
PHYSICAL REVIEW B 83, 245305 (2011)

Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires
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It is suggested that low dimensionality can improve the thermoelectric (TE) power factor of a device, offering
an enhancement of the ZT figure of merit. In this paper, the atomistic sp3d5s∗-spin-orbit-coupled tight-binding
model and the linearized Boltzmann transport theory is applied to calculate the room-temperature electrical
conductivity, the Seebeck coefficient, and the power factor of narrow one-dimensional silicon nanowires (NWs).
We present a comprehensive analysis of the TE coefficients of n-type and p-type NWs of diameters from 12 nm
down to 3 nm, in [100], [110], and [111] transport orientations at different carrier concentrations. We find that
the length scale at which the influence of confinement on the power factor can be observed is at diameters below
7 nm. We show that, contrary to the current view, the effect of confinement and geometry on the power factor
mostly originates from changes in the conductivity, which is strongly affected, rather than the Seebeck coefficient.
In general, enhanced scattering at these diameter scales strongly degrades the conductivity and power factor of
the device. However, we identify cases for which confinement largely improves the channel’s conductivity,
resulting in ∼2× to 3× power factor improvements. Our results may provide guidance in the design of efficient
low-dimensional TE devices.
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I. INTRODUCTION

The ability of a material to convert heat into electricity
is measured by the dimensionless figure of merit ZT =
σS2T/(ke + kl), where σ is the electrical conductivity, S
is the Seebeck coefficient, and ke and kl are the electronic
and lattice parts of the thermal conductivity, respectively.
Thermoelectric (TE) devices have traditionally found use
only in niche applications for reasons of low efficiency
and high prices. The parameters that determine ZT are
interdependent such that ZT remains low. In addition, some
of the best TE materials are rare-earth or toxic materials.
Recently, however, low-dimensional TE devices based on
one-dimensional (1D) nanowires (NWs), thin films, as well
as 1D/2D (two-dimensional) superlattices1–6 and commonly
available materials, such as Si and Ge have been realized.
Low-dimensional materials offer the capability of improved
TE performance. The length scale offers a degree of freedom
in engineering S, σ , and kl through partial control over the
dispersions and scattering mechanisms of both electrons and
phonons. As a result, enhanced ZT values in nanostructures
compared to their bulk material’s values were achieved.

Enhanced TE performance was recently demonstrated for
silicon NWs.1,2 Although bulk silicon has a ZTbulk ∼ 0.01,
the room temperature ZT of silicon NWs was experimentally
demonstrated to be ZT ∼ 0.5. Most of this improvement
has been a result of suppressed phonon conduction (kl) from
enhanced boundary scattering.1,7 It has also been suggested,
however, that low dimensionality can be beneficial for increas-
ing the power factor (σS2) of the device as well.8–11 Hicks and
Dresselhaus pointed out that channels of lower dimensionality
can potentially improve the Seebeck coefficient.8 The sharp
features in the low-dimensional density of states DOS(E)
function can improve S, as this quantity is proportional to
the energy derivative of DOS(E). Mahan and Sofo have further
shown that TE energy conversion through a single energy level
(zero-dimensional channel) can reach the Carnot efficiency
when the lattice part of the thermal conductivity is zero.12

Other theoretical studies, focusing on the effect of band-
structure and utilizing ballistic transport, have indeed verified
benefits to the power factor from dimensionality.11,13–15 The
magnitude of these benefits, however, was only modest <2×.
Vo et al.16 have considered ab initio calculations and linearized
Boltzmann transport theory under the constant relaxation time
approximation to investigate the TE properties of Si NWs
of 1.1 and 3 nm in diameter. Although these diameters are
possibly too small for any practical considerations, they have
shown that ZT values around unity can be achieved if the
thermal conductivity is reduced below kl = 2 W/mK.

In this paper, we calculate the TE coefficients (σ , S,
and ke) of Si NWs of larger diameters up to D = 12 nm.
We employ atomistic calculations for electronic structures and
linearized Boltzmann theory12,17 for transport. We use the full
energy dependence for the relaxation times of the scattering
mechanisms considered. We present a comprehensive analysis
of the TE coefficients of cylindrical NWs in terms of: (i) n type
and p type, (ii) of diameters from D = 3 nm up to D = 12 nm,
(iii) in [100], [110], and [111] transport orientations, and
(iv) for different carrier concentrations. Using experimentally
measured lattice thermal conductivity values, we estimate
the NWs’ ZT. The focus of this paper is on the effects of
geometry on the TE power factor through electronic structure
variations. Therefore, most calculations are performed at room
temperature, but we also show that the main conclusions are
valid for other temperatures as well.

We show that, at room temperature, S can be improved for
NWs with diameters below ∼7 nm.11 However, at these diam-
eter scales, the scattering mechanisms, and especially surface
roughness scattering (SRS), become increasingly important
and significantly reduce the power factor. This is the case for
all n-type NWs and [100] p-type NWs. Interestingly, however,
in p-type [111] and [110] NWs, diameter scaling improves
the channels’ conductivity18,19 and results in enhanced power
factors. Our results indicate that the quantity that controls im-
provements and variations in the power factor is the electrical

245305-11098-0121/2011/83(24)/245305(16) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.245305


NEOPHYTOS NEOPHYTOU AND HANS KOSINA PHYSICAL REVIEW B 83, 245305 (2011)

conductivity; whereas, the changes in the Seebeck coefficient,
as a result of diameter scaling or transport orientation, are
small, contrary to current thinking, and contrary to results
deduced from ballistic calculations.11,15

The paper is organized as follows: In Sec. II, we describe
the numerical approach: (i) the tight-binding (TB) model and
(ii) the derivation of the scattering rates from linearized
Boltzmann theory and the atomistic dispersions. In Sec. III,
we perform an analysis of the TE coefficients of n-type NWs
and, in Sec. IV, of p-type NWs. In Sec. V, we discuss
the effect of temperature, calculate an estimate for the ZT
figure of merit, and discuss the possible implications of NW
surface reconstruction on our results. Finally, in Sec. VI, we
conclude.

II. APPROACH

A. Atomistic modeling

To obtain the bandstructure of the NWs both for electrons
and for holes for which spin-orbit coupling is important, a
well-calibrated atomistic model is used. The nearest-neighbor
sp3d5s∗-SO TB model18,20–22 captures all the necessary band
features, and in addition, is robust enough to computationally
handle larger NW cross sections as compared to ab initio
methods. As an indication, the unit cells of the NWs considered
in this paper contain from ∼150 to ∼5500 atoms, and the
computation time needed varies from a few hours to a few
days for each case on a single CPU. Each atom in the NW
unit cell is described by 20 orbitals, including spin-orbit
coupling. The model itself and the parametrization used20 have
been extensively calibrated to various experimental data of
various natures with excellent agreement, without any material
parameter adjustments.23–27 The model provides a simple
but effective way for treatment of the surface truncation by
hydrogen passivation of the dangling bonds on the surfaces.28

What is important for this paper is that the Hamiltonian is
built on the diamond lattice of silicon, and the effect of
different orientations is automatically included, which impacts
the interaction and mixing of various bulk bands. We consider
cylindrical silicon NWs in three different transport orientations
[100], [110], and [111] and diameters varying from D = 12 nm
down to D = 3 nm. Strain fields29,30 as well as relaxation of
the NW surfaces are neglected in this paper, but in Sec. V, we
briefly discuss the possible implications of surface relaxation
on our results.

The strong influence of bandstructure in the transport
properties of narrow NW and ultra-thin-body channels is
stressed in our previous works. For n-type NWs, we previously
showed that the effective masses change as the diameter
is scaled below 7 nm, even up to 90% depending on the
orientation.18 More importantly, for p-type NWs we showed
that the carrier velocities can change by a factor of ∼2× with
confinement (∼4× variations in m∗), again depending on the
orientation. In this case, the subband curvature is, in addition,
sensitive to electrostatic potential variations in the cross section
of the NWs, an effect that cannot be captured with simplified
effective mass electronic structure models.19,31,32 This behav-
ior is attributed to the strong anisotropy of the heavy-hole
band. Indeed, the origin of most of these features can be traced

back to and understood from the bandstructure of bulk Si.
These dispersion variations will affect the transport properties
of the NWs but can also provide additional degrees of freedom
for performance optimization. An electronic structure model
capable of capturing such effects is, therefore, essential in
investigating the influence of confinement in ultranarrow NW
channels.

B. Boltzmann theory

In linearized Boltzmann formalism, the electrical conduc-
tivity (σ ), the Seebeck coefficient (S), and the electronic part
of the thermal conductivity (ke) are defined as

σ = q2
0

∫ ∞

E0

dE

(
−∂f0

∂E

)
� (E), (1a)

S = q0kB

σ

∫ ∞

E0

dE

(
−∂f0

∂E

)
� (E)

(
E − EF

kBT

)
, (1b)

κ0 = k2
BT

∫ ∞

E0

dE

(
−∂f0

∂E

)
� (E)

(
E − EF

kBT

)2

, (1c)

κe = κ0 − T σS2. (1d)

The transport distribution function � (E) is defined as12,17

�(E) = 1

A

∑
kx ,n

v2
n(kx)τn(kx)δ[E − En(kx)]

= 1

A

∑
n

v2
n(E)τn(E)gn

1D(E), (2)

where vn (E) = 1
h̄

∂En

∂kx
is the bandstructure velocity, τn (kx) is

the momentum relaxation time for a state in a specific kx point
and subband n, and

gn

1D
(En) = 1

2πh̄

1

vn (E)
(3)

is the DOS for 1D subbands (per spin).
The focus of this paper is on the effects of confinement and

orientation on the TE power factor through the modifications
of the electronic structure. Since the focus is geometry, all
calculations are performed at room temperature, and the effect
of phonon drag in the calculation of the Seebeck coefficient
not considered in Eq. (1b). Phonon drag is primarily a
low-temperature effect with temperature dependence T −9/2

(Refs. 33 and 34) and has a significant contribution to
the thermopower at T < 50 K. At room temperature, its
contribution is insignificant as discussed in Refs. 33–36. In
Sec. V, we discuss the role of temperature and show that the
trends and conclusions we describe at room temperature still
hold at different temperatures as well.

C. Scattering rate calculation

The transition rate Sn,m(kx,k
′
x) for a carrier in an initial state

kx in subband n to a final state k′
x in subband m is extracted

from the atomistic dispersions and waveform overlaps using
Fermi’s golden rule37,38 as

Sn,m(kx,k
′
x) = 2π

h̄

∣∣Hm,n
k′
x ,kx

∣∣2
δ[Em(k′

x) − En(kx) − 	E]. (4)
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The calculation of the relaxation times involves an integral
equation,39–42

1

τn(kx)
=

∑
m,k′

x

Sn,m(kx,k
′
x)

(
1 − vm(k′

x)τm(k′
x)fm(k′

x)

vn(kx)τn(kx)fn(kx)

)
.

(5)

While self-consistent solutions of this may be found, this
is computationally very expensive, especially for atomistic
calculations. Therefore, it is common practice to simplify
the problem. For isotropic scattering [acoustic deformation
potential (ADP), optical deformation potential (ODP), and
intervalley scattering (IVS)], the term in the parentheses
reduces to unity upon integration over the solid angle due
to symmetry considerations (Snm is angle independent). In
1D, angle ϑ can take only two values: ϑ = 0 and ϑ = π.

Therefore, the momentum relaxation rates are equal to the
scattering rates. This holds for any bandstructure. For elastic
intravalley intra-subband scattering (even if anisotropic, i.e.,
SRS or impurity scattering) and under the parabolic band
assumption, the term simplifies to

1 − vm(k′
x)τm(k′

x)fm(k′
x)

vn(kx)τn(kx)fn(kx)
= 1 − vm(k′

x)

vn(kx)

= 1 − h̄vm(k′
x)/m∗

m

h̄vn(kx)/m∗
n

= 1 − |p′
x |

|px | cos ϑ, (6)

which is the usual term used in the calculation of the
momentum relaxation times.38,39 Although this is strictly valid
for intra-subband transitions only, it is often used for inter-
subband transitions as well [assuming a weak kx dependence
of τ (kx) (Ref. 41)]. In general, however, one should solve
the full integral equation. As mentioned by Fischetti et al. in
Refs. 40 and 41, however, often sufficiently accurate results
are obtained using the above approximations, without the need
to evaluate numerically demanding integral equations. In this
paper, we calculate the relaxation times by

1

τn(kx)
=

∑
m,k′

x

Sn,m(kx,k
′
x)

(
1 − vm(k′

x)

vn(kx)

)
. (7)

The Fermi functions in Eq. (5) cancel for elastic processes.
For inelastic isotropic processes (as all the inelastic processes
we consider) the term in parentheses reduces to unity anyway
after integration over kx . Although admittedly in 1D, τ (kx) in
the numerator and denominator of Eq. (5) can vary with kx , we
still drop it as is commonly done in the literature.43–46 This will
only affect the SRS and impurity-scattering results at larger
diameters where inter-subband transitions can be important,
but at larger diameters, the electronic structure approaches
bulk-like, and the variation of τ (kx) with kx is smaller. Indeed,
our mobility calculations at larger diameters approach bulk
behavior for all the scattering mechanisms described.

The matrix element between a carrier in an initial state kx

in subband n and a carrier in a final state k′
x in subband m, is

computed using the scattering potential US(�r) as

H
m,n
k′
x ,kx

= 1

�

∫ ∞

−∞
F ∗

m( �R)e−ik′
xxUS(�r)Fn( �R)eikxxd2Rdx, (8)

where the total wavefunction of a state is decomposed into
a plane wave eikxx in the x direction and a bound state

Fv( �R) in the transverse plane �R and � is the normalization
volume.

1. Phonon scattering

In the case of phonon scattering, we extend the approach
described in Ref. 38 for bulk and 2D carriers to 1D carriers.
The perturbing potential is defined as

US(�r) = A�qK�qe±i(�q.�r−ωt), (9)

where A�q is associated with the lattice vibration amplitude,
K�q is associated with the deformation potential, and the
momentum transfer is �q · �r = �Q · �R + qxx. In this case, the
matrix element is

H
m,n
k′
x ,kx

=
∫ ∞

−∞

F ∗
m( �R)√

A

e−ik′
xx

√
Lx

A�qK�qe±i �Q· �Re±iqxx

×Fn( �R)√
A

eikxx

√
Lx

d2Rdx, (10)

where Lx is the length of the unit cell. The inte-
gral over the transport direction x becomes a Kronecker-
delta expressing momentum conservation in the transport
direction,

H
m,n
k′
x ,kx

= I
m,n
k′
x ,kx

( �Q)A�qK�qδk′
x ,kx±qx

(11)

with

I
m,n
k′
x ,kx

( �Q) = 1

A

∫
R

ρ
m,n
k′
x ,kx

( �R)e±i �Q· �Rd2R, (12a)

ρ
m,n
k′
x ,kx

( �R) = Fm,k′
x
( �R)∗Fn,kx

( �R). (12b)

When integrating and taking the square of the matrix
element, the integral for the form factor is also evaluated as

∣∣Im,n
k′
x ,kx

∣∣2

= 1

A2

∫
R

d2R

∫
R′

d2R′ρm,n
kx ′,kx

( �R)∗ρm,n
k′
x ,kx

( �R)e±i �Q·( �R− �R′).

(13)

The summation over the lateral momentum before substi-
tution into Eq. (7) can be performed as

∑
k �R

∣∣Im,n
k′
x ,kx

∣∣2 = A

4π2

1

A2

∫
Q

d2Qe±i �Q·( �R− �R′)

×
∫

R

d2R

∫
R′

d2R′ρm,n
k′
x ,kx

( �R)∗ρm,n
k′
x ,kx

( �R)

= A

∫
R

∣∣∣∣ρ
m,n
k′
x ,kx

( �R)

A

∣∣∣∣
2

d2R = A

A
m,n
k′
x ,kx

. (14)

Here, 1/A
m,n
k′
x ,kx

has units of m−2. For computational effi-
ciency of the calculation of the form factor overlap, on each
atom, we add the probability density of the components of
each multi-orbital wavefunction and afterward, perform the
final/initial state overlap multiplication. In such a way, we
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approximate the form factor components of a lattice atom at a
specific location R0 by

∣∣ρm,n
k′
x ,kx

∣∣2 =
∑

α

F α
n,kx

F α∗
m,k′

x

∑
α

F α
n,kx

F α∗
m,k′

x

≈
∑

α

F α
n,kx

F α∗
n,kx

∑
α

F α
m,k′

x
F α∗

m,k′
x

=
∑

α

∣∣Fα
n,kx

∣∣2 ∑
α

∣∣Fα
m,k′

x

∣∣2 ≡ ∥∥Fn,kx

∥∥2∥∥Fm,kx ′
∥∥2

,

(15)

where α runs over the TB orbitals of a specific atom. This
computes the overlaps using the probability density of each
state, as in a single orbital (i.e., effective mass) model, although
we still keep the kx dependence of the wave functions. Indeed,
our numerical overlaps agree with the analytical expressions
for the wave-function overlaps if one assumes sine/cosine
wave functions and parabolic bands, which can be derived
to be 1

Anm
= 9

4A
for intraband and 1

Anm
= 1

A
for interband

transitions.13,38

The approximation in Eq. (15) is important because it
reduces the memory needed in the computation by 20×,
allowing simulations of large NW cross sections with only
minimal expense in accuracy. Even after this simplification,
the storage of the probability density for the larger diameter
NWs requires several gigabytes of memory. It would have been
computationally prohibitive to perform the calculations for the
larger diameter NWs using the actual wave functions, at least
on a single CPU.

The transition rate for phonon scattering is then given by

Sn,m(kx,k
′
x) = 2π

h̄

∣∣Im,n
k′
x ,kx

∣∣2|K�q |2|A�q |2δk′
x ,kx±qx

× δ[Em(k′
x) − En(kx) ± h̄ωph], (16)

where |A�q |2 = 1
�

h̄(Nω+ 1
2 ∓ 1

2 )
2ρωph

ρ is the mass density, and Nω

is the number of phonons given by the Bose-Einstein
distribution.

The relaxation rate of a carrier in a specific subband n as a
function of energy is then given by

1

τn
ph(E)

= π

h̄

(
Nω + 1

2 ∓ 1
2

)
ρh̄ωph

×
⎡
⎣ 1

Lx

∑
m

|K�q |2
A

kxk′
x

nm

δk′
x ,kx±qx

δ[Em(k′
x)−En(kx) ± h̄ωph]

×
(

1 − vm(k′
x)

vn(kx)

)⎤
⎦, (17)

where h̄ωph is the phonon energy, and we have used �= ALx .
For acoustic phonon scattering (ADP or IVS), it holds that
|K�q |2 = q2D2

ADP, whereas for optical phonon scattering (ODP
for holes, IVS for electrons) it holds that |K�q |2 = D2

O,

where DADP and D0 are the scattering deformation potential
amplitudes. For IVS in the conduction band, we include

all relevant g- and f-processes. Specifically for elastic ADP
scattering, after applying the equipartition approximation, the
relaxation rate becomes

1

τn
ADP

(E)
= 2π

h̄

D2
ADPkBT

ρυ2
s

⎡
⎣ 1

Lx

∑
m,k′

x

1

A
kxk′

x
nm

δk′
x ,kx±qx

× δ[Em(k′
x) − En(kx)]

(
1 − vm(k′

x)

vn(kx)

)⎤
⎦, (18)

where vs is the sound velocity in Si.

2. Surface roughness scattering

For SRS, we assume a 1D exponential autocorrelation
function47 for the roughness given by

〈δ(x)δ(x ′)〉 = 	2
rmse

−√
2|x−x ′ |/LC , (19)

with 	rms = 0.48 nm and LC = 1.3 nm.46 Surface roughness
is assumed to cause a band-edge shift. The scattering strength
is derived from the shift in the band edges with quantization
	EC,V

	D
.48,49 The transition rate is derived as

SSRS
n,m (kx,k

′
x) = 2π

h̄

(
q0

	EC,V

	D

)2

×
(

2
√

2	2
rmsLC

2 + q2
xL

2
C

)
δ(Em(k′

x) − En(kx)),

(20)

where qx = kx − k′
x . This SRS model is more simplified than

the ones described in Refs. 46,50,51, and 52 that account for
additional Coulomb effects, the wavefunction deformation at
the interface, and the position of electrons in the channel. In
this paper, however, we ignore these effects since they only
cause quantitative changes in our results. We assume that
they are lumped into an enhanced roughness 	rms. Qualitative
trends in this paper mostly originate from geometry-induced
electronic structure variations. In addition, we only consider
channels with flat potential in their cross section, in which
case, the probability density is mostly concentrated in the
middle of the channel and is relatively flat near the interface,31

which can partially justify our approximation. As described
by various authors, the band-edge variation is the dominant
SRS mechanism in ultrascaled channels.46,48,49,53,54 In Refs. 46
and 49, it was shown that that the SRS-limited low-field
mobility in ultrathin nanostructures followed a L6 behavior,
where L was the confinement length scale, originating from
the subband shift due to quantization.

3. Impurity scattering

Assuming the x direction to extend to infinity, the scattering
potential for screened Coulomb ionized impurities is given by

US(�r) = q2
0

4πκsε0

e−
√

( �R− �R′)2+x2/LD√
( �R − �R′)2 + x2

, (21)
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where �R is the position of an electron in the 2D cross section
at x = 0, feeling the influence of an impurity at (x, �R′). The
screening length LD is given by

LD =
√

κsε0kBT

q2
0n

−1/2(ηF )

−3/2(ηF )
, (22)

where α(ηF ) is the Fermi-Dirac integral of order α and n is
the carrier concentration. The matrix element for an impurity-
electron scattering then becomes

H
m,n
k′
x ,kx

( �R′) =
∫

R

∥∥Fn,kx
( �R)

∥∥
√

A

×
⎛
⎝ 1

Lx

∫ ∞

−∞

q2
0eiqxx

4πκsε0

e−
√

( �R− �R′)2+x2/LD√
( �R − �R′)2 + x2

dx

⎞
⎠

×
∥∥Fm,k′

x
( �R)

∥∥
√

A
d2R (23)

where the expression in parenthesis is the Green’s function
of the infinite channel device. For a cylindrical channel, the
expression in parentheses is the modified Bessel function of the
second kind of order zero, K0(q, �R′).46,55–57 Again, as in the
case of phonon scattering, we have used the probability density
on each atomic site instead of the actual wave functions, which
largely reduces the computational complexity.

The total transition rate due to impurity scattering is
computed after taking the square of the matrix element,
multiplying by the number of impurities in the normalized
cross-sectional area of the NW in the length of the unit cell
(NILx), and integrating over the distribution of impurities in
the cross-sectional area of the NW (over �R′). The impurities
are assumed to be uniformly distributed on the atomic lattice
points. The transition rate is then given by

S imp.
n,m (kx,k

′
x) = 2π

h̄

(∫
R′

(NILx)
∣∣Hm,n

k′
x ,kx

( �R′)
∣∣2

d2R′
)

×δ[Em(k′
x) − En(kx)]. (24)

D. General scattering considerations

1. Scattering state selection

Elastic- and inelastic-scattering processes are considered.
We consider bulk phonons, and bulk Si scattering “selection
rules”. For n-type NWs, the elastic processes (elastic phonons,
SRS, impurity scattering) are only treated as intravalley,
whereas, inelastic ones (inelastic phonons) are only treated
as IVS. Although all valleys in the electronic structure of
bulk Si collapse from three-dimensional (3D) to 1D k-space in
our calculations, we carefully chose the final scattering states
for each event such that we follow the bulk processes. For
inelastic transitions, all six f- and g-type processes in Si are
included.38,58 For p type, we consider ADP and ODP processes,
which can be intraband and interband as well as intravalley and
intervalley.

2. Bulk vs confined phonons

The full dispersion of confined phonons is neglected.
Bulk phonons provide an ease of modeling and allow

for understanding the effects on bandstructure on the TE
coefficients, still with good qualitative accuracy in the results.
Spatial confinement mostly affects acoustic phonons by
“bending” of the acoustic modes, which results in lower
than the bulk effective group velocity.59 Optical phonons are
not affected significantly by confinement.60,61 Such effects,
however, will only affect our results quantitatively (and,
as we show below, only slightly), whereas, the qualitative
behavior, which originates from the influence of geometry on
bandstructure will not be affected. As described by several
authors, the effect of phonon confinement on the mobility for
the thinnest NWs examined in this paper can be on the order of
10%–20% (further reduction in mobility) and declines fast as
the diameter increases.43–45,60 Especially in the case of p-type
channels, studies have shown that using confined or bulk
phonons makes very little difference in mobility calculations.62

Similar studies on GaAs NWs also indicated the same result.63

These observations, however, strongly depend on the boundary
conditions one uses for the calculation of the confined phonon
modes, which introduces an additional uncertainty.43,44,60

The deformation potential parameters we use are the
same as in Ref. 38, with the exceptions of Dholes

ODP =
13.24 × 1010 eV/m,Dholes

ADP = 5.34 eV, and Delectrons
ADP = 9.5 eV

from Refs. 37,43, and 44, which are more relevant for
NWs. These are higher than the bulk values.38 It is com-
mon practice to employ larger electron-phonon deformation
potential values to explain phonon-limited transport trends
in nanostructures,46,64–66 which could partially account for
phonon confinement effects. Buin and co-workers43,44 calcu-
lated the mobility of NWs up to D = 3 nm using the same TB
model and both confined and bulk phonons. In this paper, by
using the same parameters, we were able to benchmark our
results for mobility for the D = 3 nm NW bulk phonon case
with good agreement, before extending to larger diameters.
As discussed in Refs. 43 and 44, however, the most accurate
deformation potentials for NWs may finally be obtained by
comparing mobility with experimental data,43,64,65 which, for
NWs at this time, are sparse. Different sets of parameters will
indeed change the magnitude of the phonon-limited results, in
particular, that of the electrical conductivity. The TE coefficient
trends with diameter and orientation, however, will not be
affected.

3. Strength of each scattering mechanism

Clearly, the presence of additional scattering mecha-
nisms (interface roughness scattering and especially impu-
rity scattering at high impurity concentrations) also lim-
its the conductivity, and the relative effect of phonons
and especially acoustic phonon confinement on the total
conductivity will be even smaller.60 This is illustrated in
Table I, which reports the percentage contributions to the total
scattering rate of the four different scattering mechanisms
separately (columnwise): ADP (long wavelength intravalley
acoustic), IVS (intervalley, inelastic), SRS, and impurity
scattering. The results are for the narrowest D = 3 nm
n type, [100] NW, for which the effect of acoustic phonon
confinement will be the strongest. The rows show cases of
different scattering situations. The individual contributions
are extracted by weighting each energy-dependent relaxation
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TABLE I. The percentage of the separate contributions of the
individual scattering mechanisms to the total relaxation rate of the
n-type, [100], D = 3 nm NW. The different scattering mechanisms are
shown columnwise. Different combinations of scattering conditions
are shown rowwise. Phonon scattering is always included, whereas,
SRS and impurity scattering are gradually added. In the first row,
only phonon scattering is considered. 	1

rms corresponds to 	rms =
0.24 nm, and 	2

rms corresponds to 	rms = 0.48 nm (the one used
throughout the paper). n1

0 corresponds to impurity concentration n0

= 1018/cm3, and n2
0 corresponds to impurity concentration n0 =

1019/cm3 (the one used throughout the paper).

ADP IVS SRS Impurity

(1)	rms = 0, n0 = 0 49 51

(2)	1
rms, n0 = 0 17 18 65

(3)	2
rms, n0 = 0 6 6 88

(4)	1
rms, n1

0 6 6 23 65

(5)	2
rms, n1

0 4 4 54 38

(6)	1
rms, n2

0 4 4 14 78

(7)	2
rms, n2

0 3 3 38 56

rate by the Fermi distribution and integrating over all energy
(carrier concentration n = 1018/cm3 is assumed for placing
the Fermi level for rows 1–5, and n = 1019/cm3 is assumed for
rows 6 and 7). Phonon scattering is always included, whereas,
SRS and impurity scattering are gradually added. The first row
shows that, if only phonon scattering is considered, the effect of
ADP and IVS are almost equal. When SRS is included (second
and third rows), most of the contribution to the relaxation rate
originates from SRS. For roughness 	1

rms = 0.24 nm (second
row), the contribution of the ADP scattering to the total
scattering rate is 17% and drops to 6% when 	rms increases
to 	2

rms = 0.48 nm (the one used throughout the paper). Once
impurity scattering is considered (assuming n0 = 1018/cm3)
in the fourth and fifth rows under weak and stronger SRS,
respectively, then the contribution of ADP drops to 6% and
4%. In rows 6 and 7, we increase the impurity concentration to
n0 = 1019/cm3 (the one used throughout the paper). The ADP
contribution drops even further to only 4% and 3% for the cases
of weak and stronger SRS. Impurity scattering at such high
concentrations dominates the scattering processes. Indeed, this
is in agreement with results based on impurity scattering in
bulk Si where it is well known that the mobility drops by almost
an order of magnitude from the phonon-limited value at such
high concentrations.67 The main point is that SRS and impurity
scattering dominate the scattering rates. The contribution of
acoustic phonons to the total scattering rate is not large once
these two mechanisms are considered. Therefore, using bulk
phonons for simplicity instead of confined phonons might
slightly overestimate our conductivity results, but it would
not alter the qualitative trends we present and the conclusions
of this paper.

We note that similar atomistic studies that couple semiem-
pirical TB (or density functional theory) to Boltzmann trans-
port are also discussed in the literature for NWs of smaller
diameters, fewer scattering processes, or different channel
structures and materials.16,44,68,69 In this paper, we focus on
the effect of dimensionality and geometry, how it influences

the electronic structure, and through this, the TE coefficients.
We consider relatively large diameters up to D = 12 nm in
order to identify the transition of the TE power factor from
3D-bulk-like (D = 12 nm) to 1D-like behavior (D = 3 nm),
since the electronic structure of Si at D = 12 nm is already
almost bulk-like. We have made several approximations when
computing the scattering rates, but we believe that the effect
of these on the results will only be quantitative, since any
qualitative behavior is mostly electronic structure related.

III. n-TYPE NW TE COEFFICIENTS

In this section, a comprehensive analysis of the TE coeffi-
cients in n-type NWs of different orientations and diameters
is performed.

A. n-type NWs: Phonon-limited TE coefficients

Since the Seebeck coefficient is proportional to the energy
derivative of the DOS, it has been suggested that low-
dimensional channels, with sharp features in their energy
DOS(E) function, would be beneficial for TE devices.8,9

On the other hand, the electrical conductivity degrades in
nanostructures due to stronger phonon scattering and enhanced
SRS. The two processes act inversely proportional in defining
the power factor σS2. A careful analysis of the two quantities is
needed to determine whether benefits to the power factor σS2

can be expected from ultranarrow low-dimensional materials.
Figure 1 shows the TE coefficients σ , S, and σS2

of n-type NWs in the [100] (blue), [110] (red), and [111]
(green) transport orientations for D = 3 nm (solid lines) and
D = 12 nm (dashed lines) as a function of the electron con-
centration. In this case, only phonon scattering is considered.
Further on, we will also consider the effect of SRS and impurity
scattering. Figure 1(a) shows the conductivity of the NWs. At
the same carrier concentration, the conductivity of the NWs
with the smaller diameter D = 3 nm, is reduced from that of
the D = 12 nm diameter NWs.

Again, comparing at the same carrier distribution, the
Seebeck coefficient in Fig. 1(b) increases as the diameter
reduces. For smaller diameters, some orientation dependence
is observed due to the different electronic structures of the
NWs. This anisotropy is minimized for larger diameters both
for the conductivity and especially for the Seebeck coefficient.
Vo et al.16 have also observed some orientation dependence.
However, the orientation dependence, in all cases, is small
to make a strong case for a preferential design direction for
n-type NW TE devices.

Figure 1(c) shows the power factor of the n-type NWs. The
trends are similar for NWs in all transport orientations. The
power factor for all D = 3 nm NWs is reduced compared to
the power factor for the D = 12 nm NWs except for very
high carrier concentrations, following the trend of electrical
conductivity shown in Fig. 1(a). Some orientation dependence
can be observed, following the same order and relative
magnitude as the conductivity in Fig. 1(a). It is evident
from this, that the effect of the electrical conductivity is
stronger in influencing the power factor than that of the
Seebeck coefficient. Therefore, although narrower NWs can
be beneficial to the Seebeck coefficient, thinning the diameter
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FIG. 1. (Color online) TE coefficients for n-type NWs in [100]
(blue), [110] (red), and [111] (green) transport orientations for
diameters D = 3 nm (solid lines) and D = 12 nm (dashed lines) vs
carrier concentration. (a) The electrical conductivity. (b) The Seebeck
coefficient. (c) The power factor. Only phonon scattering (ADP and
IVS) is considered.

has a stronger degrading effect on the conductivity due to
enhanced scattering, and the power factor is overall reduced.

The difference in the behavior of the NWs of different
diameter and orientation in both σ and S originates from the
position of the Fermi level with respect to their band edge
EC − EF . The closer EC resides to EF , the higher the con-
ductivity, and the lower the Seebeck coefficient. The EC − EF

is plotted in Fig. 2 vs the carrier concentration for all the NWs
of Fig. 1. The band edges of all D = 12 nm NWs reside at
almost the same distance away from EF , and, therefore, a very
small anisotropy is observed, especially in S. The band edges
of the D = 3 nm NWs reside farther from EF compared to those
of the D = 12 nm NWs. This may appear counterintuitive since
one would have expected that the smaller number of subbands
in the thinner NW will force EC to be closer to EF at the same

FIG. 2. (Color online) EC − EF for n-type NWs of D = 12 nm
(dashed lines) and D = 3 nm (solid lines) vs the carrier concentration.
The [100] (blue), [110] (red), and [111] (green) transport orientations
are shown.

carrier concentration. It appears this way because the carrier
concentration is normalized to the diameter. Considering a NW
at a specific carrier concentration and specific EC − EF , as the
diameter is reduced, if the number of subbands in the energy
region of relevance decreases linearly with the cross-sectional
area of the NW, then EC − EF will stay the same. Once a single
subband remains, reducing the diameter does not further re-
duce the number of subbands. To keep the carrier concentration
constant with decreasing diameter, EC − EF increases.

At D = 3 nm, the differences in σ and S originate from the
different effective masses and degeneracies of the subbands,
which control EC − EF . At a given carrier concentration,
the smaller the effective mass and degeneracy, the closer EF

resides to EC . In such a case, the conductivity is higher, and
the Seebeck coefficient is lower. The band edge of the [110]
NW, with a two-fold degenerate lowest valley and the lightest
mass (m∗ = 0.16m0) (Ref. 18) resides closer to EF compared
to the other two NW types. The [100] NW with a four-fold
degenerate valley of mass m∗ = 0.27m0 follows, whereas, the
[111] NW, with sixfold degenerate valleys and heavier mass
(m∗ = 0.55m0), resides the furthest from EF compared to the
other two NW types. As described in Ref. 18, confinement
changes the masses of the NW subbands compared to the bulk
m∗ = 0.19m0 in [110], m∗ = 0.19m0 in [100], and m∗ =
0.43m0 in [111] directions.18,70,71

As a result, the conductivity of the [110] NW is the largest,
followed by the [100] NW, whereas, that of the [111] is the
lowest [Fig. 1(a)]. The reverse is observed for the Seebeck
coefficient, since the two quantities are inversely related
[Fig. 1(b)]. For the D = 3 nm NWs, therefore, some degree
of orientation dependence can be observed, which was not
evident for the larger diameter NWs. The power factor follows
the orientation and magnitude trends of σ , rather than that of S,
despite the fact that it depends linearly on σ but quadratically
on S. Changes in σ are much larger than changes in S because
σ depends exponentially on EC − EF , whereas, S depends
linearly on EC − EF . At least for carrier concentrations up to
n = 5 × 1019/cm3, σS2 is lower for the D = 3 nm NWs
[Fig. 1(c)] following the trend of σ . The influence of confine-
ment and geometry, therefore, is stronger on the conductivity,
which affects the power factor stronger. We note here that
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the increase in S with diameter reduction is only partially the
improvement described by Hicks and Dresselhaus in Ref. 8 and
Dresselhaus et al. in Ref. 9, which originates from the shape of
the 1D DOS(E) function. That effect will be more pronounced
when comparing at the same EC − EF (Ref. 13) rather than the
same carrier concentration. What we describe can be explained
by changes in EC − EF , which are determined from the nor-
malization of the charge distribution by the cross-sectional area
and the rate at which the number of subbands in the NW are
reduced compared to the reduction of the cross-sectional area.

B. n-type NWs: The effect of confinement

From Fig. 1, the peak of the power factor appears around
electron concentrations of n = 1019/cm3. In order to clearly
observe the diameter dependence on the results, Fig. 3 presents
the TE coefficients of all NWs at n = 1019/cm3 vs their
diameter. At this carrier concentration, which is high but
practically achievable, the Fermi level resides very close to
the band edges for most of the NW cases as seen in Fig. 2.
The band edge of the D = 3 nm [111] NW is the furthest away
from the Fermi level at this concentration, which causes the
peak in its power factor to appear at concentrations beyond
1020/cm3 [see Fig. 1(c)], which are too high. The dashed
lines in the subfigures of Fig. 3 indicate the phonon-limited
TE coefficients. The solid lines additionally include the
effect of SRS. Figure 3(a) shows the electrical conductivity.
Clearly, in all cases, the conductivity degrades as the diameter
reduces. The phonon-limited degradation varies from 0.5× to
∼3× depending on the orientation, with the [110]-oriented
NWs being less affected as also described in Ref. 72. Once
SRS is included, a further ∼2× conductivity reduction is
observed for the smaller diameter NWs. SRS is weaker for the
D = 12 nm NWs. The Seebeck coefficient in Fig. 3(b)
increases as the diameter reduces, a reverse trend compared to
conductivity. The increase is at most ∼2×, and as explained
earlier, it originates from fact that EC − EF is larger for NWs
of smaller diameters. SRS only causes a slight additional
increase in S, indicating that S is, at first-order scattering
independent. The power factor in Fig. 3(c) reduces with
diameter, especially when SRS is included in the calculation.
The increase in S for lower diameters cannot compensate
for the large degradation in conductivity. For the cases of
[110] and [111] NWs, a maximum can be obtained around
D = 7 nm, whereas, for the [100] NWs, the power factor
is reduced monotonically with diameter reduction. From this
figure, the [100] NW performs slightly better at D = 12 nm,
the [110] at D = 3 nm, whereas, in the intermediate diameter
ranges, the [111] NWs are slightly advantageous. However,
this orientation dependence is small.

Here, we mention that ballistic simulations using the
Landauer approach11,13,15 suggest the contrary, that diameter
scaling will improve the power factor. It is because the
ballistic approach captures the improvement in the Seebeck
coefficient, which is scattering independent at first order, but
not the degradation in the conductivity, which has a stronger
sensitivity to scattering mechanisms and geometry.

C. n-type NWs: The effect of impurity scattering

Carrier concentrations of n = 1019/cm3, at which the peak
of the power factor appears, can be achieved with different

FIG. 3. (Color online) TE coefficients for n-type NWs in
[100] (square, blue), [110] (triangle, red), and [111] (circle, green)
transport orientations vs the NW diameter. The carrier concentration
is n = 1019/cm3. (a) The electrical conductivity. (b) The Seebeck
coefficient. (c) The power factor. Dashed lines: Only phonon
scattering (ADP and IVS) is considered. Solid lines: Phonon
scattering and SRS are considered.

methods. Since direct impurity doping is what is traditionally
used in TE devices, here, we demonstrate the effect of such
a high impurity doping on the TE coefficients. In Fig. 4, we
show σ , S, and σS2 as in Fig. 3, but we now include phonons,
SRS, and impurity scattering (solid lines). We still show the
phonon-limited results with dashed lines for comparison.

Figure 4(a) shows the electrical conductivity. Clearly, in all
cases, impurity scattering causes a strong degradation in the
conductivity at the entire diameter range. For smaller diame-
ters, the degradation is caused by both the SRS and the impurity
scattering, however, at larger diameters, the degradation is
mostly due to impurity scattering. The degradation is on the
order of 6×–8× depending on the orientation and diameter,
with the [110]-oriented NWs being less affected. This is con-
sistent with the almost one order of magnitude drop in mobility
observed for metal-oxide-semiconductor field-effect transistor
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FIG. 4. (Color online) TE coefficients for n-type NWs in [100]
(square, blue), [110] (triangle, red), and [111] (circle, green) transport
orientations vs the NW diameter. (a) The electrical conductivity. (b)
The Seebeck coefficient. (c) The power factor. Solid lines: Phonon
scattering, SRS, and impurity scattering are considered. The impurity
concentration is n0 = 1019/cm3. Dashed lines: Only phonon scattering
(ADP and IVS) is considered.

(MOSFET) devices at such high doping concentrations.67 The
Seebeck coefficient in Fig. 4(b) increases with the introduction
of impurity scattering in the calculation by ∼20% if one
compares the solid vs the dashed lines (phonon limited). The
power factor in Fig. 4(c) decreases due to impurities by ∼4×
following the conductivity reduction trend, since this quantity
is affected more than the Seebeck coefficient.

From these results, therefore, it is obvious that direct doping
of the channel will cause large degradation in performance,
and alternative strategies to achieve high carrier densities
should be employed for high-efficiency TE devices as also
mentioned by Ryu et al.66 Such methods can be as follows:
(i) gated channels66,73 or (ii) remote modulation doping (or
charge transfer) techniques.74,75 Another important observa-
tion is that, similar to the effect of geometry, the introduction
of additional scattering mechanisms affects the conductivity

much stronger than the Seebeck coefficient. Power factor
optimization strategies in low-dimensional channels, there-
fore, should focus in improving (or not reducing) σ and not
necessarily in optimizing S.

IV. p-TYPE NW TE COEFFICIENTS

A possible way to improve a channel’s conductivity
is through bandstructure engineering. Strain is a possible
direction that has been applied to MOSFET channel devices
with success.29 Here, we describe a different mechanism in
p-type channels that originates solely from confinement. In
certain cases, the electronic structure undergoes significant
changes with confinement.19 Through careful engineering of
the transport and confinement orientations as well as the
feature size, the subbands can become lighter, and large
improvements in conductivity can be achieved.19,31,32 This is
shown in Fig. 5 for p-type [110] and [111] NWs. In Figs. 5(a)
and 5(b), we show the (100) and (11-2) heavy-hole band bulk
Si energy surfaces. The bandstructure of the [110] and [111]
NWs, respectively, will be formed by bands of high curvature,
residing away from the center of each of these surfaces as
shown by the lines in the figures and described in Refs. 19
and 31. The actual NW subband envelopes for diameters
ranging from D = 12 to D = 3 nm are shown in Figs. 5(c) and
5(d). This increase in the subband curvature with confinement
can provide an improvement in the carrier velocities by ∼2×.19

The effective masses of the bands in these NWs can reduce
from m∗ = 0.4m0 to values below m∗ = 0.2m0 solely due to

FIG. 5. (Color online) Bandstructure variations with confine-
ment. (a) The (100) heavy-hole band energy surface of bulk Si.
(b) The (11-2) heavy-hole band energy surface of bulk Si. Energy
contours at −0.2 and −1 eV are shown. (c) The subband envelopes
(higher subbands) for [110] p-type NWs as the diameter scales. (d)
The subband envelopes for [111] p-type NWs as the diameter scales.
Envelopes for the D = 12, 9, 6, and 3 nm are shown. a0, a′

0 and a′′
0

are the unit-cell lengths.
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confinement.31,37,44,72 On the other hand, the mass of the [100]
NWs still remains high (m∗ ∼ m0).

In this section, a comprehensive analysis of the TE coeffi-
cients in p-type NWs of different orientations and diameters is
performed. We follow the same approach as for n-type NWs
above.

A. p-type NWs: Phonon-limited TE coefficients

Figure 6 shows the electrical conductivity, the Seebeck
coefficient, and the power factor for p-type NWs of D = 3 nm
(solid lines) and D = 12 nm (dashed lines) in the [100]
(blue), [110] (red), and [111] (green) transport orientations vs
the hole concentration. Only phonon scattering is considered
here. In contrast to what was shown in Fig. 1(a) for n-type
NWs, the electrical conductivity in Fig. 6(a) is strongly

FIG. 6. (Color online) TE coefficients for p-type NWs in [100]
(blue), [110] (red), and [111] (green) transport orientations for
diameters D = 3 nm (solid lines) and D = 12 nm (dashed lines)
vs the carrier concentration. (a) The electrical conductivity. (b) The
Seebeck coefficient. (c) The power factor. Only phonon scattering
(ADP and ODP) is considered.

anisotropic and diameter dependent. At D = 12 nm, the
[111] NW has the largest conductivity, followed by the [110]
NW, whereas, the [100] NW lags behind. As the diameter
reduces, the conductivity of the [100] NW reduces, a similar
behavior as in n-type NWs. The conductivity of the [111] and
[110] NWs, however, strongly increases, originating from the
large curvature increase in the NW dispersions with diameter
decrease as explained earlier.

For the Seebeck coefficients in Fig. 6(b), only that of the
[100] p-type NW increases as the diameter scales to D = 3 nm.
For the [110] and [111] NWs, S slightly suffers since it is
inversely proportional to the electrical conductivity, which
undergoes a large increase. Only a small degradation is
observed in S because, on one hand, EC − EF tends to increase
with diameter scaling, but on the other hand, the reduction in
the effective masses of the bands tend to reduce EC − EF .
Finally, EC − EF does not change much, and S is affected only
slightly. The power factor for the [111] and the [110] NWs in
Fig. 6(c) largely increases by ∼3× for the smaller diameter
NWs, in contrast to the [100] NW power factor, which only
changes marginally.

As in the case of n-type NWs, the power factor is strongly
influenced by the conductivity, rather than the Seebeck trend.
Therefore, benefits to the power factor can be achieved
mainly through bandstructure modifications that affect the
conductivity and less through improvements in the Seebeck
coefficient.

B. p-type NWs: The effect of confinement

Figure 7 shows the p-type NW TE coefficients vs diameter
at p = 1019/cm3, approximately the hole concentration at
which the power factors peak in Fig. 6(c). The dashed lines
indicate results for which only phonon scattering is included,
whereas, the solid lines indicate results for which phonons and
SRS are included. Figure 7(a) clearly shows that the phonon-
limited conductivity of [111] and [110] NW orientations is
increased by more than a factor of 8× as the diameter is
scaled. This increase is large enough to compensate for the
effect of SRS. Once SRS is included, the conductivity still
remains a factor of ∼2× higher for the smaller diameters
compared to the larger ones. Strong orientation dependence is
evident. The [111] NWs provide ∼2× higher conductivity
than the [110] ones. The conductivity of the [100] NWs
is much lower and is additionally decreased with diameter
scaling.

Strong orientation and diameter dependence is also evident
in the Seebeck coefficients of Fig. 7(b). At larger diameters,
S is almost the same for all NW orientations. As the diameter
is reduced, S increases in the [100] NW case, whereas,
it decreases in the [110] and [111] cases. At the smaller
diameters, the [100] NWs have almost ∼2× larger S than the
other two orientations. The ∼2× advantage in S of the [100]
NWs over the other orientations is not enough to compensate
for the large differences in their conductivity. As a result,
the power factor shown in Fig. 7(c) is higher for the [111]
and [110] NWs, whereas, it still remains low for the [100]
NWs. Including SRS in the results, increases S only slightly.
Therefore, the ∼2× reduction in conductivity due to SRS,
directly translates to a power factor reduction.
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FIG. 7. (Color online) TE coefficients for p-type NWs in [100]
(square, blue), [110] (triangle, red), and [111] (circle, green) transport
orientations vs the NW diameter. The carrier concentration is p =
1019/cm3. (a) The electrical conductivity. (b) The Seebeck coefficient.
(c) The power factor. Solid lines: Phonon scattering (ADP and ODP)
and SRS are considered. Dashed lines: Only phonon scattering is
considered.

V. ANALYSIS AND DISCUSSION

A. The effect of temperature

Up to this point, our analysis was performed at room
temperature, and we have focused on the effect of geometry,
confinement, and orientation on the TE coefficients. Here,
we show that the main trends and conclusions we have
presented hold at different temperatures as well. The effect of
temperature changes the strength of phonon scattering and the
shape of the Fermi distribution. The geometry trends, however,
are still unchanged. This is shown in Fig. 8 for the n-type [111]
NW, but the trends are very similar for the rest of the NW
families as well.

Figure 8(a) shows the phonon-limited electrical conductiv-
ity of the NW as a function of diameter for three different
temperatures T = 150, 300, and 450 K. The carrier concen-
tration is assumed to be n = 1019/cm3. Phonon-scattering

FIG. 8. (Color online) Phonon-limited TE coefficients for n-type
[111] NWs under different temperatures vs the NW diameter. The
carrier concentration is n = 1019/cm3. (a) The electrical conductivity.
(b) The Seebeck coefficient. (c) The power factor. T = 150, 300, and
450 K are considered.

strength increases as the temperature increases, and, therefore,
the conductivity decreases with temperature increase at all
diameter ranges. On the other hand, the Seebeck coefficient
in Fig. 8(b) follows the reverse trend, increasing with rising
temperature. Part of the reason has to do with the increase in
EC − EF as the temperature increases. The inset of Fig. 8(b)
shows the EC − EF for the D = 12 nm NW as a function of
the carrier concentration for the three different temperatures.
At higher temperatures, the Fermi distribution spreads out
more, filling up more states in the bands. To maintain the same
carrier concentration, EF shifts farther away from the band
edge EC , which increases the Seebeck coefficient. The tem-
perature dependence is stronger at larger diameters D = 12 nm,
whereas, at D = 3 nm, it is negligible. The dispersion of the
D = 12 nm NW consists of many more subbands. More carriers
are picked as the temperature increases, which causes a larger
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EC − EF shift. The power factor in Fig. 8(c) is more affected
by the larger conductivity changes and, therefore, reduces with
temperature increase. The basic trends are retained for the rest
of the NW types as well.

Here, we note that we do not consider the effect of phonon
drag in the calculation of the Seebeck coefficient in the analysis
above, as we focus on the effect of geometry. Inclusion of
phonon drag is significantly demanding, involving several
phonon scattering mechanisms. Reference 2 points out the
importance of phonon drag for T ∼ 150 K, and, therefore, our
calculated S at this temperature could be underestimated. In
that work it was claimed that phonon drag can enhance the ZT
significantly, and further analysis of this concept will be very
promising and useful.35 In general, however, such an effect is
not observed for temperatures above T ∼ 100 K, especially for
nanostructures where boundary scattering is significant.1,76,77

The results in Fig. 8 only considered the effect of phonon
scattering. Such an analysis will be relevant for the case
of undoped or charge-transfer TE devices using methods
as described in Refs. 66,73, and 75. As we have seen in
Fig. 4, however, the effect of impurity scattering dominates
the amplitude of the TE coefficients at the high impurity
concentrations of n0 = 1019/cm3 where the peak of the
power factor appears. As discussed in Ref. 38, the impurity-
scattering-limited conductivity increases with temperature
because the faster moving carriers are deflected less. Of course,
the screening length LD [Eq. (22)] increases with

√
T , which

tends to increase scattering, but the former process dominates.
Although phonon scattering tends to decrease the conductivity
as the temperature rises, at n0 = 1019/cm3, impurity scattering
dominates both the amplitude and the temperature dependence,
and the overall conductivity increases. The Seebeck coeffi-
cient, on the other hand, is scattering independent at first
order, and its temperature variation is very similar to what
is shown in Fig. 8(b). Therefore, although the magnitude of
the power factor is lower when impurities are considered,
the decreasing trend in the power factor with temperature
observed for the phonon-limited result, will not hold in the
impurity-scattering-dominated case. Rather, the power factor
will increase as the temperature increases because both:
(i) the impurity-dominated conductivity and (ii) the Seebeck
coefficient, increase with temperature and will determine the
power factor temperature behavior.

Figure 9 illustrates this behavior by plotting the power
factor of the n-type, [111], D = 12 nm NW, for carrier concen-
trations n = 1019/cm3, as a function of temperature. Figure 9(a)
shows the phonon-limited result that has a monotonic decrease
with temperature increase as in Fig. 8(c). Indeed, this behavior
is in agreement with recent experimental observations for
gated undoped TE devices.66 Figure 9(b) shows the phonon-
plus impurity-limited result, which has the opposite trend. It
demonstrates that the temperature dependence of the impurity
scattering-limited conductivity dominates the temperature
dependence of the power factor, rather than the temperature
dependence of the phonon-limited conductivity. This behavior
is also in agreement with experimental observations for the
power factor in devices with heavily doped channels.1 We
mention that the magnitude of the impurity-dominated result
is much lower than the phonon-limited result. Since impurity
scattering has such a strong detrimental effect on the conduc-

FIG. 9. (Color online) The power factor of the n-type [111]
D = 12 nm NW vs temperature. The carrier concentration is
n = 1019/cm3. (a) Phonon-limited results. (b) Phonon- plus impurity
scattering-limited results with impurity concentration n0 = 1019/cm3.

tivity, utilizing methods to achieve high carrier concentrations
other than direct doping would be beneficial.66,73–75

B. n-type NWs: The ZT figure of merit

Recent reports on thermal conductivity measurements have
shown that the thermal conductance of Si NWs with diameters
scaled down to D = 15 or D = 20 nm can be as low as k = 1
to 2 W/mK,1,78,79 two orders of magnitude lower than its bulk
material value. As a result, the room-temperature TE figure
of merit (ZT) of silicon NWs was measured to be ZTNW ∼
0.5, greatly enhanced from the bulk Si value ZTbulk ∼ 0.01.
Using kl = 2 W/mK for the lattice thermal conductivity, we
estimate the expected ZT using the calculated power factors
and ke for the NWs considered in this paper. We separately
consider the effects of phonon, SRS, and impurity scattering
for concentrations of 1019/cm3. The ZT values we report are
just estimates since kl can be even lower as well as orientation
dependent,80,81 in which cases, ZT can be different and even
higher.

Figure 10 shows the results for the ZT figure of merit
vs the diameter for the n-type NWs in [100] (blue), [110]
(red), and [111] (green) NW orientations. Figure 10(a) shows
phonon-limited results (dashed lines) and phonon- plus SRS-
limited results (solid lines). In all cases, the trends follow
the power factor trends described in Secs. II–IV. ZT values
close to unity can be achieved for the larger NW diameters.
For the smaller diameters, the ZT values are lower, even
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FIG. 10. (Color online) The ZT figure of merit vs the diameter
for n-type NWs in [100] (square, blue), [110] (triangle, red), and
[111] (circle, green) transport orientations. The carrier concentration
is n = 1019/cm3. (a) Dashed lines: Only phonon scattering (ADP
and IVS) is considered. Solid lines: Phonon scattering and SRS are
considered. (b) Dashed lines: Only phonon scattering (ADP and IVS)
is considered [same as in (a)]. Solid lines: Phonon scattering, SRS,
and impurity scattering are considered. The impurity concentration
is n0 = 1019/cm3.

below ZT ∼ 0.5. Figure 10(b) shows phonon- plus SRS- plus
impurity-scattering-limited results (solid lines). The phonon-
limited results [dashed lines—same as in Fig. 10(a)] are
also shown for comparison purposes. Again, the influence of
impurity scattering at such high concentrations causes a large
degradation in the ZT, bringing it to values close to ZT ∼ 0.2,
a factor of ∼4× lower than the phonon-limited result.

C. p-type NWs: The ZT figure of merit

The corresponding ZT results for p-type NWs are shown in
Fig. 11. For p-type NWs, the ZT values are somewhat lower
than for the n-type NWs. The phonon-limited ZT in Fig. 11(a)
(dashed lines) picks up for smaller diameters of the [111]
and [110] NWs and approximately reaches unity, but at larger
diameters, the ZT drops to ∼0.2. SRS [solid lines in Fig. 11(a)]
causes the ZT at lower diameters to reduce to ZT ∼ 0.5. The
trends again follow the power factor trends described in Fig. 7.
Finally, the influence of impurity scattering for concentrations
of p0 = 1019/cm3 in Fig. 11(b) (solid lines) causes a large

FIG. 11. (Color online) The ZT figure of merit vs diameter for
p-type NWs in [100] (square, blue), [110] (triangle, red), and [111]
(circle, green) transport orientations. The carrier concentration is
p = 1019/cm3. (a) Dashed lines: Only phonon scattering (ADP and
ODP) is considered. Solid lines: Phonon scattering and SRS are
considered. (b) Dashed lines: Only phonon scattering (ADP and ODP)
is considered [same as in (a)]. Solid lines: Phonon scattering, SRS,
and impurity scattering are considered. The impurity concentration
is p0 = 1019/cm3.

degradation in the ZT, bringing it to values close to ZT ∼ 0.1,
a factor of ∼4× lower than the phonon-limited result (dashed
lines).

D. Assumptions and design optimization

The value kl = 2 W/mK, used for the calculation of
ZT, is measured for D = 15 nm Si NWs.79 This might be
even smaller for smaller NW diameters or even orientation
dependent.80,81 In addition, the SRS strength is subject to the
parameters used for the autocorrelation length LC and the
	rms value. These can be varying depending on the technology
process, and can be subject to the properties of the different
confining surfaces.32 The phonon-scattering strength depends
on the magnitude of the electron-phonon interaction used. It is
suggested that the DADP in NWs is as high as DADP = 14.7 eV
(Ref. 46) instead of DADP = 9.5 eV used in our calculations.
Additionally, the effect of phonon confinement is not taken into
account, although studies have shown that it can only result in a
10%–20% correction in the conductivity.43–45,60,62 Depending
on all these assumptions, the power factor and ZT could
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potentially change. Nevertheless, the magnitude of the results
of our calculation is in agreement with other reports, both
theoretical16,82 and experimental.1,2,6,66 More importantly, the
topological trends we describe and their importance on
σ over S will still hold. To that effect, the benefits of
scaling the diameter in p-type [111] and [110] NWs point
toward design directions for nanoscale devices with enhanced
performance.

The assumptions mentioned above mostly affect our results
quantitatively. One assumption that might have qualitative
influence is the fact that we have ignored the effect of
NW surface relaxation and reconstruction. The electronic
structure might be altered upon reconstruction, especially
for the narrower D = 3 nm NWs. Therefore, it is useful to
provide an estimate of how this effect can influence our results
for these narrow NWs. Theoretical reports that discuss the
effect of passivation and relaxation of NW surfaces using
ab initio methods83–86 conclude that the physical structure
is still diamond-like and does not change in any noticeable
way even for ultra-thin NWs down to 1 nm in diameter.84

This is also evident from scanning electron microscopy and
transmission electron microscopy images of the cross sections
of NWs down to very small diameters even D = 3 nm in
several instances in the literature.87–91 These images show that
the structure is still diamond-like, without any observable de-
formations. The theoretical studies show that the Si-Si surface
bond lengths change only by <1.5%, whereas, in the cores
of the NWs, the bond variation is negligible (<0.1%).83,85,92

The band gaps, on the other hand, change upon passivation
and are strongly influenced by the choice of passivation
agents (some of the common ones are -H, -OH, -NH2, and
SiO2).86

With regard to the effective masses of the subbands, which
mainly influence the electronic properties we investigated,
Vo et al.,83 using ab initio methods, have calculated that,
upon hydrogen passivation and reconstruction, the electron
and hole masses of Si NWs of D = 3 nm change as follows.
For electrons: [100], an ∼15% increase; [110], an ∼7%
decrease; and [111] an ∼15% increase. For holes: [100], an
∼30% decrease; [110], no change; and [111], no change. The
p-type [100] NW is the one affected the most. As described
by Buin et al.,43 the mobility of single subband 1D narrow
NWs follows the relation μ ∝ m

−3/2
eff . A 30% reduction in

the effective mass will roughly result in an ∼70% increase
in the mobility and, accordingly, the conductivity. Although
this is a large deviation, the conductivity we report for this
NW is much lower than that of the other NWs, anyway,
and, therefore, our anisotropy conclusions will not be altered.
In the case of electrons in [100] and [111] NWs, the NW
conductivity might be ∼30% lower than what our calculations
show, once relaxation is considered. Again, for this case, our
results show that the conductivity for these NWs is lower
than that of the [110] NW, and therefore, the conclusions with
regard to anisotropy are still valid. Indeed, in another work,
Vo et al.16 reported conductivity calculations for D = 1.1 nm
relaxed NWs in different transport orientations. Although a
different transport model and different diameters were used,
the conductivity trends they present are very similar to the
trends we present in our paper (but for the D = 3 nm NWs).
Regarding the n-type [110] D = 1 nm NWs, Liang et al.93

have also shown that reconstruction effects are minimal on
the NW’s ballistic performance, precisely because of the
small variation in the effective mass upon reconstruction,
as also calculated by Vo et al.83 Therefore, we believe that
reconstruction might somewhat affect the magnitude of the
conductivity we calculate in some cases but noticeably only
for the D = 3 nm p-type [100] NW. The effect, however, does
not seem to be strong enough to alter the anisotropy behavior
we describe.

Our results show that the influence of any design param-
eters, such as diameter, orientation, or even carrier type, is
much stronger on the conductivity of NWs, rather than the
Seebeck coefficient, which does not change significantly. The
higher power factor and ZT appear in NWs with the highest
conductivity, rather than the highest Seebeck coefficient. We
note that, when considering purely ballistic transport, the
results indicate the reverse, namely, that the NWs with the
largest Seebeck coefficient exhibit the largest power factors
and ZT.11,15 For optimal results, the electronic structure
can be engineered using quantization and band engineering.
One needs to keep σ high by utilizing light effective mass
subbands or by using strain engineering to reduce the effective
masses of the subbands. In nanostructures, band engineering
is partially possible, especially when utilizing devices in
different orientations. From the observations about p-type
[111] and [110] NWs, benefits can be achieved through
proper optimization studies. Ideally, one should also target
the increase in S by allowing more valleys nearby in energy
or by using transport orientations with subbands of higher
degeneracy, but this should not be at the expense of σ .

VI. CONCLUSION

Geometry and confinement effects on the room-temperature
TE coefficients (σ , S, σS2, ke, ZT) of n- and p-type silicon NWs
are investigated. Different transport orientations and diameters
from D = 12 nm down to D = 3 nm are considered. Atomistic
electronic structures and linearized Boltzmann transport,
including all relevant scattering mechanisms, are employed.
We find that, in Si, confinement effects can have an influence
on the power factor at length scales below ∼7 nm. We find that
the influence of confinement and geometry on the power factor
mostly originates from changes in the conductivity, which is
strongly affected, rather than the Seebeck coefficient, which
is weakly affected. These trends are preserved over a range of
different temperatures.

In general, enhanced scattering (phonon and especially
SRS) at these diameter scales strongly degrades the power
factor of the device. In special cases, such as p-type [110]-
and [111]-oriented NWs, however, confinement largely im-
proves the channel’s conductivity without significantly re-
ducing the Seebeck coefficient. Improvements in the power
factor of ∼2× to 3× can, as a result, be achieved.
Therefore, benefits to the power factor can be achieved
through bandstructure modifications that influence the con-
ductivity and not through improvements in the Seebeck
coefficient.

For n-type NWs, at D = 3 nm, the [110] NW has a
slightly higher performance than NWs in other orientations
because its subbands acquire a lighter effective mass under
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diameter scaling, whereas, at D = 12 nm, the [100] NW
performs better. Distinctly, the conductivity and power factor
of p-type [111] and [110] NWs improves as the diameter
scales below D = 7 nm. We estimate that ZT values close
to unity can be achieved, in agreement with experimental
observations. We finally show that the maximum power factor
is achieved at carrier concentrations of 1019/cm3 as in the case
of the bulk material. Impurity scattering strongly degrades
the power factor at such concentrations. Large improvements

can be achieved, however, if other possible ways to achieve
high carrier concentrations other than direct doping are
utilized.
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