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Abstract—A methodology for handling carrier-

carrier-scattering within the arbitrary-order spherical

harmonics expansion method for computing determin-

istic numerical solutions of the Boltzmann transport

equation is presented. Comparisons with results from

Monte Carlo simulations confirm the accuracy of the

proposed method for bulk silicon. Moreover, results

for 22nm and 110nm MOSFET devices are presented.

A significant elevation of the high-energy-tail of the

distribution function is observed in the 22nm case, con-

firming that the inclusion of carrier-carrier-scattering

is required for the investigation of hot-carrier-effects in

scaled-down devices.

I. INTRODUCTION

The deterministic Spherical Harmonics Expansion

(SHE) method for the numerical solution of the

Boltzmann Transport Equation (BTE) has become an

attractive alternative to the stochastic Monte-Carlo

(MC) method thanks to significantly shorter execu-

tion times [1], [2]. While the method has long been

essentially limited to one-dimensional device simula-

tions due to memory constraints, modern workstations

provide enough resources for running two- and even

three-dimensional simulations [3], [4]. Also, excellent

agreement with MC results became only possible after

the method had been extended to arbitrary expansion

orders [5].

Despite the availability of a suitable formalism for

a wide range of common scattering operators such as

phonon scattering and ionized impurity scattering, the

inclusion of carrier-carrier scattering (cc-scattering)

has so far only been considered in a very early

publication for first-order SHE in bulk silicon [6].

A suitable formalism for the consideration of cc-

scattering with higher-order expansions, a broader

range of dispersion relations [7], or device simulation

has not been available so far. In this work we present

a methodology for the inclusion of carrier-carrier

scattering into arbitrary-order SHE and discuss the

implications on the computational effort as well as

the memory requirements.

II. CARRIER-CARRIER SCATTERING FOR SHE

Using a low-density approximation and thus ne-

glecting the Pauli-principle, most scattering mecha-

nisms lead to a linear scattering operator. In contrast,

cc-scattering leads to a quadratic scattering operator

of the form

Qcc{f} =

∫

B3

s(k′,k,k′
2,k2)f(k

′)f(k′
2)−

s(k,k′,k2,k
′
2)f(k)f(k2) d(k

′,k2,k
′
2) ,
(1)

where f is the carrier distribution function, B denotes

the Brillouin zone, k, k2, k
′, k′

2 are linked with mo-

mentum p via the semiclassical relation p = ~k and

for simplicity termed wave vectors in the following,

cf. Fig. 1, and s = σccδ(ε + ε2 − ε′ − ε′2)δ(k − k′ +
k2 − k′

2) equipped with delta distributions ensures

conservation of energy and momentum, respectively.

Here and in the following all dependencies on the

spatial variable x and time t are suppressed for the

sake of clarity. The coefficient σcc is proportional to

σcc(k,k
′,k2,k

′
2) ≃

n
[

(k − k′)2 + 1/λ2
D

]2
, (2)

includes the local carrier density n, the Debye-length

λD, and shows a strong angular dependence, cf. Fig. 2.

Note that the denominator of σcc depends on the

initial and the final state of one of the two particles

only, thus σcc(k,k
′,k2,k

′
2) = σcc(k,k

′). Moreover,

since the denominator is identical to that from ionized

impurity scattering, we treat it in the same way using

an isotropic approximation with identical momentum

relaxation times [8], [9].

k
k′

k2
k′
2

Fig. 1. Wavevectors k and k2 of two carriers prior to scattering

with each other, and wavevectors k
′ and k

′

2 after scattering.

Momentum and energy are conserved.
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(a) Constant carrier density n = 1018 cm−3.
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(b) Constant energy 0.5 eV.

Fig. 2. Comparison of the anisotropic carrier-carrier scattering

coefficient and the isotropic approximation with respect to the

angle θ = ∡(k,k′) for different carrier concentrations and carrier

energies (normalized). The anisotropy is particularly pronounced

at high energies and small carrier concentrations.

In a first step momentum conservation is used to

eliminate integration over the wave vector k2 of the

second incident particle in (1), leading to

Qcc{f} =

∫

B2

[

σcc(k
′,k)f(k′)f(k′

2)−

σcc(k,k
′)f(k)f(k′ + k′

2 − k)
]

× δ(ε + ε∗ − ε′ − ε′2) d(k
′,k′

2)

(3)

with ε∗ = ε(k′+k′
2−k). In general, the energy ε∗ of

the second particle involved in the scattering process

cannot be written in a closed-form representation, or

an explicit dispersion relation may not be available at

all [7]. Consequently, we assume for the moment that

ε∗ is a known (but not necessarily constant) value.

Splitting the scattering operator into in-scattering

and out-scattering, Qcc{f} = Qcc;in{f}−Qcc;out{f},
rewriting (3) using spherical coordinates (ε, θ, ϕ)
in momentum space, and expanding the distribution

function into spherical harmonics via

f(k) =
∑

l,m

fl,m(ε)Yl,m(θ, ϕ) (4)

leads after elimination of ε′2, the use of the modified

isotropic scattering rate σcc;iso and an isotropic density
of states Z to

Qcc;in{f} =
∑

l′,m′,l′
2
,m′

2

∫

∞

0

∫

∞

0

σcc;iso(ε
′, ε)

×

∫

Ω

∫

Ω

Yl′,m′Yl′
2
,m′

2
dΩ′ dΩ′

2

× fl′
2
,m′

2
(ε+ ε∗ − ε′)Z(ε+ ε∗ − ε′)

× fl′,m′(ε′)Z(ε′) dε′ dε′2
(5)

for the in-scattering operator, and to

Qcc;out{f} =
∑

l,m,l2,m2

∫

∞

0

∫

∞

0

σcc;iso(ε, ε
′)

×

∫

Ω

∫

Ω

Yl,mYl2,m2
(θ∗, ϕ∗) dΩ dΩ2

× fl,m(ε)Z(ε)fl2,m2
(ε∗)Z(ε∗) dε dε2

(6)

for the out-scattering operator. With the additional

assumption that f(ε∗) = f0,0(ε
∗)Y0,0, i.e. the distri-

bution of the second particle is given by an isotropic

distribution, all integrals over the unit sphere can

be computed analytically using the orthonormality of

spherical harmonics.

The SHE method in addition requires the cc-

scattering operator Qcc to be projected onto each of

the spherical harmonics Yl,m. A multiplication with

Yl,m and a delta distribution for the integration over

spheres of constant energy [5] ultimately yields with

an integration over the whole momentum space

Qcc;l,m{f} =
Z

Y 3
0,0

∫

∞

0

σcc
[

f0,0(ε
′)f0,0(ε+ ε∗ − ε′)

− f0,0(ε
∗)fl,m(ε)

]

× Z(ε′)Z(ε+ ε∗ − ε′) dε′ .
(7)

Note that the scattering operator vanishes for the case

of f being given by a Maxwell distribution and is thus

consistent with other scattering mechanisms.
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Fig. 3. Simulation of the electron distribution with and without

electron-electron scattering in bulk silicon at an applied field of

10 kV/cm. The elevation of the distribution function at higher

energies as obtained by the MC method is well reflected by SHE

with our proposed methodology. After at most eight nonlinear

Picard iterations, the change of the distribution function becomes

negligible (see inset).

Since the energy ε∗ of the second particle is un-

known by nature, we propose a weighted average over

all energies with respect to the distribution function

in the current iterate. As a computationally cheaper

alternative, one may also set ε∗ to the average carrier

energy at the respective location inside the device at

the price of possibly reduced accuracy.

III. RESULTS

The proposed model is implemented in our free

open-source simulator ViennaSHE [10]. A single val-

ley in the conduction band using the non-parabolic

Modena dispersion relation is considered. The energy

ε∗ of the second incoming particle is set to the average

carrier energy at the respective location in the device

for all simulations.

Simulation results for bulk silicon are compared

with MC-results in Fig. 3 and Fig. 4. It can clearly

be seen that our method is able to resolve the high

energy tails of the distribution function well. Only a

few additional nonlinear Picard iterations are sufficient

for convergence. It is interesting to observe that less

iterations are required for an electric field of 100

kV/cm as compared to 10 kV/cm, even though the

corrections to the distribution function due to cc-

scattering are larger.

In Fig. 5 our method is applied to self-consistent

simulations of two MOSFET devices with different

channel lengths. An elevation of the high-energy tail

due to cc-scattering is particularly observed for the
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Fig. 4. Simulation of the electron distribution with and without

electron-electron-scattering in bulk silicon at an applied field of

100 kV/cm. The high-energy tail of the distribution function

around 2 eV is essentially resolved by the proposed method after

only one nonlinear Picard iteration.
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Fig. 5. Comparison of the electron energy distribution function at

channel-drain transition region for a 22nm and a 110nm MOSFET

device with VDS = 1.0 Volt and VG = 0.8 Volt. The influence of

cc-scattering on the high-energy tail of the distribution function is

particularly pronounced in the smaller device. After at most three

Picard iterations, convergence for practical purposes is obtained.

The ripples at lower energies are due to optical phonon scattering.

smaller device, emphasizing the importance of cc-

scattering for predictive device simulation. Again, the

nonlinear iteration converges faster for the smaller

device despite the larger impact on the shape of the

distribution function for higher energies.

The implications of the proposed scheme on hard-

ware requirements are evaluated in Fig. 6. While the

number of unknowns of the linear system obtained in

each nonlinear iteration step remains unchanged, the

convolution-type integral expression for Qcc;l,m in (7)

couples all energies for each node x in the device
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Fig. 6. Nonzeros and number of unknowns of the system

matrix for a 22nm MOSFET device. While both the number

of unknowns and the number of nonzeros in the system matrix

scale linearly with the number of energy points, carrier-carrier

scattering leads to a coupling of all energy points, leading to

quadratic effort. Memory requirements are consequently increased

by a factor of three using 50 discrete energy unknowns per

node in the spatial mesh and up to a factor of 20 when using

400 points in total energy direction. With typically 100 to 200
energy points per electron Volt, one thus has to expect increased

memory requirements of one order of magnitude for an applied

bias between one and two Volt.

mesh with each other, which leads to a quadratic

dependence of the computational effort on the number

of discrete energy unknowns per node in the spatial

mesh. It has to be noted that the rise in the overall

memory consumption and simulation time is smaller

than suggested by the increase in the number of

unknowns. This is due to the observation that lower

preconditioner fill-in [5] is encountered, or the use

of block-diagonal preconditioners [4] which ignore

couplings between different energies.

IV. CONCLUSION

We have suggested a formulation that allows for

the inclusion of cc-scattering into arbitrary-order SHE.

Even though the description of carrier-carrier scatter-

ing by means of (1) and (2) is widely accepted, further

interactions such as dynamic carrier screening [11]

are not accounted for in this setting. Nevertheless, an

initial comparison shows good agreement with bulk

MC results. Moreover, our method can also be used

in one-, two- or three-dimensional device simulations.

Due to much shorter simulation times and the absence

of stochastic noise, our method is very attractive for

detailed studies of hot-carrier effects.
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