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We investigate the transport properties of ballistic spin field-effect 
transistors (SpinFET). We show that temperature exerts a 
significant influence on the device characteristics. For the InAs-
based SpinFET an ambient temperature higher than T=150K leads 
to the absence of the ability to modulate the value of the tunneling 
magnetoresistance through changing the bandgap mismatch 
between the channel and the contacts. The length of the 
semiconductor channel impacts significantly the device 
characteristics. A shorter channel is preferred for potential 
operations at room temperature. For the silicon-based SpinFET the 
spin-orbit interaction has to be taken in the Dresselhaus form. We 
demonstrate that silicon fins with [100] orientation exhibit a 
stronger dependence on the value of the spin-orbit interaction and 
are thus preferable for practical realization of SpinFETs. 

Introduction 

The miniaturization of the feature sizes of semiconductor devices, or scaling, leads to 
the possibility to place more transistors on the same chip. A higher density of transistors 
on the chip allows increasing the computational speed of modern computers. However, 
scaling is rapidly approaching the fundamental physics limits. Besides, the present 
technology faces the problem of keeping the power dissipation under control while 
increasing the device density. This signifies that new engineering solutions have to be 
introduced in order to increase integration and computational speed while decreasing the 
power consumption in the future integrated circuits. A promising alternative to the 
electron charge degree of freedom currently used in MOSFET switches is to taking into 
account the electron spin. The spin of an electron possesses several exciting properties 
suitable for future devices. It is characterized by only two projections on a chosen axis – 
orientation up or down, and it can change its orientation rapidly by utilizing an amazingly 
small amount of energy. Thus exploiting electron spin properties in future 
microelectronic devices opens a great opportunity to achieve a performance which 
surpasses the one achieved in the present transistor technology. 

The spin transistor is a switch which utilizes spin properties of electrons. We are 
following the proposal for a spin field-effect transistor (SpinFET) first made by Datta and 
Das (1). The SpinFET concept employs spin-orbit interaction in the channel to modulate 
the current through the device. SpinFETs are composed of two ferromagnetic contacts 
(source and drain), which sandwich the semiconductor channel region. The ferromagnetic 
source contact injects spin-polarized electrons in the semiconductor region. Because of 
the non-zero spin-orbit interaction the electron spin precesses during its propagation 
through the channel. Only the electrons with spin aligned to the drain magnetization can 
leave the channel through the drain contact, thus contributing to the current. The spin-
orbit interaction is controlled electrically by applying an external gate voltage.  
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The total current through the device depends on the relative angle between the 
magnetization direction of the drain contact and the electron spin polarization at the end 
of the semiconductor channel. The spin precession angle �� defined as the difference 
between the orientation of the spin of the electron at the end and at the beginning of the 
semiconductor region is (2) 
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where � is the strength of the spin-orbit interaction, m* is the effective mass of the 
electron, � is the reduced Plack`s constant, and L is the length of the semiconductor 
channel. In the absence of the spin-orbit interaction the electrons propagate with their 
orientation conserved. The strength of the spin-orbit interaction determines the minimum 
length of the semiconductor channel, which will be sufficient to change the orientation of 
the spin to opposite. In case of the material with a strong spin-orbit interaction such as 
InAs the semiconductor channel will be shorter than for a material with weak spin-orbit 
interaction such as silicon.  

Silicon is the main material used by semiconductor industry. Silicon possesses several 
exciting properties attractive for future spin-driven applications: it is predominantly 
composed of nuclei with zero spin and it is also characterized by a weak spin-orbit 
interaction. The spin relaxation in silicon is, therefore, relatively weak, which results in 
large spin life times (3), (4). In experiments, coherent spin propagation through an 
undoped silicon wafer of 350µm thickness was demonstrated (5). Coherent spin 
propagation over such long distances makes the fabrication of spin-based switching 
devices in the near future increasingly likely. 

The two dominant mechanisms of spin-orbit interaction in III-V semiconductor 
heterostructures are of the Rashba and the Dresselhaus type. The Rashba spin-orbit 
interaction is due to the geometrically induced structural asymmetry (6) in the system. 
while the Dresselhaus spin-orbit interaction is caused by bulk inversion symmetry 
breaking (7). The effective Hamiltonian of the spin-orbit interaction due to the 
structurally induced inversion asymmetry (Rashba type) along the z-axis is in the form 
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where �R is the effective electric field-dependent parameter of the spin-orbit interaction, 
px(y) is the electron momentum projection, and �x and �y are the Pauli matrices. This is 
usually the dominant source of the spin-orbit interaction.  

Because silicon is characterized by weak spin-orbit interaction, it has not been 
considered as a candidate for the SpinFET channel material. Recently, however, it was 
shown (8) that thin silicon films in SiGe/Si/SiGe heterostructures can have large values 
of spin-orbit interaction. Interestingly, the Rashba spin-orbit interaction is relatively 
weak; its strength is approximately ten times smaller than the value of the dominant 
contribution which is of the Dresselhaus type with the corresponding effective 
Hamiltonian in the form 
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This major contribution to the spin-orbit interaction is due to interfacial-induced 
disorder which breaks the inversion symmetry. It depends almost linearly on the effective 
electric field (9). For a built-in field of 50kV/cm, the strength of the Dresselhaus spin-
orbit interaction is found to be � � 2�eVnm, which is in agreement with the value 
reported experimentally (10), while �R � 0.1�eVnm. The value of the Dresselhaus spin-
orbit interaction in confined silicon systems is sufficient to consider them for applications 
in SpinFET channels. 

The stronger spin-orbit interaction leads to an increased spin relaxation. The 
D’yakonov-Perel’ mechanism is the main spin relaxation mechanism in the systems with 
the effective spin-orbit interaction [2,3]. In quasi-one-dimensional electron structures, 
however, a suppression of the spin relaxation mechanism is expected (11). Indeed, in case 
of elastic scattering only back-scattering is allowed. Reversal of the electron momentum 
results in the inversion of the effective magnetic field direction. Therefore, the precession 
angle does not depend on the number of scattering events along the carrier trajectory in 
the channel, but is a function of the channel length only. Thus, the spin-independent 
elastic scattering does not result in additional spin decoherence. In the presence of an 
external magnetic field, however, spin-flip processes become possible, and the Elliott-
Yafet spin relaxation mechanism must also be considered (12). 

Model 

To calculate the transport properties of the ballistic spin field-effect transistor we 
consider a model similar to (12) and (13). The Hamiltonian in the ferromagnetic regions 
has the following form in the one-band effective mass approximation:  
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where m*
f  is the effective mass in the contacts, h0=2PEF /(P2+1) is the exchange splitting 

energy with P defined as the spin polarization in the ferromagnetic regions, EF is the 
Fermi energy, and �z is the Pauli matrix; ± in [5] stands for the parallel and anti-parallel 
configuration of the contact magnetization. For the semiconductor region the 
Hamiltonian reads (12), (13) 

,
2
1

2
*

*

2

σμσαδ BgpE
m
p

H Bxy
R

c
s

x +−+=
�

 [6]

    
where m*

s is the subband effective mass, �E is the band mismatch between the 
ferromagnetic and the semiconductor region, g is the Landé factor, �B is the Bohr 
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magneton, B is the magnetic field, and  �* � �xcos	 + �ysin	 with 	 defined as the angle 
between the magnetic field and the transport direction. 

To calculate the dependence of the transport properties on the spin-orbit interaction 
we need the electron eigenfunctions. For the ferromagnetic regions the spin-up and spin-
down eigenstates have the form (1, 0)† and (0, 1)†, respectively. The wave function in the 
left contact has the following form: 
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where [7] represents  the  incoming  spin-up  electrons  and  [8]  the  incoming  spin-down
electrons, correspondingly, ( )

2
0

* /)(2 �� hEmk f=↓↑ is  the  wave  vector  of   the spin-up 
(spin-down) electron and R�(�) is the amplitude of the reflected wave. For the right contact 
the wave function is given by 
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For the semiconductor region the wave function can be written as 
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where )(

)2(1
+

xxk and )(
)2(1

−
xxk  are   the   wave  vectors  obtained  by   solving   the   equations
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The constants k1, k2, k3, and k4 are calculated as 
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The reflection and transmission coefficients are determined by applying the boundary 
conditions at the ferromagnet/semiconductor interfaces. 

We compute the current through the device as 
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where kB is the Boltzmann constant, T is the temperature, and V is the voltage. The spin-
up (TP


) and spin-down (TP
�) transmission probability for the parallel configuration of the 

contact magnetization is defined as 
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For the anti-parallel configuration of contact magnetization the transmission 
probability is obtained in the same way.  

The conductance is defined as 
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In the limit of low temperature the conductance must coincide with the one obtained 
from the Laudauer-Büttiker formula 
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Finally, the magnetoresistance (TMR) is defined as 
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Results and Discussion 

In our calculations we use two types of materials for the semiconductor region:  InAs, 
which is characterized by a strong value of the spin-orbit interaction, and silicon, which is 
characterized by a moderate value of the spin-orbit interaction. 

InAs Calculations 

For all the calculations for the InAs semiconductor channel we assume the effective 
mass for the ferromagnetic region mf

* = m0 and for the semiconductor region 
ms

* = 0.036m0, where m0 is the electron rest mass. Figure 1 shows the dependence of the 
TMR on the value of the band mismatch �Ec between the ferromagnetic source contact 
and the semiconductor channel. The TMR oscillates between positive and negative values. 
As the length of the semiconductor channel decreases, the period of the oscillations 
increases roughly proportionally to the inverse length of the semiconductor channel. 

 Temperature exerts a significant influence on the device characteristics as shown in 
Figure 2. For a channel length L = 0.05�m the oscillatory amplitude of the TMR 
decreases for T = 25K and completely vanishes for T = 150K. The reason for the 
oscillatory behavior to disappear at T = 150K is a relatively short period of the 
conductance oscillations (and correspondingly TMR oscillation shown in Figure 1) with 
respect to �Ec. Thus one can expect that for the shorter channel the oscillatory amplitude 
could be sufficient to modulate the current in the SpinFET at elevated temperatures. 

 The current dependence on the value of the drain-source voltage is shown in Figure 3. 
A clear S-like shape of the curves is observed at T = 10K. This is a manifestation of the 
conductance oscillations as a function of �E, which have a large amplitude due to the 
presence of the delta-function barriers at the interfaces between the contact and the 
channel (z = 3). A large amplitude of the conductance oscillations guarantees the different 
slopes of the IV curves corresponding to different �Ec. Although the S-like non-linearity 
is not well pronounced at elevated temperatures, the difference in the slopes at small 
voltages is not completely washed out, even at room temperature. 

Si Calculations 

We consider square silicon fins of [100] and [110] orientations, with (001) horizontal 
faces. The spin-orbit interaction is taken in the Dresselhaus form [3]. The dependence of 
the TMR on the spin-orbit interaction is shown in Figure 4. The wave vector kD = mS�/�2

determines the dependence of the TMR on the value of the strength of the Dresselhaus 
spin-orbit interaction �. Fins with [100] orientation posses a larger subband effective 
mass (14) compared to [110] oriented fins. Therefore, a smaller variation of � is required 
in [100] oriented fins to achieve the same variation of kD and thus the same variation of 
TMR. 
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Figure 1. TMR dependence on the value of �E for �R = 42.3meVnm,
EF = 2.47eV, P = 0.4, B = 0T, z = 0. 

Figure 2. TMR dependence on the value of �E for �R = 42.3meVnm, 
EF = 2.47eV, P = 0.4, B = 0T, z = 0, L = 0.05µm. 

Figure 3. Current dependence on the value of the drain-source voltage for 
B = 0T, z = 3, L = 0.03µm, P = 0.4. 
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Figure 4. TMR dependence in a silicon SpinFET on the value of the Dresselhaus 
spin-orbit interaction for P = 0.6, z = 2, L = 5µm. 

Summary and Conclusion 

A small semiconductor channel length provides a possibility to create a SpinFET 
which will operate at room temperature. Silicon fins with [100] orientation are best 
suitable for practical realization of silicon-based SpinFETs. 
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