
Towards a Free Open Source

Process and Device Simulation Framework

J. Weinbub∗, K. Rupp†∗, L. Filipovic∗, A. Makarov∗, S. Selberherr∗

∗Institute for Microelectronics, TU Wien, Gußhausstraße 27-29, 1040 Wien, Austria
†Institute for Analysis and Scientific Computing, TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria

E-mail: weinbub@iue.tuwien.ac.at

Abstract—We present an approach for implementing

open source simulation tools in the field of semiconductor

device and process simulation based on our execution

framework ViennaX. We apply a modular concept, where

functionality is separated into plugins, which in turn can be

combined to form full-fledged simulation tools by utilizing

ViennaX’s task graph approach. Due to the applied plugin

concept, a high degree of flexibility is introduced, as

components can be easily exchanged. Simulation results

are shown, depicting the applicability of our approach for

different tools.

I. INTRODUCTION

The field of semiconductor process and device simu-

lation offers a plethora of publicly available simulation

tools [1], [2]. However, only a fraction of the tools is

available under a free open source license, also referred

to as free software [3]. This impedes the progress of

research in academia, as researchers are unable to ac-

cess the code base of previously implemented software

and extend it. In such a case, simulation tools must

eventually by re-implemented. Clearly, this introduces

additional development overhead which has a negative

impact on the actual net research time. Therefore, the

field of semiconductor process and device simulation

in academia can greatly benefit from free open source

software packages. These facts have already been es-

tablished by various software developments, such as the

Archimedes project [3]. Other fields, such as computa-

tional fluid dynamics, show that this concept works by

providing multi-purpose simulation frameworks, similar

to the COOLFluiD framework [4].

Another important aspect is to introduce a higher level

of reusability in the simulation tools. A conventional ex-

ample is the implementation of a deterministic simulator.

Typically, such a tool is composed of core parts, e.g.,

an initial guess module, a Finite Element assembler, a

linear solver, etc. A common task, is to exchange specific

modules in order to investigate alternative approaches

provided by different tools. For example, a different

linear solver package might yield improved convergence

behavior. This introduces the dire need for orthogonality

in the simulator’s code base, as switching of a module

must not affect other components by, for example, intro-

ducing an altered interface which no longer fits to the

remaining parts.

This work introduces an approach for setting up

flexible simulations in the field of semiconductor device

and process simulation. We utilize our plugin execu-

tion framework ViennaX [5] to not only reuse already

available functionality but also to decouple simulations

as much as possible (Figure 1). Our approach follows

the task graph concept, since such functionality is seen

as tasks represented as vertices of a graph [6]. Task

dependencies are modeled as edges in the graph, ul-

timately defining a task graph which is used to drive

the overall execution of the task flow. Due to the

modular concept of ViennaX, the actual simulations are

ultimately described with a set of configuration data.

This data not only contains the required plugins, but

also additional plugin-specific parameters, which can

be accessed by the respective plugins. The framework

is coded in the C++ programming language and relies

on already available functionality, such as the Boost

libraries [7]. Our focus is on supporting the dynamics

within an academic environment, primarily imposed by

an inherent flow of scientific personnel. This refers to the

typical scenario of researchers’ temporary employment

within academic institutions. Therefore, we focus on

extendibility, maintainability, flexibility, and, in addition,

high-performance. Where the first three properties are

fundamental to reduce the required development time of

simulation tools, the latter aims for minimizing the actual

execution time of the simulation runs. In the following

sections the core aspects of our approach for future

simulation flows in the field of semiconductor device

and process simulation are discussed.

ViennaX

Configuration

Assembler

Solver

Conventional

Simulator <plugins>

 <plugin>

 <id>0</id>

 <key>Assembler</key>

 </plugin>

 <plugin>

 <id>1</id>

 <key>Solver</key>

 </plugin>

</plugins>

ViennaX

Framework

Assembler

Solver

ViennaX

Plugins

Assembler

Solver

ViennaX

Task Graph

1.

2.

3.

4.

Fig. 1: The proposed decoupling of simulation tools is

depicted by utilizing ViennaX. Step 1: A conventional

simulation tool is described by a configuration file.

Step 2: The configuration file is loaded. Step 3: The re-

quired plugins are loaded, according to the configuration

data. Step 4: The task graph is generated based on the

dependencies, and ultimately executed. The final simula-

tion flow follows the initial one, however, the modularity,

hence the flexibility, is increased substantially, as plugins

can be easily exchanged.

II. RELATED WORK

The Intel Threading Building Blocks (Intel TBB)

library [8] is an Open Source library licensed under

the GPLv2. The library provides mechanisms to express

parallelism based on a shared-memory approach to C++

implementations. One of the core features is the so-called

flow graph. A flow graph can be used to send messages,

representing arbitrary data, between components. Our

approach is similar to the one of Intel’s TBB library.

The primary difference, though, is the fact, that the TBB

library is based solely on a shared-memory approach.

Therefore, it does not scale beyond one computing node.

The COOLFluiD project [4], [9] enables multiphysics

simulations based on a component framework. The

framework is primarily designed for problems in the

field of computational fluid dynamics (CFD). The core

is a flexible plugin system, coupled with a data com-

munication layer based on so-called data sockets. Each

plugin can set up data sockets which are in turn used

to generate a dependence hierarchy. This dependence

information is used to drive the overall execution. The

source code is available under the LGPLv3 license.

The significance of the COOLFluiD framework with

respect to our approach is twofold. First, we adopted the

plugin system, enabling us to conveniently reuse already

available functionality. Second, the communication layer

based on data sockets is the basis for our implementation.

However, our approach differs significantly. COOLFluiD

performs an automatic partitioning and distribution of the

data structures via the Message Passing Interface (MPI),

whereas we follow the approach, that distribution should

be performed on the user’s intent within plugins, not

automatically. In our opinion, COOLFluiD is entirely

focused on the applications within the regime of CFD

simulations. Our approach, however, enables a more

general way to model processes, like the Intel TBB

library, which ultimately supports utilization in a much

broader field of scientific computing.

III. OUR APPROACH

We focus on the decoupling of simulation flows ac-

cording to their inherent functional blocks, as depicted

in Figure 1. This modularization is implemented by

utilizing our ViennaX framework, which provides a

plugin system, configuration mechanisms, and execution

schedulers. A serial and a parallel MPI-based scheduler

are available. While the serial scheduler solely utilizes a

single CPU core for executing tasks, the parallel MPI-

based scheduler distributes plugins to different available

cores, as long as the plugins can be executed concur-

rently (Figure 2). The plugin system is powered by a

so-called self-registering technique [10]. This plugin ap-

proach introduces a high level of reusability by wrapping

already available functionality into components with a

specific, unified interface. The plugins can contain core

parts of simulations, such as a linear solver implementa-

tion, but also full-fledged simulators in their own right.

This approach is highly flexible; for example, simulation

tools may be combined to form multiphysics simulation

flows, but they may also be decomposed into smaller

components, enabling specific exchanges of functionality

by switching the respective plugins.

PluginA PluginB

PluginC

PluginD

PluginAPluginBPluginCPluginD Process 1

PluginAPluginCPluginD Process 1

PluginB Process 2

Fig. 2: The plugin execution is handled by the sched-

uler. If the plugins are parallelizable and there are free

processes, the MPI-based scheduler distributes the task

executions. Dots refer to outgoing data dependencies,

and circles to incoming.

Empty Plugin

ViennaCL::

Linear Solver

A b

x

Solve Ax=b

ViennaCL::

Linear Solver

Available

external Tool

Utilize external Tool

in Plugin

Use Linear Solver

Plugin

Trilinos::

Linear Solver

A b

x

Solve Ax=b

Interchangeable

Fig. 3: A plugin can be used to wrap available func-

tionality. Due to the abstraction mechanism provided

by the socket input/output dependencies, plugins can be

exchanged by other plugins.

Figure 3 depicts the set up and exchange of a plugin.

If the process of interchanging plugins is compared to

the one of conventional simulation tools, it is clear that

the conventional approach would require actual coding,

and as such requires in-depth knowledge of the imple-

mentation at hand. For obvious reasons, this fact impedes

the implementation of changing functionality. With our

plugin-based approach, the exchange can be realized

conveniently, by adjusting the input configuration data

accordingly.

A core part of a task graph execution framework is the

communication layer. As already mentioned, we adopted

the data socket approach of the COOLFluiD project [4].

Essentially, each plugin can define input and output data

sockets, called sink and source, respectively. These data

sockets can be used to send data to and from plugins.

Sockets are defined before the execution of the overall

task graph, and can be based on parameters provided

by the input configuration data. Figure 4 depicts our ap-

proach for defining a plugin’s data sockets. Arbitrary data

types can be associated with each data socket, which are

additionally identified with a unique identification string.

Connecting the data sockets, which relates to generating

the underlying task graph, is carried out automatically by

the framework. The unique identification string as well

as the associated data type of each data socket is used to

automatically connect the corresponding counterparts.

To ascertain the validity of the input data, units of

physical quantities can be attached to the identification

string of the sockets. As the socket connection algorithm

checks against this information, sockets with data of

different units cannot be connected. This is an important

aspect, as it automatically catches one of the fundamental

error sources of scientific computing.

PluginA PluginB

PluginC

PluginD

PluginCConfig

PluginC

Fig. 4: The data sockets of a plugin are created based

on the configuration during run-time. The sockets can be

used to exchange data with other plugins.

A typical simulation task is implementing optimiza-

tion processes. ViennaX enables this type of simulations

by supporting loops in the task graphs, as depicted in

Figure 5. This loop mechanism can be used to, for

example, implement automatic mesh generation based

on convergence to an optimal set of parameters driven

by a specific metric, such as the quality of the generated

mesh elements.

PluginA

PluginB

PluginC

init

PluginD

temp

update

Loop-Exit Plugin

Loop-Entry Plugin

Fig. 5: An archetypal loop execution is depicted. PluginB

and PluginC handle the loop logic. The loop is only

exited, if the internal logic of the loop-exit plugin,

PluginC in this case, decides so.

IV. RESULTS

Some simulation results of three of our in-house

developed simulation tools are shown, all of which have

been executed as plugins in our framework.

Figure 6 depicts the evolution of a surface over

time computed using our Level Set simulation

tool [11]. Figure 7 shows the electron distribution in a

symmetrically sliced, active FinFET device, evaluated

using our spherical harmonics expansions (SHE) based

Boltzmann equation (BE) solver ViennaSHE [12], [13].

Figure 8 outlines the magnetization vector field of a

switching process for a penta-layer MTJ STT-RAM

computed using our micromagnetic simulation tool [14].

Fig. 6: A result of our Level Set simulation plugin is

shown. The green surfaces denote the evolution of the

surface position over time starting from an initial surface

(red).

S

G

D

Electrons

Fig. 7: An electron distribution based on a sliced, active

FinFET device is shown, which has been computed using

our SHE-based BE solver.

V. SUMMARY

We have presented our approach for decoupling sim-

ulation flows in the field of semiconductor device and

process simulation. The core components of ViennaX

have been introduced in detail. Our approach for an open

source simulation framework has proven to be efficient

in integrating heterogenous simulation packages with

minimal effort.

Fig. 8: The magnetization of a penta-layer STT-RAM

at different time steps is shown, computed using our

micromagnetic simulation tool. The colors indicate the

x-component of the magnetization.

ACKNOWLEDGMENT

This work has been supported by the European Re-

search Council through the grant #247056 MOSILSPIN.

Karl Rupp acknowledges support by the Austrian Sci-

ence Fund (FWF), grant P23598.

REFERENCES

[1] “nanoHUB.” [Online]. Available: http://nanohub.org/

[2] “tiberCAD.” [Online]. Available: http://www.tibercad.org/

[3] “Archimedes.” [Online]. Available:

http://www.gnu.org/software/archimedes/

[4] “COOLFluiD.” [Online]. Available: http://coolfluid.github.com/

[5] “ViennaX.” [Online]. Available: http://viennax.sourceforge.net/

[6] A. Miller, “The Task Graph Pattern,” in Workshop on Parallel

Programming Patterns (ParaPLoP), 2010, pp. 8:1–8:7.

[7] “Boost.” [Online]. Available: http://www.boost.org/

[8] “The Intel Threading Building Blocks.” [Online]. Available:

http://threadingbuildingblocks.org/

[9] T. Quintino, “A Component Environment for

High-Performance Scientific Computing,” Ph.D. thesis,

Katholieke Universiteit Leuven, 2008.

[10] D. Kharrat and S. Quadri, “Self-Registering Plug-ins: An

Architecture for Extensible Software,” in Canadian

Conference on Electrical and Computer Engineering

(CCECE), 2005, pp. 1324 –1327.

[11] L. Filipovic, O. Ertl, and S. Selberherr, “Parallelization

Strategy for Hierarchical Run Length Encoded Data

Structures,” in IASTED International Conference on Parallel

and Distributed Computing and Networks (PDCN), 2011, pp.

131–138.

[12] K. Rupp, T. Grasser, and A. Jüngel:, “On the Feasibility of

Spherical Harmonics Expansions of the Boltzmann Transport

Equation for Three-Dimensional Device Geometries,” in

International Electron Devices Meeting (IEDM), 2011.

[13] “ViennaSHE.” [Online]. Available:

http://viennashe.sourceforge.net/

[14] A. Makarov, V. Sverdlov, D. Osintsev, and S. Selberherr:,

“Reduction of Switching Time in Pentalayer Magnetic Tunnel

Junctions with a Composite-Free Layer,” Physica Status Solidi

- Rapid Research Letters, vol. 5, no. 12, 2011.

