ that would be required for a
dense coupling. Since L P 5 is often used in order to obtain accurate results, the memory savings are significant compared to
straightforward implementations.

The matrix compression scheme presented in this work further reduces the memory requirements for the system ma-
trix from order OðNL2Þ to OðN þ L2Þ at only slightly increased execution times for matrix–vector multiplications. While
the huge memory requirements for the storage of the full system matrix prohibited the simulation of three-dimensional
devices so far, our proposed scheme paves the way for such simulations even for sufficiently large expansion order L.
Assuming a 50 � 50 � 50 � 50 grid in (x,H)-space for the simulation of a three-dimensional device, approximately
400 MB of memory is required at lowest expansion order L = 1 for the storage of the unknowns only. This amount is
proportional to (L + 1)2, hence with expansion order L = 9, roughly 10 GB of memory is needed for the storage of the un-
knowns only. Using the proposed matrix compression scheme and BiCGStab as linear solver, this would result in a total
memory footprint of around 60 GB, which is already available on high-end workstations today. Without matrix compres-
sion scheme, the memory needed for the system matrix would then be approximately 1 TB, which is certainly out of
reach on mainstream computers.

The proposed compressed matrix scheme is attractive for parallel computing architectures. While most sparse matrix–
vector multiplications are memory-bandwidth limited on modern computers, the proposed matrix compression scheme
is much more limited by the computational speed. Therefore, we expect that matrix–vector multiplications can considerably
benefit from parallel architectures such as multi-core CPUs and GPUs. This would result in higher speed compared to the full
system matrix setting due to the lower requirements on memory bandwidth.

Furthermore, we showed that the memory requirements of the chosen linear solver affects the total memory footprint for
SHE simulations using the proposed matrix compression scheme much more than in cases where the full matrix is set up. A
comparison between GMRES and BiCGStab shows that a careless choice can increase the total memory consumption by up to
an order of magnitude.

The proposed scheme can be extended to Jacobian matrices arising from couplings of the BTE with, e.g., Poisson’s equation
or from nonlinear iterations due to the inclusion of the Pauli principle. Unfortunately, this further complicates the design of
suitable preconditioners for iterative solvers, which is the subject of future work.
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Appendix A. The Kronecker product

For matrices Q ¼ ðQ i;jÞn;mi;j¼1 2 Rn�m and R 2 Rp�q, the Kronecker product is defined as the block matrix
Q 	 R ¼

Q1;1R Q 1;2R . . . Q 1;m�1R Q 1;mR
Q2;1R Q 2;2R . . . Q 2;m�1R Q 2;mR

..

. ..
. . .

. ..
. ..

.

Q n�1;1R Q n�1;2R . . . Qn�1;m�1R Q n�1;mR
Q n;1R Q n;2R . . . Q n;m�1R Q n;mR

0
BBBBBBB@

1
CCCCCCCA
2 Rnp�mq:
The Kronecker product is bilinear and associative, but not commutative. Moreover, if the matrices Q, R, S and T are such that
the products QS and R T can be formed, there holds
ðQ 	 RÞðS 	 TÞ ¼ ðQSÞ 	 ðRTÞ:
Appendix B. Sparsity of coupling coefficients

To prove the sparsity of v l0 ;m0

l;m and Cl0 ;m0

l;m as stated in Theorem 2, it is sufficient to prove the sparsity for the integrals al0 ;m0

l;m and
bl0 ;m0

l;m as defined in (13) and (14).
We give a proof for the first components ðal0 ;m0

l;m Þ1 and ðbl0 ;m0

l;m Þ1 only, the proof for the second and third components follows
the same arguments and is thus omitted. The spherical harmonics are given by
Yl;mðh;uÞ ¼ Nl;mPjmjl ðcos hÞ �
cosðmuÞ; m > 0;
1; m ¼ 0;
sinðmuÞ; m < 0;

8><
>:
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where Nl,m denotes a suitable normalization constant and Pjmjl is an associated Legendre function. The recurrence relations
used in the following may slightly differ from those given by other authors due to the deliberate choice of an additional
phase factor (�1)m in the definition of Yl,m.

Substitution of the definition of spherical harmonics and splitting the integral leads to
ðal0 ;m0

l;m Þ1 ¼ Nl;mNl0 ;m0

Z p

0
Pjmjl ðcos hÞ sin2 hPjm

0 j
l0
ðcos hÞdh�

Z 2p

0
cosðuÞ �

cosðmuÞ; m > 0
1; m ¼ 0
sinðmuÞ; m < 0

8><
>:

9>=
>;�

cosðm0uÞ; m0 > 0
1; m0 ¼ 0
sinðm0uÞ; m0 < 0

8><
>:

9>=
>;du:
The orthogonality of trigonometric functions shows that ðal0 ;m0

l;m Þ1 vanishes if m0 – m ± 1. Thus, it is sufficient to consider the
case m0 = m ± 1.

First, let jm0j = jmj � 1. Then we write
ðal0 ;m0

l;m Þ1 ¼ Al;m;l0 ;m0

Z p

0
Pjmjl ðcos hÞ sin2 hPjmj�1

l0
ðcos hÞdh ¼ Al;m;l0 ;m0

Z 1

�1
Pjmjl ðlÞð1� l2Þ1=2Pjmj�1

l0
ðlÞdl;
with a constant Al;m;l0 ;m0 depending on l, m, l0 and m0. The recurrence relation
ðlþmÞPm
l�1ðlÞ ¼ ð1� l2Þ1=2Pmþ1

l ðlÞ þ ðl�mÞlPm
l ðlÞ ðB:1Þ
for associated Legendre functions yields
ðal0 ;m0

l;m Þ1 ¼ Al;m;l0 ;m0

Z 1

�1
ðlþ jmj � 1ÞPjmj�1

l�1 ðlÞ � ðl� jmj þ 1ÞlPjmj�1
l ðlÞ

h i
Pjmj�1

l0
dl:
Using the recurrence relation
ð2lþ 1ÞlPm
l ðlÞ ¼ ðl�mþ 1ÞPm

lþ1ðlÞ þ ðlþmÞPm
l�1ðlÞ ðB:2Þ
for the second term, we obtain
ðal0 ;m0

l;m Þ1 ¼ Al;m;l0 ;m0

Z 1

�1
ðlþ jmj � 1ÞPjmj�1

l�1 ðlÞ �
ðl� jmj þ 1Þ

2lþ 1
ðl� jmj þ 2ÞPjmj�1

lþ1 ðlÞ þ ðlþ jmj � 1ÞPjmj�1
l�1 ðlÞ


 �� �
Pjmj�1

l0
dl

¼ Al;m;l0 ;m0 ðlþ jmj � 1Þdl�1;l0 �
ðl� jmj þ 1Þ

2lþ 1
ðl� jmj þ 2Þdlþ1;l0 þ ðlþ jmj � 1Þdl�1;l0
� �� �

:

Therefore, in view of the orthogonality of associated Legendre functions, we have ðal0 ;m0

l;m Þ1 ¼ 0 for l0 – l ± 1.
Next, we consider the case jm0j = jmj + 1. Then
ðal0 ;m0

l;m Þ1 ¼ Bl;m;l0 ;m0

Z p

0
Pjmjl ðcos hÞ sin2 hPjmjþ1

l0
ðcos hÞdh ¼ Bl;m;l0 ;m0

Z 1

�1
Pjmjl ðlÞð1� l2Þ1=2Pjmjþ1

l0
ðlÞdl;
with a constant Bl;m;l0 ;m0 depending on l, m, l0 and m0. Arguing similarly as above, we conclude that l0 = l ± 1 is required for non-
zero ðal0 ;m0

l;m Þ1.
For the term ðal0 ;m0

l;m Þ2 one finds that nonzero values are obtained only if l0 2 {l � 1, l + 1} and m0 2 {�m � 1,�m + 1}. The
coefficient ðal0 ;m0

l;m Þ3 vanishes except for l0 2 {l � 1, l + 1} and m0 = m.
The sparsity of bl0 ;m0

l;m with respect to the indices m and m0 is proved in the same way as for al0 ;m0

l;m . However, proving sparsity
with respect to the indices l and l0 is more cumbersome because of the derivatives in the integrands.

First, let jm0j = jmj � 1. We have
ðbl0 ;m0

l;m Þ1 ¼ Cl;m;l0 ;m0

Z p

0

dPjmjl ðcos hÞ
dh

cos h sin hþ jmjPjmjl ðcos hÞ
" #

Pjmj�1
l0
ðcos hÞdh

¼ Cl;m;l0 ;m0

Z 1

�1
�dPjmjl ðlÞ

dl
lð1� l2Þ1=2 þ jmjPjmjl ðlÞð1� l2Þ�1=2

" #
Pjmj�1

l0
ðlÞdl
with some constant Cl;m;l0 ;m0 . Using the recursion formula
ð1� l2ÞdPm
l ðlÞ
dl

¼ ðlþmÞPm
l�1ðlÞ � llPm

l ðlÞ
to resolve the derivative yields
ðbl0 ;m0

l;m Þ1 ¼ Cl;m;l0 ;m0

Z 1

�1
ll2Pjmjl ðlÞ � ðlþ jmjÞlPjmjl�1ðlÞ þ jmjP

jmj
l ðlÞ

h i
Pjmj�1

l0
ðlÞð1� l2Þ�1=2 dl:
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To use the orthogonality of associated Legendre functions, the term (1 � l2)�1/2 has to be eliminated and the upper index of
associated Legendre functions has to be equal. To this end, we employ the relation
lPm
l ðlÞ ¼ ðl�mþ 1Þð1� l2Þ1=2Pm�1

l ðlÞ þ Pm
l�1ðlÞ
on the first term to obtain
bl0 ;m0

l;m


 �
1
¼ Cl;m;l0 ;m0

Z 1

�1
lðl� jmj þ 1ÞlPjmj�1

l ðlÞð1� l2Þ1=2 � jmjlPjmjl�1ðlÞ þ jmjP
jmj
l ðlÞ

h i
Pjmj�1

l0
ðlÞð1� l2Þ�1=2 dl:
Applying the recursion (B.2) to the first term and
ðlþmÞð1� l2Þ1=2Pm�1
l ðlÞ ¼ Pm

lþ1ðlÞ � lPm
l ðlÞ
to the remaining terms, we find that
bl0 ;m0

l;m


 �
1
¼ Cl;m;l0 ;m0

Z 1

�1

lðl� jmj þ 1Þðl� jmj þ 2Þ
2lþ 1

Pjmj�1
lþ1 ðlÞ þ

lðl� jmj þ 1Þðlþ jmjÞ
2lþ 1

Pjmj�1
l�1 ðlÞ

�

þ jmjðlþ jmj � 1ÞPjmj�1
l�1 ðlÞ

i
Pjmj�1

l0
ðlÞdl

¼ Cl;m;l0 ;m0
lðl� jmj þ 1Þðl� jmj þ 2Þ

2lþ 1
dlþ1;l0 þ

lðl� jmj þ 1Þðlþ jmjÞ þ ð2lþ 1Þjmjðlþ jmj � 1Þ
2lþ 1

dl�1;l0

� �
:

Thus, l = l0 ± 1 is required for nonvanishing ðbl0 ;m0

l;m Þ1.
Next, let jm0j = jmj + 1. Starting from
bl0 ;m0

l;m


 �
1
¼ Dl;m;l0 ;m0

Z p

0

dPjmjl ðcos hÞ
dh

cos h sin h� jmjPjmjl ðcos hÞ
" #

Pjmjþ1
l0
ðcos hÞdh

¼ Dl;m;l0 ;m0

Z 1

�1
�dPjmjl ðlÞ

dl
lð1� l2Þ1=2 � jmjPjmjl ðlÞð1� l2Þ�1=2

" #
Pjmjþ1

l0
ðlÞdl
for some constant Dl;m;l0 ;m0 , we arrive similarly as above at
bl0 ;m0

l;m


 �
1
¼ Dl;m;l0 ;m0

Z 1

�1
ll2Pjmjl ðlÞ � ðlþ jmjÞlPjmjl�1ðlÞ � jmjP

jmj
l ðlÞ

h i
Pjmjþ1

l0
ðlÞð1� l2Þ�1=2 dl:
With the recurrence relation
ðlþmþ 1ÞlPm
l ðlÞ ¼ ðl�mþ 1ÞPm

lþ1ðlÞ þ ð1� l2Þ1=2Pmþ1
l ðlÞ
applied to the first and the second term we find that
bl0 ;m0

l;m


 �
1
¼ Dl;m;l0 ;m0

Z 1

�1

l
lþ jmj þ 1

ð1� l2Þ1=2lPjmjþ1
l ðlÞ � ð1� l2Þ1=2Pjmjþ1

l�1 ðlÞ
�

þ l
l� jmj þ 1
lþ jmj þ 1

lPjmjlþ1ðlÞ � lPjmjl ðlÞ
�

Pjmjþ1
l0
ðlÞð1� l2Þ�1=2 dl:
The recurrence relations (B.2) applied to the first term and (B.1) applied to the last two terms yields
bl0 ;m0

l;m


 �
1
¼ Dl;m;l0 ;m0

Z 1

�1

l
lþ jmj þ 1

l� jmj
2lþ 1

Pjmjþ1
lþ1 ðlÞ þ

l
lþ jmj þ 1

lþ jmj þ 1
2lþ 1

Pjmjþ1
l�1 ðlÞ � Pjmjþ1

l�1 ðlÞ
�

þ l
lþ jmj þ 1

Pjmjþ1
lþ1 ðlÞ

�
Pjmjþ1

l0
ðlÞdl ¼ Dl;m;l0 ;m0

l
lþ jmj þ 1

l� jmj
2lþ 1

þ 1
� �

dlþ1;l0 þ
l

2lþ 1
� 1

� �
dl�1;l0

� �
:

Summarizing, l0 2 {l � 1, l + 1} and m0 2 {m + 1,m � 1} is required for nonzero ðbl0 ;m0

l;m Þ1.
The coefficient ðbl0 ;m0

l;m Þ2 requires l0 2 {l � 1, l + 1} and m0 2 {�m + 1,�m � 1} in order to have nonzero values, while
ðbl0 ;m0

l;m Þ3 – 0 requires l0 2 {l � 1, l + 1} and m0 = m. Hence, the sparsity structure of bl0 ;m0

l;m is the same as that of al0 ;m0

l;m .

Appendix C. Wigner 3jm symbols

The symbol
j1 j2 j3

m1 m2 m3

� �
ðC:1Þ
with parameters being either integers or half-integers is called a Wigner 3jm symbol arising in coupled angular momenta be-
tween two quantum systems. It is zero unless all of the following selection rules apply:
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1. m1 2 {�jj1j , . . .jj1j}, m2 2 {�jj2j , . . .jj2j} and m3 2 {�jj3j , . . .jj3j},
2. m1 + m2 + m3 = 0,
3. jj1 � j2j 6 j3 6 j1 + j2.

The connection with spherical harmonics is the following:
Z
X

Yl1 ;m1 Yl2 ;m2 Yl3 ;m3 dX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4p

r
�

l1 l2 l3
0 0 0

� �
�

l1 l2 l3

m1 m2 m3

� �
;

where the left hand side is often termed Slater integral.
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