
ViennaIPD - An Input Control Language for Scientific Computing

Josef Weinbub
Karl Rupp

Siegfried Selberherr

Institute for Microelectronics, Technische Universität Wien
Gußhausstraße 27-29 / E360

A-1040 Vienna, Austria
E-mail: {weinbub|rupp|selberherr}@iue.tuwien.ac.at

ABSTRACT

A powerful control language, named ViennaIPD, has
been developed. The library based software is capable
of reading complex input datasets which can be accessed
from C/C++ applications by a programming interface.
ViennaIPD supports a convenient C-like input file lan-
guage, object oriented structuring of datasets, powerful
inheritance mechanisms and a unit system. The input
file language as well as the programming interface is dis-
cussed in detail.

INTRODUCTION

Applications for scientific computing require a power-
ful control language to satisfy the need of control pa-
rameters, e.g. material properties, models to take into
account, model parameters, process definitions, simu-
lation modes, iteration schemes, and numerical behav-
ior [1, 2, 3, 4]. As a result, control files grow in size,
which results in decreased maintainability. Therefore a
powerful control language has been developed as part of
the MINIMOS-NT simulation software package [5, 6].
To enlarge the field of application the control language
has been extracted, revisited, and packaged to be dis-
tributable as a standalone control language named Vi-
ennaIPD. ViennaIPD offers a powerful inheritance con-
cept, unit conversion capabilities and the ability to di-
rectly access existing input files. The latter is especially
of interest for reasons of post-processing simulation re-
sults. Figure 1 depicts a comprehensible overview how
ViennaIPD is used.

ViennaIPD provides a powerful input file language
which aims to deal with the manifold parameter de-
mands of simulation software. The library itself is writ-
ten in C, however, applications can be based on either
C or C++. The most fundamental element is a vari-

able. To describe dependencies to other variables, a
variable contains an expression, that is evaluated at run-
time. Different variable types are supported as well as
accessibility control. Furthermore, a section provides
a means of structuring variables to enable associative
variable definitions. A section holds an arbitrary set of
variables and subsections.

a = "A short text";

b = 2.2;

SecA

{

 ext a = 1;

 d = 2 * a;

}

SecB : SecA

{

 d = 3 * a;

 SubSecC

 {

 c = 1;

 }

}

Input File

ViennaIPD

#include "ipdP.h"

int main(int argc, char** argv)

{

 ipdChar *s;

 // Read a ViennaIPD input file

 ipdReadInputDeck(argv[1]);

 // Access data

 ipdGetStringByName("~a", &s);

 printf("Value of ~a: %s\n", s);

 // Manipulate data

 ipdSetIntegerByName("~SecA.a", 2);

 printf("Value of ~SecA.a set to: %d\n", 2);

 return 0;

}

Application

1.

2.

3.

c

a

b

SecA

SecB

a

d

a

d

SubSecC

4.

Figure 1: ViennaIPD workflow. The application passes the
filename of the input file to ViennaIPD (1.). The input file
is used to populate the tree based datastructure (2.). The
data can be accessed (3.) and manipulated (4.) by the
application.

Therefore any kind of data set hierarchy can be built.
In this context, inheritance of sections is supported to
enable, for example, reusability of section elements. Fi-
nally a large set of functions is provided to enable math-
ematical computations within the input files.
The paper is organized as follows: The first section pro-
vides an overview of the ViennaIPD control language,
whereas the second section outlines the programming
interface. Furthermore, the third section depicts a use
case example. Finally, the fourth section compares Vi-
ennaIPD to various other input control approaches.

34

INPUT FILE SPECIFICATION

The input file specification is based on a comprehensible
language. The usage is similar to common programming
languages, e.g. C. Additionally, object oriented features
are provided to enable structuring of large data sets,
i.e. inheritance mechanisms. Furthermore, a powerful
unit system is provided which supports the validity of
computations based on quantities.

Variables

An arbitrary number of variables can be defined. The
general definition of a variable is

1 <type> <variable name> = <expres s ion >;

<type> must be a valid variable type. The available
variable types are listed in Table 1. Note that if no
<type> is mentioned, the default key type is used.
<variable name> can be of any length, can contain
capital and small letters, an underscore, and numbers.

<type> Description
ext external variable - read- and writeable
key keyword variable - read-only (default)
aux auxiliary variable - hidden

Table 1: Types of Variables

However, the name must not begin with a number. An
expression can be assigned to a variable by using the
assignment operator = and a valid data-type (Table 2).

Type Example
Boolean a = true;

Integer a = 3;

Real a = 3.1415;

Complex a = 4.3 + 3.1 j;

Quantity a = 3.1415 "m/s";

String a = "This is a string";

Array a = [1, "pi", 3 A];

Table 2: Types of Data

The following snippet depicts a few examples which
make use of the available variable types.

1 s ome f l oa t = 3 . 3 ;
2 key some text = ”some Text” ;
3 ext x = 32 ;
4 ext y = 4 ;
5 aux a = sq r t (x ∗ x + y ∗ y) ;
6 ex = x / a ;
7 ey = y / a ;

Lines 1,2,6,7 depict keyword variables. Hence, the as-
signed data can be accessed only, not altered. Lines 3,4
depict external variables, for which data can be accessed
and altered. Line 5 outlines an application case for the
auxiliary variable. This variable cannot be accessed by
the programming interface, it is hidden.

However, this variable type can be used to temporarily
store data, for example the result of a computation.

Sections

ViennaIPD supports structures of variables, so called
sections, to manage large input files. A section is defined
with

1 <s e c t i o n name> { . . . }

The following snippet depicts a section named Solve

with a read-only keyword variable.

1 Solve { maxStepSize = 1e30 ; }

Sections can be nested to arbitrary depth

1 BaseSect ion {
2 SubSect ion {
3 SubSubSection { }
4 }
5 }

ViennaIPD enables also inheritance of sections.

1 BaseSect ion { x1 = −3; }
2 Der ivedSect ion : BaseSect ion ;

DerivedSection is inherited from BaseSection. Con-
sequently, DerivedSection contains all elements (vari-
ables and subsections) of BaseSection.
Note, that the variables of BaseSection transparently

exist in DerivedSection. Hence, if a variable in
BaseSection changes, it changes in DerivedSection

too.
Furthermore, multiple inheritance is supported.

1 BaseSect ion1 { a = 1 ; }
2 BaseSect ion2 { b = 3 ; }
3 Der ivedSect ion : BaseSect ion1 , BaseSect ion2 ;

DerivedSection consists of two variables a and b in-
herited from BaseSection1 and BaseSection2, respec-
tively.
Additionally, conditional inheritance enables to inherit
from sections based on specific conditions.

1 Sec t i on : BaseSect ion1 ? expres s ion1 ,
2 BaseSect ion1 ? expres s ion2 ,
3 . . . { }

Conditional inheritance is an extension to multiple in-
heritance. Several base sections can be specified for in-
heritance, an expression can be assigned to each one.
The following snippet depicts the usage.

1 Switch = 0 ;
2 Der ivedSect ion : BaseSect ion1 ,
3 BaseSect ion2 ? (Switch > −1) ,
4 BaseSect ion3 ? (Switch < 1)
5 { }

DerivedSection is always inherited from
BaseSection1. As Switch is 0, the conditions for
BaseSection2 and BaseSection3 both hold.

35

Therefore, DerivedSection is additionally inherited
from BaseSection2 and BaseSection3. If Switch

is set to 2, DerivedSection is solely inherited from
BaseSection1 and BaseSection2.
Elements of inherited sections can be locally modified.

1 BaseSect ion {
2 x = 1 ;
3 y = 2 ;
4 }
5 Der ivedSect ion : BaseSect ion { y = 4 ; }

DerivedSection consists of the two variables x and
y, where the variable x is inherited from BaseSection

and the variable y is locally modified. So the vari-
able DerivedSection.x equals 1 and the variable
DerivedSection.y equals 4.

Functions

ViennaIPD enables the use of functions within input
files. Functions can be used in expressions which are
stored in variables.

1 <type> <variable name> = <funct ion >(parameters) ;

An arbitrary number of parameters is supported.

1 a1 = func1 () ; // 0 Parameter

2 a2 = func2 (1 + 2) ; // 1 Parameter

3 a3 = func3 (” h e l l o ” , a1) ; // 2 Parameter

ViennaIPD provides built-in functions, for example
a large set of mathematical functions, e.g. sin(),

pow(), sqrt(), to list a few of them. The following
snippet depicts the computation of the sine of a com-
plex number.

1 a = s i n (4 . 42 + j ∗ 5 . 9) ;

Furthermore support functions are provided, e.g. if()

statement, conversion functions, array sizes, random
number generator, to name a few.

Units

ViennaIPD provides a powerful unit system. A unit is
used in combination with the quantity datatype (Table
2) and consists of a valid unit name, of which many are
provided. Quantity examples are:

1 q1 = 3 .0 A;
2 q2 = 5 .5 ”V ∗ A” ;
3 q3 = 4 .2 ”kg m/ s s ” ;

Note that if a quantity is based on several unit names,
double quotes have to be used (Lines 2,3). Unit names
can be separated by a whitespace or an asterisk * (Line
2). The use of a single slash / indicates the beginning
of the denominator. Hence, Line 3 represents the unit
kg m/s2. Quantity based computations are checked for
semantically correct operations. Therefore, an error oc-
curs, if two quantities with different units are summed
up, as this would result in a mixed up physical quantity
and, therefore, looses its validity. The following snippet
outlines this behavior.

1 Q1 = 3 ”A” ;
2 Q2 = 2 ”m” ;
3 Q3 = Q1 ∗ Q2; // OK

4 Q4 = Q1 + Q2 ; // Error

PROGRAMMING INTERFACE

The ViennaIPD Programming Interface is based on the
C programming language. It provides an interface to the
internal tree-based datastructures of ViennaIPD. Data
can be traversed and accessed.

Interface Setup

To be able to use the interface the ViennaIPD header
file has to be included.

1 #inc lude ” ipd . h”

The following code snippet depicts the initialization and
the population of the datastructure from an input file.

1 // basic initialization

2 i p d I n i t (NULL, NULL) ;
3 // create a new database

4 ipdCreateBase (”NameOfTheDatabase” , 0) ;
5 // read the inputfile

6 ipdReadInputDeck (argv [1]) ;

Accessing Data

Specialized getter and setter functions are provided to
access and alter specific data types. The following code
snippet depicts the reading and writing process based
on these functions.

1 // declare a variable of type long

2 ipdLong i ;
3 // get the "c" integer value

4 ipdGetIntegerByName (”∼c” , &i) ;
5 // set the "c" integer value

6 ipdSetIntegerByName (”∼c” , 2) ;

Note the ∼ prefix, which indicates the root level of the
datastructure hierarchy. Therefore variables can be ac-
cessed by absolute path addressing. For example access-
ing an integer variable named a within a section named
BaseSection would be implemented by the following:

1 // declare a variable of type long

2 ipdLong i ;
3 // get the "BaseSection" member value "a"

4 ipdGetIntegerByName (”∼BaseSect ion . a” , &i) ;

Data can also be accessed without absolute addressing.
This approach can be utilized by setting the current
section. In relation to the previous example, the current
section can be set to BaseSection as follows:

1 ipdSetCSByName(”∼BaseSect ion ”) ;

Consequently, the data can be accessed directly

1 // get the integer data associated with the "a"

2 // variable in the current section

3 ipdGetIntegerByName (”a” , &i) ;

36

Iterators

ViennaIPD provides iterators for convenient traversal
of datastructures. The following snippet creates a new
iterator on the root level

1 // define a new iterator

2 i p d I t e r a t o r t ∗ iNode = NULL;
3 // set the iterator to traverse the root level

4 ipdIteratorNewAtRootSect ion(&iNode , ipdANY) ;

All elements, e.g. variables, sections, on the root level
can be traversed.

1 // traverse as long as there are elements on

2 // the root level

3 while (i p d I t e r a t o r I sVa l i d (iNode)) {
4 // retrieve the name of the current element

5 ipdConstStr ing itemName =
6 ipdIteratorGetItemName (iNode) ;
7 // is the element a variable?

8 i f (ipdIteratorGetType (iNode) == ipdVARIABLE)
9 p r i n t f (” v a r i ab l e : %s \n” , itemName) ;

10 // is the element a section?

11 else

12 i f (ipdIteratorGetType (iNode) == ipdSECTION)
13 p r i n t f (” s e c t i o n : %s \n” , itemName) ;
14 // increment the iterator to point

15 // to the next element

16 ipdIteratorDoNext (iNode) ;
17 }

USE CASE EXAMPLE

The following depicts an exemplary ViennaIPD input
file which contains a small dataset.

1 Elec t rons {
2 uL300 = 0.143 ”mˆ2/V∗ s ” ;
3 uLImin300 = 0.008 ”mˆ2/V∗ s ” ;
4 Cref300 = 1.12 e17 ”cmˆ−3” ;
5 CrefexpT = 3 . 2 ;
6 }
7 Holes : E l e c t rons {
8 uL300 = 460 ”cmˆ2/V∗ s ” ;
9 uLImin300 = 45 ”cmˆ2/V∗ s ” ;

10 Cref300 = 2.23 e17 ”cmˆ−3” ;
11 }

Note the different units for the same parameters in Lines
2,3,8,9. The unit system automatically converts the
units into SI units, hence, the quantities presented in
Lines 8,9 are internally converted to: 0.046m2/s · V
and 0.0045m2/s · V , respectively. Further note, that
Electrons and Holes have different quantities for the
Cref300 parameter, which too get converted (Lines
4,10). Due to inheritance, both sections use the same
value for the CrefexpT parameter (Line 5). The follow-
ing depicts the access of some data of the Holes section.

1 double ul , uLImin ;
2 char∗ uni t ;
3 ipdGetRealQuantityByName (”∼Holes . uL300” ,
4 &ul , &uni t) ;
5 ipdGetRealQuantityByName (”∼Holes . uLImin300” ,
6 &uLImin , &uni t) ;
7 std : : cout << ul << ” ” << uni t << std : : endl ;
8 std : : cout << uLImin << ” ” << uni t << std : : endl ;

COMPARISON

A comparison of different input control software pack-
ages is presented next. The comparison is based on the
following features.

• convenient scripting language: The input language
should be intuitive to scientists with slight back-
ground in programming. This results in an easy fa-
miliarization which, furthermore, reduces the over-
all implementation effort.

• unit system: Typically scientific computing relies
on physical quantities. Hence, it is of major inter-
est to provide a computation facility which respects
units and therefore enables a correct setup of phys-
ical quantities.

• memory consumption: The memory consumption,
for example the peak heap memory usage, should
be kept small.

• execution performance: The input control software
should not decrease the overall execution perfor-
mance of the scientific application.

ViennaIPD is compared to the common scripting
languages, Lua [7], AngelScript [8], and Python [9] in
the following. All of the introduced software packages
are supported with a convenient and intuitive language.

Lua is a so called extension programming language
which extends the functionality of mature programming
languages, like C. Lua is a minimalistic, C based library
which solely exists embedded in host applications. Lua
can be used by different programming languages, e.g.
C, C++, Fortran.
AngelScript is a flexible cross-platform scripting library.
C and C++ functions can be called within an An-
gelScript environment, hence code can be reused effi-
ciently.
Python is a mature programming language, but is also
used as a scripting language. Python offers a C-API,
and a C++ library for Python interoperability is also
available [10].
All these input control languages offer interoperability
with C and C++. Note, that most of the available
programming languages, for example Fortran, are able
to interoperate with C.
In the following, benchmark results are presented and
discussed. The test platform is a PC with an AMD
Phenom II X4 - 965 CPU and 8GB of RAM. The operat-
ing system is a Gentoo Linux 64-bit with a 2.6.32 kernel.

Table 3 depicts a comparison of the peak memory con-
sumption and the execution time of a reference applica-
tion which is driven by the introduced control languages.
To depict the overhead of the input control languages,
the standalone application, without any input control, is
investigated too. The memory usage evaluation is based
on Valgrind [11].

37

Peak Heap Execution

Software Memory Time

[KB] [ms]
No Input Control 0.8 6
Lua 32 18
AngelScript 34 162
Python 2132 627
ViennaIPD 543 32

Table 3: Comparison of peak memory consumption and
execution time.

The following table compares the features of the intro-
duced input control languages.

Software Units Mem Exec

Lua - ++ ++
AngelScript - ++ +
Python ++ o o
ViennaIPD ++ + ++

Table 4: Feature Comparison of input control languages.
Feature status: ++ excellent, + good, o fulfilled, - missing

Consequently, ViennaIPD is especially attractive for ap-
plications which need a robust, fast, and light-weight
unit system at the input file level.

CONCLUSION

A powerful control language for scientific computing has
been introduced. The key features are

• C-like language for input files
• arbitrarily nested expressions
• powerful inheritance mechanisms
• unit system
• C/C++ programming interface

The application usage has been investigated in depth.
Furthermore, the input file specification and the pro-
gramming interface have been discussed in detail. Input
file snippets as well as code snippets for the program-
ming interface have been presented to outline the usage.
ViennaIPD is part of the Viennese TCAD simulation
tools which are provided by the Institute for Microelec-
tronics [12].

REFERENCES

[1] D. Meeker, “Finite Element Method Magnetics
- User’s Manual,” 2007. [Online]. Available:
http://www.femm.info/wiki/HomePage

[2] A. Olabi and A. Grunwald, “Computation of mag-
netic field in an actuator,” Simulation Modelling

Practice and Theory, vol. 16, no. 10, pp. 1728 –
1736, 2008.

[3] J. Iniguez and V. Raposo, “Numerical simulation
of a simple low-speed model for an electrodynamic
levitation system based on a halbach magnet ar-
ray,” Journal of Magnetism and Magnetic Materi-

als, vol. 322, no. 9-12, pp. 1673 – 1676, 2010.

[4] M. Meinel, “FlowSimulator: A Python-controlled
Approach to Unify Future CFD Simulation Work-
flows,” in EuroSciPy 2009, 2009.

[5] S. Wagner et al., “MINIMOS-NT User’s Guide,”
Institute for Microelectronics, Technische Univer-
sität Wien.

[6] R. Klima, “Three-Dimensional Device Simulation
with Minimos-NT,” Dissertation, Technische Uni-
versität Wien, November 2002.

[7] R. Ierusalimschy, L. H. de Figueiredo, and
W. Celes, “Lua 5.1 Reference Manual.” [Online].
Available: http://www.lua.org

[8] “AngelScript Manual.” [Online]. Available:
http://www.angelcode.com/angelscript/

[9] “Python Documentation.” [Online]. Available:
http://www.python.org

[10] “Boost Python C++ Library.” [Online]. Available:
http://www.boost.org

[11] “Valgrind.” [Online]. Available:
http://valgrind.org/

[12] “Institute for Microelectronics, Technis-
che Universität Wien.” [Online]. Available:
http://www.iue.tuwien.ac.at

BIOGRAPHY

JOSEF WEINBUB received the BSc degree in elec-
trical engineering and the degree of ”Diplomingenieur“
in microelectronics from the ”Technische Universität
Wien“ in 2009. He is currently working on his doc-
toral degree, where his scientific interests include mod-
ern programming techniques for scientific computing,
high-performance computing, computational topology
and adaptive mesh generation.
KARL RUPP received the BEng degree in electri-
cal engineering from the ”Technische Universität Wien“
in 2006, the MSc in computational mathematics from
Brunel University in 2007, and the degree of ”Diplomin-
genieur“ in microelectronics and in technical mathemat-
ics from the ”Technische Universität Wien“ in 2009. He
is currently working on his doctoral degree, where his
scientific interests include generative programming of
discretization schemes such as the finite element method
for the use in multiphysics problems.
SIEGFRIED SELBERHERR was born in Austria
in 1955. He received the degree of ”Diplomingenieur“
in electrical engineering and the doctoral degree in tech-
nical sciences from the ”Technische Universität Wien“
in 1978 and 1981, respectively. Dr. Selberherr has been
holding the ”venia docendi“ on computer-aided design
since 1984. Since 1988 he has been the chair professor
of the Institute for Microelectronics. From 1998 to 2005
he served as dean of the Faculty for Electrical Engineer-
ing and Information Technology. His current research
interests are modeling and simulation of problems for
microelectronics engineering.

38

