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Abstract. During the last decades various high-performance libraries were de-
veloped written in fairly low level languages, like FORTRAN, carefully special-
izing codes to achieve the best performance. However, the objective to achieve
reusable components has regularly eluded the software community ever since.
The fundamental goal of our approach is to create a high-performance mathemat-
ical framework with reusable domain-specific abstractions which are close to the
mathematical notations to describe many problems in scientific computing. Inter-
operability driven by strong theoretical derivations of mathematical concepts is
another important goal of our approach.

1 Introduction

This work reviews common concepts for scientific computing and introduces new ones
for a timely approach to library centric application design. Based on concepts for gene-
ric programming, e.g. in C++, we have investigated and developed data structures for
scientific computing. The Boost Graph Library [11] was one of the first generic li-
braries, which introduced concept based programming for a more complex data struc-
ture, a graph. The actual implementation of the Boost Graph Library (BGL) is for our
work of secondary importance, however, we value the consistent interfaces for graph
operations. We have extended this type of concept based programming and library de-
velopment to the field of scientific computing. To give a brief introduction we use an
example resulting from a self-adjoint partial differential equation (PDE), namely the
Poisson equation:

div(ε grad(Ψ)) = ρ

Several discretization schemes are available to project this PDE into a finite space.
We use the method of finite volumes. The resulting equations are given next, where Ai j

and di j represents geometrical properties of the discretized space, ρ the space charge,
Ψ the potential, and ε the permittivity of the medium.

∑
j

Di j Ai j = ρ (1)

Di j =
Ψ j − Ψi

di j

εi + ε j

2
(2)
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An example of our domain specific notation is given in the following code snippet and
explained in Section 4:

value =
(

sum<vertex_edge >
[

diff <edge_vertex >
[

Psi(_1)
] * A(_1)/d(_1) *
sum <edge_vertex >[eps(_1)]/2

] - rho(_1)
)(vertex);

Generic Poisson Equation

As can be seen, the actual notation does not depend on any dimension or topolog-
ical type of the cell complex (mesh) and is therefore dimensionally and topologically
indepent. Only the relevant concepts, in this case, the existence of edges incident to a
vertex and several quantity accessors, have to be met. In other words, we have extended
the concept programming of the standard template library (STL) and the generic pro-
gramming of C++ to higher dimensional data structures and automatic quantity access
mechanisms.

Compared to the reviewed related work given in Section 2, our approach implements
a domain specific embedded language. The related topological concepts are given in
Section 3, whereas Section 4 briefly overviews the used programming paradigms. In
Section 5 several application examples are presented. The first example introduces a
problem of a biological system with a simple PDE. The second example shows a non-
linear system of coupled PDEs, which makes use of the linearization framework intro-
duced in Section 4.1, where derivatives are calculated automatically.

For a successful treatment of a domain specific embedded notation several program-
ming paradigms are used. By object-oriented programming the appropriate iterators are
generated, hidden in this example in the expression vertex edge and edge vertex.
Functional programming supplies the higher order function expression between the [
and ] and the unnamed function object 1. And finally the generic programming para-
digm (in C++ realized with parametric polymorphism or templates) connects the vari-
ous data types of the iterators and quantity accessors.

A significant target of this work is the separation of data access and traversal by
means of the mathematical concept of fiber bundles [5]. The related formal introduc-
tion enables a clean separation of the internal combinatorial properties of data structures
and the mechanisms of data access. A high degree of interoperability can be achieved
with this formal interface. Due to space constraints the performance analysis is omitted
and we refer to a recent work [6] where the overall high performance is presented in
more detail.
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2 Related Work

In the following several related works are presented. All of these software libraries are
a great achievement in the various fields of scientific computing. The FEniCS project
[9], which is a unified framework for several tasks in the area of scientific computing,
is a great step towards generic modules for scientific computing.

The Boost Graph Library is a generic interface which enables access to a graph’s
structure, but hides the details of the actual implementation. All libraries which im-
plement this type of interface are interoperable with the BGL generic algorithms. This
approach was one of the first in the field of non-trivial data structures with respect to
interoperability. The property map concept [11] was introduced and heavily used. The
Grid Algorithms Library, GrAL [4] was one of the first contributions to the unifi-
cation of data structures of arbitrary dimension for the field of scientific computing. A
common interface for grids with a dimensionally and topologically independent way of
access and traversal was designed.

Our Developed Approach, the Generic Scientific Simulation Environment (GSSE
[8]) deals with various modules for different discretization schemes such as finite ele-
ments and finite differences. In comparison, our approach focuses more on providing
building blocks for scientific computing, especially an embedded domain language to
express mathematical dependencies directly, not only for finite elements. To achieve
interoperability between different library approaches we use concepts of fiber bundle
theory to separate the base space and fiber space properties. With this separation we
can use several other libraries (see Section 3) for different tasks. The theory of fiber
bundles separates the data structural components from data access (fibers).

Based on this interface specification we can use several libraries, such as STL, BGL,
GrAL, and accomplish high interoperability and code reuse.

3 Concepts

Our approach extends the concept based programming of the STL to arbitrary dimen-
sions similar to GrAL. The main difference to GrAL is the introduction of the concept
of fiber bundles, which separates the base mechanism of application design into base
and fiber space properties. The base space is modeled by a CW-complex and algebraic
topology, whereas the fiber space is modeled by a generic data accessor mechanism,
similar to the cursor and property map concept [3].

Table 1. Comparison of the cursor/property map and the fiber bundle concept

cursor and property map fiber bundles
isomorphic base space no yes
traversal possibilities STL iteration cell complex
traversal base space yes yes
traversal fiber space no yes
data access single data topological space
fiber space slices no yes
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3.1 Theory of Fiber Bundles

We introduce concepts of fiber bundles as a description for data structures of various
dimensions and topological properties.

– Base space: topology and partially ordered sets
– Fiber space: matrix and tensor handling

{0,1,2,3,4}

{0,1,2,3} {0,1,2,4} {0,1,3,4}{0,2,3,4} {1,2,3,4}

{0,1,2} {0,1,3}{0,2,3} {1,2,3}{0,1,4}{0,2,4} {1,2,4}{0,3,4} {1,3,4}{2,3,4}

{0,1}{0,2} {1,2}{0,3} {1,3}{2,3}{0,4} {1,4}{2,4}

{0} {1}{2}

{3,4}

{3} {4}

Fig. 1. Cell topology of a simplex cell in four dimensions

Based on these examples, we introduce a common theory for the separation of the topo-
logical structure and the attached data. The original contribution of this theory was
given in Butler’s vector bundle model [5], which we compactly review here:

Definition 1 (Fiber Bundle). Let E,B be topological spaces and f : E → B a contin-
uous map. Then (E,B, f ) is called a fiber bundle, if there exists a space F such that
the union of the inverse images of the projection map f (the fibers) of a neighborhood
Ub ⊂ B of each point b ∈ B are homeomorphic to Ub ×F, whereby this homeomorphism
has to be such that the projection pr1 of Ub × F yields Ub again.

E is called the total space, B is called the base space, and F is called the fiber space.
This definition requires that a total space E can locally be written as the product of a
base space B and a fiber space F . The decomposition of the base space is modeled by an
identification of data structures by a CW-complex [7]. As an example Figure 2 depicts
an array data structure based on the concept of a fiber bundle. We have a simple fiber
space attached to each cell (marked with a dot in the figure), which carries the data of
our array.

Fig. 2. A fiber bundle with a fiber space over a 0-cell complex. A simple array is an example of
this type of fiber space.
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Fig. 3. A fiber space over a 2-simplex cell complex base space. An example of this type of fiber
space is a triangle mesh with an array over each triangle.

Figure 3 depicts a fiber bundle with a 2-cell complex as base space. For the base
space of lower dimensional data structures, such as an array or single linked list, the
only relevant information is the number of elements determined by the index space.
Therefore most of the data structures do not separate these two spaces. For backward
compatibility with common data structures the concept of an index space depth is used
[7].The advantages of this approach are similar to those of the cursor and property
map [3], but they differ in several details. The similarity is that both properties can be
implemented independently. However, the fiber bundle approach equips the fiber space
with more structure, e.g., storing more than one value corresponding to the traversal
position as well as preservation of neighborhoods. This feature is especially useful in the
area of scientific computing, where different data sets have to be managed, e.g., multiple
scalar or vector values on vertices, faces, or cells. Another important property of the
fiber bundle approach is that an equal (isomorphic) base space can be exchanged with
another cell complex of the same dimension. An overview of the common topological
features and differences for various data structures are presented in Table 1.

Table 2. Classification scheme based on the dimension of cells, the cell topology, and the complex
topology

data structure cell dimension cell topology complex topology
array/vector 0 simplex global
SLL/stream 0 simplex local(2)
DLL/binary tree 0 simplex local(3)
arbitrary tree 0 simplex local(4)
graph 1 simplex local
grid 2,3,4,.. cuboid global
mesh 2,3,4,.. simplex local

3.2 Topological Interface

We briefly introduce parts of the interface specification for data structures and their
corresponding iteration mechanism based on algebraic topology. A full reference can
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be found in [7]. With the concept of partial ordered sets and a Hasse diagram we can
order and depict the structure of a cell.

As an example the topological structure of a three-dimensional simplex is given in
Figure 4.

Fig. 4. Cell topology of a 3-simplex cell

Inter-dimensional objects such as edges and facets and their relations within the cell
can thereby be identified. The complete traversal of all different objects is determined
by this structure. We can derive the vertex on edge, vertex on cell, as well as edge
on cell traversal up to the dimension of the cell in this way. Based on our topological
specification arbitrary dimensional cells can be easily used and traversed in the same
way as all other cell types, e.g., a 4-dimensional simplex shown in Figure 1.

Next to the cell topology a separate complex topology is derived to enable an efficient
implementation of these two concepts. A significant amount of code can be reduced
with this separation. Figure 5 depicts the complex topology of a 2-simplex cell complex
where the bottom sets on the right-hand sides are now the cells. The rectangle in the
figure marks the relevant cell number.

Fig. 5. Complex topology of a simplex cell complex

The topology of the cell complex is only available locally because of the fact that
subsets can have an arbitrary number of elements. In other words, there can be an ar-
bitrary number of triangles attached to the innermost vertex. Our final classification
scheme uses the term local to represent this fact.

A formal concise definition of data structures can therewith be derived and is pre-
sented in Figure 2. The complex topology uses the number of elements of the corre-
sponding subsets.
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complex_t<cells_t ,global > cx; //{1}
complex_t<cells_t ,local <2>> cx; //{2}
complex_t<cells_t ,local <3>> cx; //{3}
complex_t<cells_t ,local <4>> cx; //{4}

STL Data Structure Definitions

Here {1} describes an array, {2} a stream or a singly linked list, {3} a doubly linked
list or a binary tree, and finally {4} an arbitrary tree. To demonstrate the equivalence of
the STL data structures and our approach we present a simple code snippet (the typedefs
are omitted due to space constraints):

cell_t <0, simplex > cells_t;
complex_t<cells_t , global > complex_t;
container_t <complex_t , long> container;
// is equivalent to
std::vector <data_t > container;

Equivalence of Data Structures

3.3 Data Access

In the following code snippet a simple example of the generic use of a data accessor
similar to the property map concept is given, where a scalar value is assigned to each
vertex. The data accessor implementation also takes care of accessing data sets with
different data locality, e.g., data on vertices, edges, facets, or cells. The data accessor is
extracted from the container to enable a functional access mechanism with a key value
which can be modeled by arbitrary comparable data types.

da_type da(container, key_d);
for_each(container.vertex_begin (),

container.vertex_end (), da = 1.0 );

Data Accessor

Several programming paradigms are used in this example which are presented in
detail in the next section, especially the functional programming, given in this example
with the da = 1.0.

4 Programming Paradigms

Various areas of scientific computing encourage different programming techniques,
even demands for several programming paradigms can be observed:

– Object-oriented programming: the close interaction of content and functions is one
of the most important advantages of the object-oriented programming

– Functional programming: offers a clear notation, is side-effect free and inherently
parallel
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– Generic programming: can be seen as the glue between object-oriented and func-
tional programming

Our implementation language of choice is C++ due to the fact, that it is one of the
few programming languages where high performance can be achieved with various
paradigms.

To give an example of this multi-paradigm approach, a simple C++ source snippet is
given next.

std::for_each(v.begin(),v.end(),
if_(arg1 > 5)
[

std::cout << arg1 << std::cout
]

);

Multiple Paradigms

The object-oriented programming paradigm is used to create the iterator capabilities
of the container structures of the STL. This paradigm is not used anywhere else in our
approach. Functional programming is used to create function objects which are passed
into the generic for each algorithm. In this example the notation of the Boost Phoenix
2 [2] library is used to create a functional object context, marked by the [ and ]. The
generic paradigm uses the template mechanism of C++ to bind these two paradigms
together efficiently. A more complex example is given in the following expression.
Here a cell complex of arbitrary dimension is used and the vertex to vertex iteration is
expressed.

gsse ::for_each_vertex (domain
result=gsse ::add <vertex_vertex > [ quan ]

);

Complex Functor

The same paradigms as in the example before can be seen, but in this case, a complex
topological traversal is used instead of simple container traversal. The topological prop-
erties of the GSSE are demonstrated twofold: on the one side, the topological concept
programming allows the implementation of a dimensionally independend algorithm.
On the other side, different data structures of library approaches can be used, which
fullfill the basic requirements of the required topological concept.

This GSSE algorithm sums up the potential values of all vertices adjacent to a ver-
tex. The data accessor quan handles the storage mechanism for the value attached to
a vertex. Here the interaction of programming paradigms related to the base space and
fiber space can be seen clearly. The base space traversal is built with the generic pro-
gramming paradigm, whereas the fiber space operation is implemented by means of
functional programming. A lot of difficulties with conventional programming can be
circumvented by this approach. Functional programming enables great extensibility due
to the modular nature of function objects. Generic programming and the corresponding
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template mechanisms of C++ offer an overall high performance. In addition arbitrary
data structures of arbitrary dimensions can be used. The only requirement is that the
data structure models the required concept, in this case a vertex to vertex information.

4.1 Automatic Linearization

A calculation framework is used where derivatives are implicitly available and do not
have to be specified explicitly. This enables the specification of nonlinear differential
equations in a convenient way. The elements of the framework are truncated Taylor
series of the following form f0 + ∑i ci · Δxi. To use a quantity xi within a formula we
have to specify its value f0 and the linear dependence ci = 1 on the vector x of quan-
tities. This non-trivial and highly complex scenario yields itself exceptionally well to
the application of the functional programming paradigm. In general, all discretization
schemes which use line-wise assembly based on finite differences as well as finite vol-
umes can be handled with the described formalism. Basic operations on Taylor series
can handle truncated polynomial expansions. In the following we specify our nonlin-
ear functionals using linearized functions in upper case letters. All necessary numerical
operations on these data structures can be performed in a straight forward manner, e.g.
multiplication:

F = f0 +∑
i

ci ·Δxi , G = g0 +∑
i

di ·Δxi (3)

F ⊗ G = ( f0 ·g0)+∑
i

(g0 ·di + f0 · ci) ·Δxi (4)

Having implemented these schemes we are able to derive all required functions on these
mathematical structures. This means that we have a consistent framework for formulas
in the following sense: if A is the linearized version of function A at x0, we obtain
∂A/∂xi = ∂A/∂xi |x0 around the point of linearization. Figure 6 shows the multiplication
of two truncated expansions F = 3 + Δx1, and G = 3 + Δx3. As a result we obtain
F ⊗ G = 12 + 4Δx1 + 3Δx3.

Fig. 6. The multiplication of two Taylor series

By implementing only the linear (or higher order polynomial) functional dependence
of equations on variables around x we reduce the external specification effort to a min-
imum. Thus, it is possible to ease the specification with the functional programming
approach, while also providing the functional dependence of formulas.

5 Application Design

In the following we briefly review a few applications based on the introduced concepts
with their respective paradigms.
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5.1 Biological System

Electric phenomena are common in biological organisms such as the discharges within
the nervous system, but usually remain within a small scale. In some organisms, how-
ever, the electric phenomena take a more prominent role. Some fish species, such as
Gnathonemus petersii from the family of Mormyridae [12], use them for detection of
their prey. The up to 30 cm long fish actively generates electric pulses with an organ lo-
cated near its tail fin (also marked in Figure 7). More information can be found in [10].

Fig. 7. Discretized domain of a fish with a red marked electrically active organ

For this case we derive the equation system based on a quasi-electro-statical system
directly from the corresponding Maxwell equations. The charge separation of the elec-
trically active organ which is actively taking place within parts of the simulation domain
also has to be taken into account. We use the conservation law of charge and the diver-
gence theorem (Gauss’s law) and finally get:

∂t [div(ε grad(Ψ))]+ div(γ grad(Ψ)) = P (5)

Equation 5 is discretized using the finite volume discretization scheme. The high se-
mantic level of the specification is illustrated by the following snippet of code:

linearized_equ =sum <vertex_edge >(_v)
[

orient(_v,_1) * sum<edge_vertex >(_e)
[

equ_pot * orient(_e,_1)
]
* (area / dist ) * (gamma * deltat + eps)

] + vol * ( (P * deltat) + rho)

This source snippets presents most of the application code which has to be developed.
In addition, only a simple preprocessing step which creates the necessary quantity ac-
cessors is required.

The simulation domain is divided into several parts including the fish itself, its skin,
that serves as insulation, the water the fish lives in, and an object, that represents either
an inanimate object or prey. The parameters of each part can be adjusted separately. A
result of the simulation is depicted in the following figure:

5.2 Drift-Diffusion Equation

Semiconductor devices have become an ubiquitous commodity and people expect a con-
stant increase of device performance at higher integration densities and falling prices.
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Fig. 8. Result of a simulation with a complete domain, the fish, and a ideally conductor as re-
sponse object

To demonstrate the importance of a method for device simulation that is both easy
and efficient we review the drift diffusion model that can be derived from Boltzmann’s
equation for electron transport by applying the method of moments [8]. Note that
this problem is a nonlinear coupled system of partial differential equations where our
linearization framework is used. This results in current relations as shown in Equa-
tion 6. These equations are solved self consistently with Poisson’s equation, given in
Equation 7.

Jn = qnµn grad Ψ+ qDn grad n (6)

div(grad(ε Ψ)) = −ρ (7)

The following source code results from an application of the finite volume discretization
scheme:

linearized_eq_t equ_pot , equ_n;
equ_pot = (sum <vertex_edge >

[
diff <edge_vertex >[pot_quan]

] + ( n_quan - p_quan + nA - nD ) *
vol * q / (eps0 * epsr)

)(vertex);
equ_n = (sum <vertex_edge >

[
diff <edge_vertex >
( -n_quan*Bern( diff <edge_vertex >[ pot_quan / U_th] ),

-n_quan*Bern( diff <edge_vertex >[-pot_quan / U_th] )
)* (q * mu_h * U_th)

])( vertex);

Drift-Diffusion Equation

To briefly present a simulation result we provide Figure 9 which shows the potential
in a pn diode at different stages of a nonlinear solving procedure. The leftmost figure
shows the initial solution, while the rightmost depicts the final solution. The center
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Fig. 9. Potential in a pn diode during different stages of the Newton iteration. From initial (left)
to the final result(right).

image shows an intermediate result that has not yet fully converged. The visualization
of the calculation is available in real time, making it possible to observe the evolution
of the solution, which is realized by OpenDX [1].
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