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Abstract. An implementation of the non-negative matrix factorization
algorithm for the purpose of text mining on graphics processing units is
presented. Performance gains of more than one order of magnitude are
obtained.

1 Introduction

The automatic extraction of high-quality information from text, typically re-
ferred to as text mining, has received a lot of attention in many areas. Due
to the vast amount of text to be processed, there is a virtually insatiable need
for computational power. We address this demand by an implementation of the
non-negative matrix factorization (NMF) algorithm [1] and its application to
document clustering on graphics processing units (GPUs).

In contrast to traditional central processing units (CPUs), the computational
power of modern GPUs already ranges into the tera-floating point operations
per second (TFLOPs) regime. The higher flexibility of modern GPU architec-
tures also allows for the use of GPU-hardware for non-graphics application. As
a consequence, such general purpose computations on graphics processing units
(GPGPUs) have gained a lot of popularity recently. Significant performance
gains within scientific applications have been reported in many different appli-
cations, e.g. [2].

The high computational power of GPUs can only be accessed, if the under-
lying algorithm provides a sufficiently high degree of fine-grained parallelism in
order to occupy thousands of light-weight threads simultaneously. Since this con-
stitutes a considerable paradigm-shift compared to single-threaded implementa-
tions, existing codes often need to be rewritten in order to benefit from GPU
acceleration. This problem is at least partially addressed by software libraries,
which provide basic functionalities via a high-level interface. In the context of
the NMF algorithm, basic linear algebra operations are required, which are well-
studied and well-developed for GPUs [5]. A number of different libraries exists
and most of them rely on CUDA [3] technology, for example, CUBLAS and
MAGMA. In our work the C++ OpenCL-based [4] Vienna Computing Library
(ViennaCL) [6,7] is used. It offers a convenient means to run custom compute
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kernels not provided with the library and allows for a comparison on a broader
range of GPUs from different vendors.

Aspects of document clustering and their link to matrix decompositions are
discussed in Sec. 2. A formal description of the NMF algorithm is given in Sec. 3,
whereas implementation details are discussed in Sec. 4. Results are discussed in
Sec. 5 and a conclusion is drawn in Sec. 6.

2 Document Clustering

Clustering is a process of collecting a set of objects into subsets (clusters) such
that objects inside a cluster are in a certain predefined sense more similar to
each other than to objects from other clusters.

In this work we consider the application of clustering for grouping documents
by topics. More formally, for a set of m text documents, the goal of clustering
by topics is to find a division of documents into groups such that documents
from one group share common topics. It is crucial to note that the list of topics
is typically not known prior to the clustering process. Therefore, such a clus-
terization can also be interpreted as an automatic document categorization and
topics extraction process.

Traditional methods of document clustering are often based on the vector
space model (VSM) [9]. In this model every document is represented as a term-
frequency vector. Therefore, VSM uses words as a measure for similarity between
different documents. Various metrics can be defined for the vectors of terms, for
example a cosine distance or an Euclidian distance. Due to this representation
of documents in terms of linear algebra, traditional clustering techniques can be
applied.

One of the major disadvantages of the VSM model is that terms are assumed
to be statistically independent from each other. However, this is often not the
case in real-world texts, where topics, concepts, and semantics are key features
of each document. In order to extract these key features from the texts, special
techniques referred to as feature extraction have been developed. The goal of
such methods is an extraction of core concepts from the individual texts and a
representation of documents as a combination of these. Singular value decompo-
sition [10] or NMF [12] are often used as a basis for feature extraction methods.
Methods of this type are also known as low-rank matrix approximation or latent
semantic analysis. Further note that applications of these methods are not lim-
ited to document clustering. They has been successfully used for solving a wide
range of natural language processing problems such as cross-language retrieval,
information indexing [10], or selectional preference induction [11].

For the remainder of this work only NMF is considered. Generally, NMF is a
decomposition of a matrix V into a product of two matrices W and H , where the
additional constraint of non-negativity of the entries in the matrices V , W , H
is imposed. It is important to note that such a decomposition is not necessarily
unique and neither W nor H need to be orthogonal. NMF factorization became
popular with the publication of Lee and Seung [1], where two algorithms for
computing non-negative matrix factorizations are proposed.
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Other methods such as the projected gradient method [13], alternating non-
negative least squares [14], or sparse encoding [15] were proposed later. For
this paper, the original Lee-Seung method, which is also known as multiplicative
update rules algorithm, with the Frobenius norm as a cost function is considered.

In text mining NMF is usually applied to the term-document matrix (TD
matrix). Every row in the TD matrix corresponds to one document, while every
column of the matrix corresponds to one term. For m documents and a total
number of n terms, the TDmatrix V consequently is of sizem×n. NMF is used to
decompose V into two matricesW and H with sizes m×k and k×n respectively,
where typically k � min (m,n) is set to the expected number of clusters. In the
following we will refer to the parameter k as the number of features. Intuitively,
k can be interpreted as follows: The TD matrix V (‘documents‘ × ‘terms‘) is
decomposed into a product of two matrices. The matrix W relates documents
and features, while H relates features and terms. As a result of matrix product
properties, every document is thus presented as a linear combination of the
extracted features. Traditional clustering techniques[8] can therefore be applied
to the rows of W .

NMF as a tool for natural language processing possesses several advantages
over other feature extraction methods. First, the matrices W and H have non-
negative entries only, which results in an easier interpretation in terms of text
mining. Second, the columns of W do not need to be orthogonal. Hence, the
extracted topics are allowed to share common senses, which seems to be quite
usual for real-world documents.

3 The Non-negative Matrix Factorization Algorithm

In the following, the NMF algorithm proposed by Lee and Seung [1] using the
Frobenius norm is described. The objective function is

min
W,H

||V −WH ||2F , (1)

where the entries of W and H need to be non-negative. Note that the minimum
in (1) is typically non-zero. Given arbitrary initial matrices W0 and H0, the
NMF algorithm consists of an iterative application of the following two steps:

(Hk)i,j = (Hk−1)i,j ×
(WT

k−1V )i,j

(WT
k−1Wk−1Hk−1)i,j

, (2)

(Wk)i,j = (Wk−1)i,j ×
(V HT

k−1)i,j

(Wk−1Hk−1HT
k−1)i,j

. (3)

Here (·)i,j refers to the entry in row i and column j of the matrix in parentheses.
In practise, (2) and (3) are repeated until either a stationary point or a maxi-

mum number of iterations is reached. Lee and Seung proved two main properties
of this algorithm. First, the objective function (1) is non-increasing with k. Sec-
ond, W and H become constant, if and only if they represent a stationary point.
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4 Implementation

The iterative NMF algorithm (2) and (3) can almost directly be implemented
with the features provided by ViennaCL. Two types of matrix operations are
required: matrix-matrix-multiplications and element-wise manipulations. While
the former are provided by ViennaCL directly, the latter requires a simple custom
OpenCL kernel for setting up the matrix indicated by parentheses in (2) and (3).

In the typical case, where k is small compared tom and n, the computationally
most expensive operations are the matrix-matrix products with V . This is the
case, because only V is of size m× n, while at least one of the dimensions of all
other matrices are given by k.

In practical applications it is often observed that the TD matrix V is sparse.
As a consequence, computational efficiency can be improved substantially and
memory requirements can be reduced significantly by exploiting the structural
information. Memory consumption is particularly a concern when using GPUs
due to the typically limited amount of memory on GPU adapters compared
to main memory on the host machine. Thus, by using a sparse matrix storage
format such as the compressed sparse row format (CSR)[16], we are able to
process a much bigger set of documents than in the case of a dense matrix type.

It is important to note that (2) and (3) in principle require products with V
from the left and from the right. However, the CSR-format used for the storage of
V allows for an efficient implementation of the matrix-matrix product only, if V is
multiplied from the left, which is not the case for the operation WTV . There are
two possible remedies in this case: The first is to store V in a compressed column
format in addition. Besides additional memory, this requires a dense-matrix-
sparse-matrix multiplication kernel. The second option is to set up and store V T

in CSR format in addition. Rewriting WTV = ((WTV )T )T = (V TW )T enables
the reuse of the multiplication kernel, but another entry-wise manipulation kernel
must be provided. Since the entry-wise manipulation kernel is simpler, we stick
with the second option.

5 Benchmark Results

For our experiments we have used recent mid- to high-end consumer hardware:
An Intel Core i7 960 CPU with 3.2 GHz clock freqency, an NVIDIA GeForce
470 GTX GPU, and an AMD Radeon 6970 HD GPU.

For a comparison of our GPU-accelerated implementation we developed a
purely CPU-based version of the NMF algorithm. The goal of this version is
not only performance numbers, but also validation of numerical accuracy. The
open-source linear algebra library Eigen [17] was used for this purpose. The
CPU version was compiled with maximal optimization level and with support
for SIMD instructions (SSE2) and OpenMP enabled.

Our benchmarks include both real-world and artificially generated matrices.
As a benchmark based on real-world data, the Newsgroups (NG) dataset [18]
is used. Texts in this dataset are messages gathered from 20 different newsgroups
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Fig. 1. Execution times for all test matrices on different platforms

with a total number of 18827 documents. Due to the nature of the newsgroup
messages, which are usually quite short, the TD matrix V for this dataset is
very sparse. The resulting size of the term-document matrix is 18 827× 87 014,
while the number of non-zero elements is 1 553 867. Note that a dense matrix of
the same dimensions would require the storage of more than one billion entries,
which may already exceed the memory available in current desktop computers.
As an artificial benchmark we generated a set of random matrices, with sizes
varying from 1000× 1000 (1K) to 10000× 10000 (10K). All matrices from this
set have about 1% of non-zero elements, which allows for the use in both dense
and sparse tests. In both cases values of 3, 20, and 200 are used for the number
of features k.

Benchmark results of our experiments with all matrices are shown in Fig. 1. It
can be seen that the use of a sparse matrix type instead of a dense matrix type
leads to a performance gain on both CPU and GPU. While the gain of using
a sparse matrix type is about one order of magnitude for k = 3 on the CPU,
the difference is only a factor of two for k = 200. On GPUs the performance
difference is around five to ten for k = 3 and k = 20, and around a factor of
three to five on both the NVIDIA and the AMD GPU. In the latter case, the
dense matrix-matrix multiplication on GPUs achieves higher performance due
to the more uniform size of the matrices involved, thus the difference is smaller.
A comparison of execution times for CPU and GPUs on all test matrices reveals
a difference in execution times by a factor of up to 25 for the largest matrices
and k = 200. For k = 3 a performance gain from the use of GPUs of only a
factor of up to two is obtained, whereas k = 20 leads to a gain of almost one
order of magnitude.
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6 Conclusion

Our investigations of the acceleration of the NMF algorithm by GPUs for the
use in text mining tasks show that a performance gain of more than one order
of magnitude can be obtained. Consequently, modern GPU hardware must not
be ignored for such purposes, whenever performance is of importance.

Large parts of the NMF algorithm are ported to GPUs by reusing high-level
functionality already provided with common GPU libraries such as ViennaCL.
Therefore, the entry-barrier to GPU computing is lower than it may appear at
first sight. Most linear algebra functionality is ready to be reused within other
algorithms commonly employed in the field of text mining.

Our implementation of the NMF algorithm presented in this work is to be
made freely available with ViennaCL 1.3.0.
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