Towards Distributed Heterogenous
High-Performance Computing with ViennaCL

Josef Weinbub!, Karl Rupp!-2, and Siegfried Selberherr!

! Institute for Microelectronics, TU Wien, Vienna, Austria
2 Institute for Analysis and Scientific Computing, TU Wien, Vienna, Austria

Abstract. One of the major drawbacks of computing with graphics
adapters is the limited available memory for relevant problem sizes.
To overcome this limitation for the ViennaCL library, we investigate
a partitioning approach for one of the standard benchmark problems in
High-Performance Computing (HPC), namely the dense matrix-matrix
product. We apply this partitioning approach to problems exceeding the
available memory on graphics adapters. Moreover, we investigate the
applicability on distributed memory systems by facilitating the Message
Passing Interface (MPI). Our approach is presented in detail and bench-
mark results are given.

1 Introduction

In the last couple of years, graphics adapters have been increasingly used
for computations in the field of scientific computing, especially for linear al-
gebra problems [T2/6], but also to distribute data on several computing nodes
powered by a graphics adapter [3]. The first major push forward has been ac-
complished by NVIDIAs CUDA library [I4]. However, the CUDA library solely
relies on NVIDIA products and therefore excludes other computing resources,
like, graphics adapters from ATT/AMD and CPUs in general. OpenCL, on the
other hand, overcomes this drawback as it offers a unified parallel program-
ming model for a multitude of targets. The general concept of utilizing graphics
adapters as processing units is referred to as General-Purpose computation on
Graphics Processing Units (GPGPU).

To utilize OpenCL for linear algebra, ViennaCL [16] has been developed. The
aim of this library is to provide a convenient means to access the vast computing
resources of GPUs and multi-core CPUs.

Aside from the high-performance capabilities of graphics adapters, the limited
memory of such computing targets is a drawback which hinders problems of
considerable size to be computed on the graphics adapters. To further increase
the execution performance, a distribution approach is required which facilitates
the computational capabilities of several computing nodes.

We base our investigations on the dense matrix-matrix product within the Vi-
ennaCL library. We introduce an approach to overcome the memory restrictions
on graphics adapters. Moreover, we distribute the workload on several computing
nodes by MPI.

I. Lirkov, S. Margenov, and J. Wasniewski (Eds.): LSSC 2011, LNCS 7116, pp. 359-B67] 2012.
© Springer-Verlag Berlin Heidelberg 2012

360 J. Weinbub, K. Rupp, and S. Selberherr

The structure of this paper is as follows: Section [2] provides a short overview
of the ViennaCL library. Section [Bldiscusses the memory constraints on graphics
adapters. Section [] rigorously discusses our approach to overcome the memory
restrictions on a single graphics adapter. Moreover, a distributed approach based
on MPI is presented. In Section [l results are presented and discussed in detail.

2 ViennaCL

The Vienna Computing Library (ViennaCL) provides standard data types for
linear algebra operations on GPUs and multi-core CPUs [4[5]. The library is
based on OpenCL [I2], from which ViennaCL inherits the unified parallel pro-
gramming approach for personal computers, servers, handhelds, and embedded
devices. The ViennaCL API is compatible to the Boost uBlas [9] library, which
is a generic template class library with BLAS level 1, 2, 3 support. Therefore,
existing uBlas implementations can be conveniently adapted to utilize the vast
computing resources of, for example, GPUs. By now, additional support is pro-
vided for Eigen [I0] and the Matrix Template Library 4 [15]. ViennaCL aims to
provide a convenience layer for developing GPU accelerated applications.

3 Challenges of GPGPU

Although OpenCL and thus ViennaCL provide access to various computing tar-
gets, we focus our investigations on graphics adapters for two reasons. First,
graphics adapters provide a massively parallelized environment, which can be
facilitated for tasks in the field of linear algebra. Second, the memory constraints
of graphics adapters introduce the need for special treatment. Let us consider
these restrictions based on the dense matrix-matrix product (Equation [I).

C=AxB; AeR™™ BecR™P CecR™P (1)

For this product the memory requirements (Equation 2] and the number of
operations are as follows (Equation [3]).

memory:(n-m+m-p+n-p)- sizeof(double) (2)
operations:(2-n-m-p) (3)

If we consider n = m = p =: N, it can clearly be seen that the memory complex-
ity is O(NN?) and the complexity in regard to the required operations is O(N?).
For example, N = 10000 would yield 2.4 - 10° Bytes (~ 2.3 GBytes) of memory
and 2 - 102 floating point operations.

On the contrary, the matrix-vector product offers the same complexity in
the computation as in the memory requirements, which would be O(N?) for
n = m = p =: N. Consequently, this makes the matrix-matrix product much
more interesting for investigations in regard to computational performance.

Towards Distributed Heterogenous HPC with ViennaCL 361

The memory requirements hinder the immediate application of large scale
computations on graphics adapters, as the available memory of mere consumer
level graphics adapters is typically much smaller, for example, the NVIDIA
Geforce GTX 570 (1.2 GB) or the AMD Radeon HD 6970 (2 GB).

To tackle this fact, high-end workstation solutions are available which of-
fer a considerable larger memory, like the NVIDIA Tesla C2050 (3 GB) or the
Tesla C2070 (6 GB). These products naturally help to ease the problem, but still,
they cannot even remotely compete with the system memory of workstations, let
alone computing clusters. These computing environments typically offer system
memory in the range from 32 GB to 128 GB per node. Although the memory re-
strictions limit the immediate application of large scale problems, the computing
power of graphics adapters is due to the massive parallelized architecture of inter-
est to the scientific community. Graphics adapters offer a high-performance per
value in contrast to expensive cluster systems. Consequently, this introduces the
need to overcome the memory restrictions to access the vast computing resources
of graphics adapters which, however, requires special treatment of algorithms, for
example, a matrix decomposition approach for the dense matrix-matrix product.

4 Our Approach

This section presents our approach which is based on two steps. First, we in-
troduce a decomposition for the dense matrix-matrix product to overcome the
memory restrictions of graphics adapters for a single computing node. This ap-
proach enables computing problem sizes with ViennaCL, which would normally
be impossible due to the memory limitations. Second, a distribution approach
based on MPI is presented, which enables to facilitate heterogenous computing
nodes.

4.1 Overcoming the Memory Restrictions

To be able to process matrix products of large matrix sizes on memory restricted
graphics adapters, a partitioning approach is used. These partitioned parts are
then sequentially fed to the ViennaCL matrix product algorithms. Figure [de-
picts this approach.

available
memory

compute
partitions

process

nxm pmxp__,
4 B blocks

— O XP

Fig. 1. Overview of the partitioning approach. The problem is partitioned into blocks
based on the input matrix sizes and the available memory. Each block is processed
by the ViennaCL matrix product algorithm and therefore contributes a subset to the
overall solution matrix.

362 J. Weinbub, K. Rupp, and S. Selberherr

First, the available memory of the OpenCL device, in our case the graphics
adapter, is computed. Then, the required partitions of the input matrices A and
B are computed according to the available memory and the problem size. Blocks
are extracted from the input matrices A;, B; and processed sequentially, based on
the partitioning information. The computed partial results C; ; are collected and
finally returned as overall result C. In the following the three different modules
depicted in Figure [are discussed in some detail.

To be able to partition an input problem for a specific computing target,
the available memory must be known. Unfortunately, OpenCL does not provide
functionality which directly allows to determine the available memory of the
device. OpenCL provides a means to extract two different memory values of
the device by the c1GetDeviceInfo () function, namely the global memory and
the maximum allocable memory accessed by the CL DEVICE GLOBAL MEM SIZE
and the CL DEVICE MAX MEM ALLOC SIZE flag, respectively. However, both values
cannot be interpreted as the allocable memory available on the device. The
global memory refers to the total amount of memory physically available on the
graphics adapter. This value cannot be allocated as the global memory exceeds
the OpenCL internal limitations for maximum memory allocations and the host
system allocates some of the graphics adapters memory too. On the contrary, the
provided maximum allocable memory value yields an upper bound for a single
allocation, while several allocations easily exceed this value. In other words, the
OpenCL-provided maximum allocable memory value does not actually represent
the maximum allocable memory.

Therefore, we use a simple algorithm which evaluates a reasonable allocable
memory size specifically for the matrix-matrix product. A fraction of the max-
imum allocable memory is used as the initial value of this algorithm which is
iteratively incremented until the memory can indeed not be allocated anymore.
The last allocable memory value is than used as the available memory value of
the OpenCL device. Figure [2] depicts the principle of our algorithm.

| memory = frac*max_allocable |

no
is allocable?

yes

| memory *= factor |

]

Fig. 2. Flowchart of our memory algorithm. The algorithm starts from a low value and
iteratively increases the memory by a certain factor. The value which is last known to
be allocable is returned.

Towards Distributed Heterogenous HPC with ViennaCL 363

A; B; Cij

Fig. 3. The matrices A, B, C are partitioned to fit on the graphics adapters memory

The problem can be partitioned in such a way that it fits into the memory of
the graphics adapter, based on the computed available memory estimate.

To maximize the performance of our ViennaCL implementation the problem is
partitioned in regard to maximum memory utilization, as the execution perfor-
mance increases with the problem size.

Aside from the memory constraints, the partitioning algorithm has to ob-
viously respect the mathematical rules of matrix multiplication. Therefore, the
rows of the matrix A and the columns of the matrix B are partitioned as depicted
in Figure

4.2 Distributed Computing

When considering larger problems, the workload for the matrix products can be
distributed on available nodes. Each node is governed by a ViennaCL implemen-
tation capable of dealing with matrix products of considerable size, as introduced
in Section @1l The distribution of the matrices is realized using Boost MPI. The
matrix A for both matrix products is distributed evenly between the nodes by
partitioning the rows. For our numerical experiments, the matrix B is distributed
as a whole to all nodes. Note that in the case that B does not fit on the node,
additional partitioning has to be applied in accordance to the memory availabil-
ity on the respective computing nodes. Figure [depicts the MPI distribution
approach in which, without loss of generality, we assume that the total number
of entries in A is larger or equal to that of B.

A B Cy

A B Ay B

3
im—{ root node %;LU_.} node 2 }_7 root node
A, H Cu
k -

Fig. 4. Overview of the matrix distribution for different computation nodes. The ma-
trix B is transferred as a whole to all nodes, whereas the matrix A is row-wise parti-
tioned and evenly distributed.

lm

364 J. Weinbub, K. Rupp, and S. Selberherr

Table 1. Specifications of the small-scale MPI computing environment. The CPU
properties C and T denote the number of cores and threads, respectively.

MPI node CPU system memory GPU
root INTEL i7 960 4C/8T 12 GB -
1 AMD Phenom II X4 965 4C/4T 8 GB NVIDIA Tesla C2050
2 AMD Phenom II X4 955 4C/4T 8 GB NVIDIA GTX 470
3 INTEL Core2 Q9550 4C/4T 4 GB NVIDIA GTX 580

For the matrix storage we use a linear memory approach based on the standard
C++ Standard Template Library (STL) vectortype, for which tuned Boost MPI
transmission implementations are available.

The matrices A and B are stored in row-major and column-major order,
respectively, since these memory layouts both favor the MPI based transmission
efficiency and the memory layout of the OpenCL devices.

5 Results

This section discusses the gathered results based on our approach, for two dif-
ferent computing environments. The first environment is composed of consumer
level computing targets as depicted in Table Il All systems are driven by a
Funtoo Linux 64-bit distribution and NVIDIA drivers of version 260.19.36.

The second environment consists of one node of our professional MPI environ-
ment. The node is powered by four AMD Opteron 8435 CPUs, each providing
six cores yielding a total number of 24 cores, and 128 GB of system memory.
Our benchmarks are based on the double precision floating point datatype.

It is important to note that due to the OpenCL back-end, the same implemen-
tation is used to run on the CPU and the GPU driven systems. To be able to use
CPUs as OpenCL computing targets, the AMD Accelerated Parallel Processing
Standard Development Kit (APP SDK) 2.3 is used [§].

Figure Bhb depicts the results for two CPU driven systems, namely the root
node as depicted in Table [and the AMD Opteron cluster node. The stan-
dalone ViennaCL implementation is investigated without MPI distribution. We
compare our CPU based results with reference implementations based on Boost
uBLAS [9] and on libflame [I3J7] driven by the GotoBLAS2 [I1] library which
is specifically tuned for the individual targets. Our results show that our imple-
mentation executed on the INTEL i7 target (8 GFLOPSEI), although significantly
slower than the reference libflame/GotoBLAS2 implementation (25 GFLOPS),
scales adequately in reference to the uBLAS implementation (1 GFLOPS). Note
that although the GotoBLAS2 library has been compiled to support 8 threads, it
only utilized 4 threads on the INTEL i7 CPU, omitting the 4 additional threads
provided by the Hyperthreading technology which is due to the missing support

! Giga Floating Point Operations per Second.

Towards Distributed Heterogenous HPC with ViennaCL

CPU Execution Performance

]
EY /)‘/‘\ et
80 i
70
]/ Tbflame/GoloBlas2 Opteron —+—
» 60 libflame/GotoBlas2 i7 —x—{
2 ViennaCL Opteron —¥—
S ViennaCL i7 —&— |
& UBLAS Opteron —&—
40 UBLASi7 —6—
30
e
20
10
0 :

4000 8000
Matrix Size

12000 16000

(a) Comparison of the execution perfor-
mance on CPU-based targets. Our ap-
proach scales appropriately relative to the
uBLAS implementation on the INTEL i7
target. However, as the quad-socket AMD
Opteron node does not scale like the IN-
TEL i7 target, it can be concluded that
this quad-socket system is not fully sup-
ported by the OpenCL back-end.

GPU Execution Performance
120 ——
110
L CUBLAS Tesla —+—
100 VCL Tesla —x—1
s ViennaCL:MPI 1 nodes —%—
% ViennaCLMPI 2 nodes —&—
I ViennaCL:MPI 3 nodes —#—
0 70 / e —
9 60 7
\6 © /./I/
/E’——E"’E’{}_‘EP_’E—EP_{
40
——H——F——H—}
20 e
10 %é//“/)
0

4000 8000

Matrix Size

12000 16000

(b) Comparison of the execution perfor-
mance on GPU-based targets. The scal-
ing of our MPI distribution approach as
well as the MPI overhead can be identi-
fied. The reference CUBLAS implemen-
tation outperforms our standalone ap-
proach. However, it is due to the memory
requirements restricted to matrix sizes of
approximately 10000.

Fig. 5. Comparison of the execution performance on CPU- and GPU-based targets

for this specific technology by the GotoBLAS2 library. The quad-socket AMD
Opteron cluster node is not fully utilized by the OpenCL back-end provided
by the APP SDK. The uBLAS implementation yields 0.4 GFLOPS which is,
compared to the INTEL i7 CPU, largely due to the significantly lower clock
rate.

The ViennaCL implementation, however, reaches a mere 3 GFLOPS which,
considering the higher performance achieved by the INTEL i7 target, indicates
that the quad-socket AMD Opteron system is not efficiently utilized, because
when restricted to six threads approximately the same performance can be
achieved.

Apparently, such multi-processor computing targets are not fully supported by
the APP SDK. Although our MPI distributed ViennaCL computation is capable
of being executed on our cluster, it is skipped for benchmarking investigations
due to the current state of support as depicted.

Figure Bb presents benchmark results based on GPU targets. We compare
our approach on a single ViennaCL node with the MPI distribution approach as
depicted in Table[lland with a reference implementation based on CUBLAS [14].
The CUBLAS and our standalone ViennaCL implementations are executed on
the root node (Table[Il). The MPI distribution overhead can be identified when
comparing MPI node 1 (crosses) with the standalone implementation (stars).
The scaling behavior of our distribution approach can be recognized when an-
alyzing the execution performance of one to up to three nodes. Although the
reference CUBLAS implementation performs significantly faster than our stan-
dalone ViennaCL implementation, it is restricted to matrices of approximately

366 J. Weinbub, K. Rupp, and S. Selberherr

the size of 10000 due to the required memory. On the contrary both our stan-
dalone variant as well as our MPI variants, are capable of processing matrices
of significantly larger problem sizes.

6 Conclusion

We discussed the challenges of computing large dense matrix-matrix products on
graphics adapters. We introduced an approach to overcome this restriction based
on the ViennaCL library. Moreover, we presented a distribution approach based
on MPI to facilitate the power of several OpenCL computing nodes. We provided
benchmark results for CPU and GPU driven systems, each compared to reference
implementations. The scaling as well as the communication overhead of our MPI
based distribution approach has been presented and discussed. A limited support
of the APP SDK for quad-socket AMD Opteron systems has been identified. In
regard to the CPU based investigations our results depict a reasonable scaling
behavior relative to the reference single-core uBLAS implementation. Our GPU
powered MPI distribution scales well for one to up to three nodes.

Acknowledgments. This work has been supported by the European Research
Council through the grant #247056 MOSILSPIN. Karl Rupp gratefully acknowl-
edges support by the Graduate School PDETech at the TU Wien. The authors
thank NVIDIA for providing a Tesla C2050.

References

1. Agullo, E., et al.: Numerical Linear Algebra on Emerging Architectures: The
PLASMA and MAGMA Projects. Journal of Physics: Conference Series 180 (2009)

2. Bell, N., Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA.
Tech. Rep. NVR-2008-004, NVIDIA (2008)

3. Lawlor, O.S.: Message Passing for GPGPU Clusters: cudaMPI. In: IEEE Cluster
PPAC Workshop (2009)

4. Rupp, K., Rudolf, F.; Weinbub, J.: ViennaCL - A High Level Linear Algebra Li-
brary for GPUs and Multi-Core CPUs. In: Proceedings International Workshop on
GPUs and Scientific Applications (GPUScA), pp. 51-56 (2010)

5. Rupp, K., Weinbub, J., Rudolf, F.: Automatic Performance Optimization in Vien-
naCL for GPUs. In: Proceedings Parallel/High-Performance Object-Oriented Sci-
entific Computing Workshop, POOSC (2011)

6. Tomov, S., Dongarra, J., Baboulin, M.: Towards Dense Linear Algebra for Hybrid
GPU Accelerated Manycore Systems. Parallel Computing 36, 232-240 (2010)

7. Zee, F.G.V., et al.: The libflame Library for Dense Matrix Computations. Com-
puting in Science and Engineering 11, 56-63 (2009)

8. AMD Accelerated Parallel Processing SDK,
http://developer.amd. com/gpu/amdappsdk/

9. Boost uBLAS, http://www.boost.org/libs/numeric/ublas/

10. Eigen, http://eigen.tuxfamily.org
11. GotoBLAS2, http://www.tacc.utexas.edu/tacc-projects/gotoblas2/

http://developer.amd.com/gpu/amdappsdk/
http://www.boost.org/libs/numeric/ublas/
http://eigen.tuxfamily.org
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/

12.
13.
14.
15.
16.

Towards Distributed Heterogenous HPC with ViennaCL

Khronos OpenCL, http://www.khronos.org/opencl/

libflame, http://z.cs.utexas.edu/wiki/flame.wiki/1libflame/
NVIDIA CUDA, http://www.nvidia.com/cuda/

SimuNova Matrix Template Library 4, http://www.simunova.com
ViennaCL, http://viennacl.sourceforge.net

367

http://www.khronos.org/opencl/
http://z.cs.utexas.edu/wiki/flame.wiki/libflame/
http://www.nvidia.com/cuda/
http://www.simunova.com
http://viennacl.sourceforge.net

	Towards Distributed Heterogenous High-Performance Computing with ViennaCL
	Introduction
	ViennaCL
	Challenges of GPGPU
	Our Approach
	Overcoming the Memory Restrictions
	Distributed Computing

	Results
	Conclusion
	References

