
ViennaCL - A High Level Linear Algebra Library
for GPUs and Multi-Core CPUs

Karl Rupp
CD Laboratory for Reliability
Issues in Microelectronics

IuE, TU Wien, A-1040 Wien
rupp@iue.tuwien.ac.at

Florian Rudolf
Institute for Microelectronics
Gußhausstraße 27-29/E360

TU Wien, A-1040 Wien
rudolf@iue.tuwien.ac.at

Josef Weinbub
Institute for Microelectronics
Gußhausstraße 27-29/E360

TU Wien, A-1040 Wien
weinbub@iue.tuwien.ac.at

ABSTRACT
The vast computing resources in graphics processing units
(GPUs) have become very attractive for general purpose sci-
entific computing over the past years. Moreover, central
processing units (CPUs) consist of an increasing number of
individual cores. Most applications today still make use of a
single core only, because standard data types and algorithms
in wide-spread procedural languages such as C++ make use
of a single core only. A customized adaption of existing
algorithms to parallel architecture requires a considerable
amount of effort both from algorithmic and programming
point of view. Taking this additional amount of work hours
required for an adaption to GPUs starting from scratch into
account, the use of GPUs may not pay off on the overall.

The Vienna Computing Library (ViennaCL), which is pre-
sented in this work, aims at providing standard data types
for linear algebra operations on GPUs and multi-core CPUs.
It is based on OpenCL, which provides unified access to
both GPUs and multi-core CPUs. The ViennaCL API fol-
lowing existing programming and interface conventions es-
tablished with uBLAS, which is part of the peer-reviewed
Boost library. Thus, the open source library can be easily
integrated into existing C++ implementations and therefore
reduces the necessary code changes in existing software to a
minimum. In addition, algorithms provided with ViennaCL
can directly be used with uBLAS types due to the common
interface.

The algorithmic focus of ViennaCL is on iterative solvers,
which are often used for the solution of large systems of lin-
ear equations typically encountered in the discretization of
partial differential equations using e.g. finite element meth-
ods. Benchmark results given in this work show that the
performance gain of ViennaCL over uBLAS is on both GPUs
and multi-core CPUs up up to an order of magnitude. For
small amounts of data, the use of ViennaCL may not pay
off due to an OpenCL management overhead associated with
the launch of compute kernels.

1. INTRODUCTION
General purpose scientific computing on GPUs has become
very attractive over the past years [11–13, 18]. In the early
days of such computations, the lack of double precision arith-
metic was often considered a major drawback. However, re-
cent GPUs such as a NVIDIA Geforce GTX 470 or an ATI
Radeon HD 5850 used for the benchmarks in this work do
not suffer from this restriction any longer, thus they push
into the field of high performance computing (HPC). Simul-
taneously, CPUs consist of an increasing number of cores,
for which many serial algorithms become less and less at-
tractive.

Considerable performance gains have been reported [11–13,
18], but the adaption of existing algorithms to GPUs start-
ing from scratch requires a considerable amount of change in
existing codes to account for the highly parallel architecture
of GPUs. Consequently, the effort required for porting an
existing code to GPUs was often considered to be too large
to have a considerable benefit on the overall. In particular,
programmers are required to learn specialized programming
languages like CUDA [14] or OpenCL [20], even if only stan-
dard linear algebra algorithms such as defined by the basic
linear algebra subprograms (BLAS) [2] are to be executed
on the GPU. It is thus desirable to have data types that
provide parallel standard operations on the target machine,
utilizing the available hardware in the best possible way.

There is a number of linear algebra libraries for GPUs avail-
able, for example ACML-GPU [1], CULA [4], MAGMA [6]
or CUBLAS [14], focusing on computationally demanding
operations such as dense matrix-matrix multiplications. How-
ever, sparse matrix arithmetic and iterative solvers are much
less pronounced or not provided at all, even though this
type of matrices is common for the discretization of par-
tial differential equations. Cusp [5] provides two iterative
solvers, but only matrix-vector products are computed on
the GPU, leading to considerable memory transfer overhead.
The CNC plugin in OpenNL [7] provides only a single iter-
ative solver. The functionality provided by these libraries is
available through function calls, which provide a certain set
of basic operations. Thus, appropriate data setup and ini-
tialization is typically left to the user. The approach of the
Vienna Computing Library (ViennaCL) [9] presented in this
work is to wrap GPU data in high level C++ datatypes and
provide an interface that adheres to established conventions.
In the following, we refer to version 1.0.5 of the library.



This paper is organized as follows: First, the design of Vi-
ennaCL is discussed in Sec. 2. Sec. 3 presents the library
interface for linear algebra operations on BLAS levels 1 and
2. The iterative solvers provided with ViennaCL are ex-
plained in Sec. 4. The inclusion of custom compute kernels
is discussed in Sec. 5 and benchmark results are given in
Sec. 6. Finally, an outlook to future work is given in Sec. 7
and a conclusion is drawn in Sec. 8.

2. DESIGN OF VIENNACL
The roots of ViennaCL are in the need for fast iterative
solvers for the solution of large sparse systems arising from
the discretization of partial differential equations (PDEs) for
use in our in-house simulators. To allow other researchers
and engineers to benefit from our effort, ViennaCL is de-
signed to be used with other modern software packages that
serve a similar purpose, e.g. deal.ii [15], Getfem++ [17] or
Sundance [25], which are all implemented in C++. Conse-
quently, C++ is chosen for the implementation of ViennaCL.

For accessing GPUs, the two main branches are CUDA [14]
and OpenCL [20]. While CUDA is tailored to the specific ar-
chitecture of NVIDIA GPUs, the first royalty-free standard
for cross-platform parallel programming, OpenCL, provides
much higher flexibility with respect to the underlying hard-
ware. Thus, OpenCL supports a superset of the hardware
supported by CUDA and is not limited to GPUs. Moreover,
CUDA kernels need to be precompiled by a separate com-
piler, while OpenCL allows just-in-time compilation of the
source code on the target machine. The latter approach is
especially attractive for developers, because this allows to
create header-only libraries. For these reasons, OpenCL is
chosen for low level hardware programming.

The major design goal of ViennaCL is to be convenient and
easy to use. For simple integration into existing projects, Vi-
ennaCL is a header-only library, which simplifies the build
process considerably. On the other hand, initialization and
management of OpenCL is done completely in the back-
ground and is discussed in the following subsections.

2.1 Hardware Initialization
A common approach in parallel software such as PETSc [10]
is to rely on dedicated initialization routines that have to be
called by the library user prior to any use of other func-
tionality. In ViennaCL, hardware initialization is automat-
ically triggered when the first object of a type provided by
ViennaCL such as scalar or vector is created. In the back-
ground, available devices are queried. If a suitable GPU is
available, it is then used for all calculations, otherwise Vien-
naCL searches for a CPU supported by the OpenCL imple-
mentation. The simultaneous use of multiple devices is not
included in version 1.0.5 of ViennaCL, because multi-device
support was added to OpenCL only recently [20].

2.2 Source Code Compilation
The compilation of OpenCL source code at each run of Vi-
ennaCL leads to additional setup costs during the automat-
ically triggered initialization phase. A full compilation of all
OpenCL sources included in ViennaCL takes several seconds
and may be too long for certain applications. Therefore, Vi-
ennaCL groups sources into smaller compilation units asso-
ciated with the basic types and the underlying floating point

precision. This allows a on-demand compilation: The first
time an object of a particular type is created, all OpenCL
kernels associated with that particular type are compiled. A
more fine-grained compilation on a per kernel basis, which
compiles a kernel at the first invocation, turned out to have
larger overall setup costs in most cases. This just-in-time
compilation reduces setup times to a bare minimum.

2.3 Transfer between Host and Device
Prior to any calculations on GPUs, the data needs to be
transferred from the host memory to the OpenCL device
memory (e.g. GPU RAM). Even if ViennaCL is used on
multi-core CPUs, data also needs to be set up accordingly
in the OpenCL layer.

Since every data transfer from host memory to device mem-
ory and back from the device memory to host memory can
be seen as a copy operation, ViennaCL reuses the conven-
tions introduces with the Standard Template Library (STL)
(see e.g. [24]). In order to copy all entries of a vector cpu_vec
from the host to a vector gpu_vec in the GPU memory, the
call

1 copy(cpu_vec .begin (),
2 cpu_vec .end (),
3 gpu_vec .begin ());

is sufficient. The member functions begin() and end() return
iterators pointing to the beginning and the end of the vector
respectively. Thus, programmers acquainted with the itera-
tor concept and the STL can reuse their knowledge. More-
over, parts of a vector can be manipulated easily and also
plain pointers to CPU data can be supplied. A shorthand
notation for the above code line is

1 copy(cpu_vec , gpu_vec );

which only requires that the begin() and end() member func-
tions are available for the respective type of cpu_vec.

For dense matrix types, the iterator concept could also be
used in principal, but matrix dimensions would have to be
supplied in addition. Instead, data transfer from a matrix
cpu_matrix on the host, no matter if dense or sparse, to a
matrix gpu_matrix on the device is accomplished with

1 copy(cpu_matrix , gpu_matrix );

For this generic interface a number of type requirements
needs to be imposed on the type of the dense cpu_matrix,
which are as follows:

• A member function size1() provides the number of
rows

• A member function size2() provides the number of
columns

• Entries are accessed using the parenthesis operator
with index range starting at zero.

These conventions are fulfilled by uBLAS types, so data set
up in a dense uBLAS matrix can exchanged with ViennaCL
with a single line of code. Library users willing to use a
dense matrix type not fulfilling these requirements have to
provide a wrapper class.



For sparse matrix types, instead of overloaded parenthesis
operators, data must be accessible via iterators as in uBLAS
[8]. As an alternative using only STL types, a sparse matrix
can also be supplied in a vector of maps, i.e.

1 vector < map <unsigned int , NumericT > >

where NumericT is either float or double.

To modify individual entries of a vector or a dense matrix
located on the OpenCL device, overloaded operators are pro-
vided. Sparse matrix types cannot be manipulated directly
in OpenCL memory in ViennaCL 1.0.5. For example, set-
ting the fifth element of a vector gpu_vec to seven, the line

1 gpu_vec (4) = 7;

is sufficient. Note that the indices start with zero. Under
the hood, the parenthesis operator in gpu_vec(4) returns a
proxy class, for which the assignment operator is overloaded
and the transfer from host to device is initiated. However,
direct initialization of all entries on the GPU as in

1 // one possible initialization of device
2 // memory (not recommended!)
3 for (int i=0; i <100000; ++i)
4 gpu_vec (i) = i;

is not recommended, because each update initiates a sep-
arate transfer with a significant overhead. Thus, the loop
above takes four to five orders of magnitude longer than for
pure host types. A much faster alternative is

1 std ::vector <NumericT > cpu_vec (100000) ;
2 for (int i=0; i <100000; ++i)
3 cpu_vec (i) = i;
4 copy(cpu_vec , gpu_vec );

which has only small overhead due to creation of the tempo-
rary vector cpu_vec and the copy operation at the end of the
for-loop. Consequently, it is recommended to fully set up
the data (i.e. vectors, matrices) on the CPU host, then copy
to the device and start processing the data with ViennaCL.

2.4 Kernel Execution
To start an OpenCL kernel, arguments need to be set and
several parameters need to be supplied using the C inter-
face. In ViennaCL, however, operator overloads and other
abstraction mechanisms in C++ allow an encapsulation of
all these details. For example, the addition of two vectors
vec2 and vec3, typically written in C++ using operator over-
loads as

1 vec1 = vec2 + vec3;

requires the launch of the appropriate OpenCL kernel with
the memory locations and the vector lengths as kernel argu-
ments. All these details are encapsulated, so that users of
ViennaCL do not have to deal with OpenCL internals.

3. BASIC LINEAR ALGEBRA
There are many linear algebra libraries available in C++,
one of the most commonly used is uBLAS [8] included in the
peer-reviewed Boost libraries [3]. In contrast to early imple-
mentations of BLAS functionality in FORTRAN, overloaded
operators are used in uBLAS whenever appropriate. Vien-
naCL accounts for the broad acceptance of the approach by

uBLAS and provides an interface that is to a large extent
a subset of that of uBLAS. More precisely, any code for al-
gorithms using linear algebra operations from ViennaCL is
required to be also valid when using uBLAS objects. This
simplifies testing and verification on the one hand and is a
benefit for uBLAS library users due to reusable algorithms
on the other hand.

The basic types used for linear algebra operations on BLAS
level 1 and 2 are the following:

1 scalar <NumericT > s; // scalar
2 vector <NumericT > v; // vector
3 matrix <NumericT > m; // dense matrix
4 compressed_matrix <NumericT > c1; //CSR
5 coordinate_matrix <NumericT > c2; //(i,j,aij)

Here, NumericT denotes the underlying floating point type
(either float or double). The compressed_matrix type stores
a sparse matrix in a compressed sparse rows format (see
e.g. [21]), while coordinate_matrix stores all matrix entries
as triplets (i, j, aij), where i is the row index, j is the column
index and aij is the corresponding entry.

BLAS functionality in ViennaCL can be invoked similarly
to uBLAS using overloaded operators:

1 // BLAS level 1
2 // x, y and z are vectors
3 y = 2.0 * x;
4 z = x + y;
5 x += 3.1415 * z;
6 NumericT n1 = norm_1 (x);
7 NumericT n2 = norm_2 (y);
8 NumericT ninf = norm_inf (z);
9 plane_rotation(x, y, n1 , n2);

The first three code lines manipulate vectors using over-
loaded operators. Unlike in naive C++, where expressions
like x += 3.1415 * z; would lead to a temporary object for
3.1415 * z, none of the expressions above leads to a tempo-
rary object due to the use of expression templates [27, 28].
Internally, only a single multiply-add kernel is called for this
example with vectors arguments x, z and scalar argument
3.1415. Temporary objects on GPUs are much more detri-
mental for performance and should thus be avoided, since
allocation has to be done via the OpenCL layer. Lines 6 to
8 in the above snippet compute the l1-, l2- and l∞-norm of
the respective function argument. The last line performs a
plane rotation of the argument vectors as required by BLAS
level 1.

On BLAS level 2, ViennaCL and uBLAS are also fully com-
patible:

1 // BLAS level 2
2 // x, y are vectors , A is a matrix
3 y = prod(A, x); //matrix -vector product
4 x = prod(trans(A), x); // transposed product
5 y = alpha * prod(A, x) + beta * y
6 y = solve (A, x, tag); // triangular solver
7 inplace_solve(A, x, tag);
8 A += alpha * outer_prod (x,y); // rank1 update

Lines 3 to 5 show matrix vector products are handled. Lines
6 and 7 call a triangular solver for dense matrices, where the
variable tag is either upper_tag, lower_tag, unit_upper_tag or
unit_lower_tag and is used to choose the dense linear solver.



4. ITERATIVE SOLVERS
In many applications such as the discretization of partial
differential equations using finite element or finite difference
methods, large sparse systems of linear equations need to
be solved. While direct methods can be used for moder-
ate problem sizes, iterative solvers are necessary for large
systems of equations. The BLAS levels defined for sparse
matrices [16] are not fully implemented in ViennaCL 1.0.5
yet, but the most important sparse operation, namely sparse
matrix vector products, is provided and serves as a building
block for iterative solvers.

The choice of a suitable iterative solver strongly depends on
the properties of the system of linear equations. ViennaCL
1.0.5 provides the following three iterative solvers, which
cover most application areas:

• Conjugate Gradient (CG) [19] for the solution of sym-
metric, positive definite systems.

• Stabilized Bi-Conjugate Gradient (BiCGStab) [26] for
positive definite systems.

• Generalized Minimum Residual (GMRES) [22, 29] for
general systems.

Since no iterative solvers are provided by uBLAS, the in-
terface for the iterative solvers was designed such that it
naturally extends the existing solver interface for the trian-
gular solvers. In ViennaCL, the BLAS level 2 call for dense
matrices

1 y = solve(A, x, tag);

is extended to support the additional tags cg_tag, bicgstab_tag
and gmres_tag, hence the solvers can be called using

1 // CG solver :
2 result = solve(matrix , rhs , cg_tag ());
3 // BiCGStab solver :
4 result = solve(matrix , rhs , bicgstab_tag());
5 // GMRES solver :
6 result = solve(matrix , rhs , gmres_tag ());

Additional solver parameters can be passed to the construc-
tors of these tags to specify tolerances and maximum itera-
tion counts. For example, a relative tolerance of 10−8 and
at most 200 iterations for a CG solver can be set with the
line

1 result =solve(matrix ,rhs , cg_tag (1e -8 ,200) );

Since uBLAS and ViennaCL are mostly interface compati-
ble, the generic implementation of the iterative solvers allows
to directly reuse them with uBLAS types. Thus, the same
iterative solver code allows to run the iterative solver either
on GPUs or multi-core CPUs using ViennaCL or on a single
CPU core using uBLAS. For other matrix and vector types,
a wrapper facility allows library users to customize free func-
tions such as prod() for matrix-vector products, norm_2() for
computing the l2-norm or inner_prod() for computing inner
products to fit other matrix and vector types from external
libraries.

The convergence of iterative solvers can be greatly improved
by the use of preconditioners. ViennaCL 1.0.5 provides an
optional incomplete LU factorization (ILUT) preconditioner
with threshold [21], other preconditioners are in prepara-
tion. The ILUT preconditioner is due to its inherent serial
structure always computed and applied on the CPU, thus
the preconditioner is likely to serve as a bottleneck for an
otherwise GPU accelerated iterative solver.

Preconditioners are supplied as an optional fourth argument
to the function solve(). For example, an ILUT precondi-
tioner can be used within a conjugate gradient solver by
writing

1 // Set up ILUT
2 ilut_precond < compressed_matrix <NumericT > >
3 ilut(matrix , ilut_tag ());
4

5 // CG solver with ILUT preconditioner:
6 result = solve(matrix , rhs , cg_tag (), ilut);

Additional parameters for ILUT can be provided to the con-
structor of ilut_tag similar to the specification of parame-
ters in solver tags. Again, the preconditioner can be used
both for uBLAS types and for ViennaCL types. The generic
solver interface also allows to provide custom precondition-
ers, the only requirement is that the parenthesis operator is
defined for a vector argument.

5. CUSTOM COMPUTE KERNELS
Unlike other libraries, ViennaCL directly supports user-defined
compute kernels written in OpenCL. The user can fully fo-
cus on the kernel, since details of the underlying OpenCL
implementation are handled internally by ViennaCL.

For example, a kernel for elementwise products of two vec-
tors is the following:

1 __kernel void elementwise_prod(
2 __global const float * vec1 ,
3 __global const float * vec2 ,
4 __global float * result ,
5 unsigned int size)
6 {
7 for (int i = get_global_id(0);
8 i < size;
9 i += get_global_size(0) )

10 result [i] = vec1[i] * vec2[i];
11 }

vec1 and vec2 denote the operands, result is the result vector
and size the length of the vectors. Details on the OpenCL
programming language, which is a subset of C with some
extensions for parallelism, can be found in the specification
[20], where in particular the keywords __kernel, __global

and the functions get_global_id() and get_global_size()

are explained. With a few additional code lines, the above
kernel can be launched for three ViennaCL vectors of type
vector<float>.

The possibility to easily include custom compute kernels in
ViennaCL allows to run a long chain of possibly custom op-
erations on the GPU without the overhead of copying data
between host and device. For example, a custom matrix-
vector multiplication kernel could be required for a spe-
cialized matrix of type, say, A. After writing the custom
OpenCL kernel and overloading



Compute Device float double

Intel i7 960, single core 0.33 0.32

Intel i7 960, ViennaCL 1.98 0.85

NVIDIA Geforce GTX 470 1.88 1.66

ATI Radeon HD 5850 0.86 0.89

Table 1: Computational speed (in GFLOPs) for
inner products of vectors with 3 000 000 entries.
Multiply-add operations are counted as single float-
ing point operations.

Compute Device float double

Intel i7 960, single core 0.17 0.16

Intel i7 960, ViennaCL 1.06 0.81

NVIDIA Geforce GTX 470 1.71 1.10

ATI Radeon HD 5850 1.30 0.93

Table 2: Computational speed (in GFLOPs)
for sparse matrix-vector multiplication using com-

pressed_matrix. The 65 025 matrix rows have seven
nonzero entries on average. Multiply-add operations
are counted as single floating point operations.

1 prod(A & a, vector <T> & b);

for matrix-vector products, objects of type A can directly
be passed to the iterative solvers provided. Thus, the pos-
sibility to provide custom compute kernels and the generic
implementation of the algorithms in ViennaCL result in high
flexibility for the library user.

6. PERFORMANCE
The performance of ViennaCL, version 1.0.5, is compared
on GPUs from ATI and NVIDIA and a CPU from Intel.
uBLAS is used to measure the performance on a single CPU
core. The test platform was a Intel Core i7 960 with 4 phys-
ical cores, 8 logical cores, and 6 Gigabytes of random access
memory, running a 64-bit Linux kernel. Stream SDK 2.2 was
used with kernel of version 2.6.33 and GPU driver version
10.6. The Stream SDK was also used for running ViennaCL
in parallel on the CPU. We observed that benchmark results
for ViennaCL using Stream SDK under Windows 7 are by
up to 30 percent better, especially when using double preci-
sion, hence the performance of ViennaCL is likely to improve
with better OpenCL support in the future. For NVIDIA
GPUs, a kernel with version 2.6.34 and a GPU driver, ver-
sion 195.36.24, was used. When evaluating the following
benchmark results in computational speed per money, it has
to be considered that the CPU is by a factor of around two
more expensive than each of the GPUs. All compute kernels
are launched with the default settings in ViennaCL, namely
128 work groups with 128 work items each.

In Tab. 1 benchmark results for inner products are shown.
Performance gains on GPUs and a fully loaded multi-core
CPU of a factor of up to six compared to a single CPU core
are observed. In double precision, the parallel execution on
the CPU still results in a performance gain of a factor 2.6. A

curiosity is that the OpenCL implementation of the Stream
SDK provides better performance in double precision than
in single precision on the GPU. We assume that this is due
to the early stage of OpenCL support by ATI.

Execution times for matrix-vector products in Tab. 2 de-
pict that the performance benefit over a single CPU core is
around a factor of ten in single precision and about a fac-
tor of seven in double precision. Running ViennaCL on the
CPU results in about 60 to 90 percent of the performance
of the GPUs. We note that additional notable performance
gains on GPUs can be obtained by the use of hybrid for-
mats [11,12], which are not included in ViennaCL yet. Ad-
ditionally, we observed that the use of vector data types in
the OpenCL kernels doubles performance on the GTX 470
in this case.

Tab. 3 lists the execution times for two iterative solvers. The
CG solver is accelerated by a factor of five on the NVIDIA
GPU, and only slightly on the ATI GPU. The performance
gain for BiCGStab is comparable to that of CG. Using the
ATI Stream SDK, a significant overhead of OpenCL ker-
nel launches becomes apparent: While the performance of
sparse matrix vector products, inner products and vector ad-
ditions is comparable on the two GPUs, a call of several dif-
ferent kernels has a much larger overhead using the Stream
SDK than for the NVIDIA implementation of OpenCL.

The observed performance gains of GPUs over CPUs for it-
erative solvers are essentially determined by the available
memory bandwidth, because the iterative solvers use BLAS
level 1 and 2 functions only. Further speedups can possibly
be obtained if parts of the assembly algorithm for the linear
system of equations are also ported to OpenCL. Higher per-
formance gaps are usually observed for BLAS level 3 func-
tions, e.g. matrix-matrix products, which are computation-
ally more demanding than lower BLAS levels. However, no
BLAS level 3 functionality is provided in version 1.0.5 of
ViennaCL, but planned for future versions.

7. OUTLOOK
With the possibility of using ViennaCL on many different
platforms, a global number of work groups and work items is
not sufficient to yield reasonable performance on all target
devices. While the choice is easier on CPUs due to the
smaller number of cores on a die, it has a much stronger
influence on GPUs. In particular, a higher number of work
items or work groups does not necessarily result in better
performance due to synchronization overhead. Thus, work
on an automated tuning environment is in progress, which
aims at finding the best set of parameters for each compute
kernel. Performance gains of about 25 percent have already
been observed for the operations compared in Sec. 6.

Having fast sparse matrix vector product available, an im-
plementation of eigenvalue computations using either Lanc-
zos’ or Arnoldi’s method is in progress. Simple implementa-
tions often suffer from severe round-off errors that introduce
so-called ghost eigenvalues, therefore orthogonality of the
Krylov basis has to be ensured by e.g. partial reorthogonal-
ization [23]. The time consuming matrix-vector and inner
products can then be carried out on the GPU or the CPU
in parallel.



Compute Device CG, float CG, double BiCGStab, float BiCGStab, double

Intel i7 960, single core 0.23 0.21 0.25 0.22

Intel i7 960, ViennaCL 0.73 0.44 0.52 0.33

NVIDIA Geforce GTX 470 1.15 0.87 1.16 0.73

ATI Radeon HD 5850 0.40 0.35 0.20 0.22

Table 3: Computational speed (in GFLOPs) for the CG and BiCGStab solvers without preconditioner. The
65 025 matrix rows have seven nonzero entries on average. Multiply-add operations are counted as single
floating point operations.

8. CONCLUSIONS
The newly released open source library ViennaCL is pre-
sented in this work. It allows to use the huge computational
resources of both GPUs and multi-core CPUs without go-
ing into the details of the underlying hardware. Thanks to
a common programming interface with uBLAS, ViennaCL
library users benefit on the one hand from the reuse of a
widely accepted programming interface and on the other
hand from the implementation of the three iterative solvers
CG, BiCGStab and GMRES provided by ViennaCL, which
can also directly be used with uBLAS types as well as with
linear algebra types from other libraries using the generic
wrappers provided. Benchmarks show that the library pro-
vides good performance on both GPUs and multi-core CPUs
for large amounts of data. Performance gains of up to a fac-
tor of ten compared to a single CPU core can be observed
for common linear algebra operations. Due to the use of
OpenCL, ViennaCL can be run on many different parallel
architectures.

9. ACKNOWLEDGEMENTS
Karl Rupp gratefully acknowledges support by the Gradu-
ate School PDEtech at the Vienna University of Technol-
ogy. The authors wish to thank Prof. Siegfried Selberherr
for providing a test platform for benchmarking and regres-
sion tests. This work has been supported by the European
Research Council through the grant #247056 MOSILSPIN.

10. REFERENCES
[1] AMD Core Math Library for GPUs.

http://developer.amd.com/gpu/acmlgpu/pages/default.aspx.

[2] BLAS homepage. http://www.netlib.org/blas/.

[3] Boost C++ Libraries. http://www.boost.org/.

[4] CULA. http://www.culatools.com/.

[5] Cusp. http://code.google.com/p/cusp-library/.

[6] MAGMA - Matrix Algebra on GPU and Multicore
Architectures. http://icl.cs.utk.edu/magma/.

[7] Open Numerical Library.
alice.loria.fr/index.php/software/4-library/23-
opennl.html.

[8] uBLAS Library.
http://www.boost.org/doc/libs/release/libs/numeric/ublas/.

[9] ViennaCL. http://viennacl.sourceforge.net/.

[10] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. Curfman McInnes, B. F. Smith,
and H. Zhang. PETSc Web Page.
http://www.mcs.anl.gov/petsc/.

[11] M. M. Baskaran and R. Bordawekar. Optimizing
Sparse Matrix-Vector Multiplication on GPUs. IBM
RC24704, 2008.

[12] N. Bell and M. Garland. Efficient Sparse
Matrix-Vector Multiplication on CUDA. NVIDIA
Technical Report NVR-2008-004, 12, 2008.

[13] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder.
Sparse Matrix Solvers on the GPU: Conjugate
Gradients and Multigrid. ACM Trans. Graph.,
22:917–924, July 2003.

[14] NVIDIA CUDA.
http://www.nvidia.com/object/cuda home new.html.

[15] deal.II . http://www.dealii.org/.

[16] I. S. Duff, M. A. Heroux, and R. Pozo. The Sparse
BLAS. Technical Report TR/PA/01/24, Sept. 2001.

[17] Getfem++. http://home.gna.org/getfem/.

[18] D. Göddeke, R. Strzodka, and S. Turek. Accelerating
Double Precision FEM Simulations with GPUs.
Proceedings of ASIM 2005 - 18th Symposium on
Simulation Technique, 2005.

[19] M. R. Hestenes and E. Stiefel. Methods of Conjugate
Gradients for Solving Linear Systems. Journal of
Research of the National Bureau of Standards, 49,
1952.

[20] Khronos OpenCL. http://www.khronos.org/opencl/.

[21] Y. Saad. Iterative Methods for Sparse Linear Systems,
Second Edition. Society for Industrial and Applied
Mathematics, April 2003.

[22] Y. Saad and M. H. Schultz. GMRES: A Generalized
Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems. SIAM J. Sci. Stat.
Comput., 7(3):856–869, 1986.

[23] H. D. Simon. The Lanczos Algorithm with Partial
Reorthogonalization. Mathematics of Computation,
42(165):115–142, January 1984.

[24] B. Stroustrup. The C++ Programming Language.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[25] Sundance.
http://www.math.ttu.edu/ klong/Sundance/html/.

[26] H. A. van der Vorst. Bi-CGSTAB: A Fast and
Smoothly Converging Variant of Bi-CG for the
Solution of Non-Symmetric Linear Systems. SIAM
Journal on Scientific and Statistical Computing,
12:631–644, 1992.

[27] D. Vandevoorde and N. M. Josuttis. C++ Templates.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[28] T. Veldhuizen. Expression Templates. C++ Report,
7(5):26–31, June 1995.

[29] H. F. Walker and L. Zhou. A Simpler GMRES.
Numer. Linear Algebra Appl., 1(6):571–581, 1994.


