Automatic Performance Optimization
in ViennaCL for GPUs

Karl Rupp
CD Laboratory for Reliability
Issues in Microelectronics
IuE, TU Wien, A-1040 Wien
rupp@iue.tuwien.ac.at

ABSTRACT

Highly parallel computing architectures such as graphics
processing units (GPUs) pose several new challenges for sci-
entific computing, which have been absent on single core
CPUs. However, a transition from existing serial code to
parallel code for GPUs often requires a considerable amount
of effort. The Vienna Computing Library (ViennaCL) pre-
sented in the beginning of this work is based on OpenCL
to support a wide range of hardware and aims at providing
a high-level C++ interface that is mostly compatible with
the existing CPU linear algebra library uBLAS shipped with
the Boost libraries. As a general purpose linear algebra li-
brary, ViennaCL runs on a variety of GPU boards from dif-
ferent vendors pursuing different hardware architectures. As
a consequence, the optimal number of threads working on a
problem in parallel depends on the available hardware and
the algorithm executed thereon.

We present an optimization framework, which extracts
suitable thread numbers and allows ViennaCL to automati-
cally optimize itself to the underlying hardware. The perfor-
mance enhancement of individually tuned kernels over de-
fault parameter choices range up to 25 percent for the ker-
nels considered on high-end hardware, and up to a factor of
seven on low-end hardware.

Categories and Subject Descriptors

D.1.3 [PROGRAMMING TECHNIQUES]|: Concurrent
Programming — Parallel programming; D.2.2 [SOFTWARE
ENGINEERING]: Design Tools and Techniques; D.3.2
[PROGRAMMING LANGUAGES]: Language Classi-

fications—C++; G.4 MATHEMATICAL SOFTWARE]|:

Parallel and vector implementations; 1.3.1 [COMPUTER
GRAPHICS]: Hardware Architecture— Graphics processors

General Terms

Scientific Software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Josef Weinbub
Institute for Microelectronics
GuBhausstraBe 27-29/E360

TU Wien, A-1040 Wien
weinbub@iue.tuwien.ac.at

Florian Rudolf
Institute for Microelectronics
GuBhausstraBe 27-29/E360

TU Wien, A-1040 Wien
rudolf@iue.tuwien.ac.at

Keywords
ViennaCL, OpenCL, GPU, C++

1. INTRODUCTION

The vast computing resources in graphics processing units
(GPUs) became very attractive for general purpose scientific
computing over the past years [9-11,13]. In the early days of
general purpose computations on GPUs, the lack of double
precision arithmetic was often considered a major drawback.
However, recent GPUs such as NVIDIA Geforce GTX 470
or ATI Radeon HD 5850 do not suffer from this restriction
any longer, thus they push into the field of high performance
computing (HPC).

Considerable performance gains have been reported in for-
mer work [9-11,13], but the adaption of existing algorithms
to GPUs requires a considerable amount of change in ex-
isting codes to account for the highly parallel architecture.
Consequently, the effort required for porting an existing
code to GPUs is sometimes considered to be too large to
have a considerable benefit on the overall. In particular,
programmers are required to learn specialized programming
languages like CUDA [4] or OpenCL [3], even if only stan-
dard linear algebra algorithms such as defined by the basic
linear algebra subprograms (BLAS) [1] are to be executed
on the GPU. To eliminate such an entry barrier, the Vienna
Computing Library (ViennaCL) [6] was established, which
provides BLAS routines using OpenCL on GPUs and multi-
core architectures with a high level C++4 interface that hides
parallelism details.

Unlike single core applications written in a high level pro-
gramming language, where programmers do not have to care
about hardware details, the proper choice of the best imple-
mentation for a particular GPU with optimal thread sizes
adds another level of complexity for a high level abstraction
library such as ViennaCL. Considering that GPU vendors
offer a broad product range starting from a few up to sev-
eral hundreds of processing units, a natural requirement on
a general purpose linear algebra library for GPUs thus is
to utilize the available units in the best possible way. The
focus of this work is on how such an optimization environ-
ment can be provided with minimum effort for users of the
library. Our approach is to perform separate optimization
runs on the target machine, from which the best parameters
are extracted and stored in a XML file. The optimized pa-
rameters can then be loaded into the main application and
overwrite built-in default parameters. Such an optimization
run is optional, so advanced users can get full performance,
while first-time users do not have to care about this detail.

This paper is organized as follows: First, the basic philoso-
phy of ViennaCL is presented in Sec. 2, where main features
as well as basic design decisions are also discussed. Sec. 3
presents our approach for automated performance tuning.
Unlike previous publications on general purpose calculations
on GPUs, where kernels and kernel parameters have been
tuned by hand for a particular target device, the optimiza-
tion approach aims at optimizing each compute kernel in Vi-
ennaCL for the library user’s target machine. Once the opti-
mal parameter for the target machine are determined, they
can be stored in a XML file and reused for subsequent uses
of the library, which is discussed in Sec. 4. Sec. 5 quantifies
the performance gain obtained from the presented optimiza-
tion framework. Sec. 6 discusses possible future directions
and a conclusion is drawn in Sec. 7.

2. THE VIENNA COMPUTING LIBRARY

In the following a brief overview of ViennaCL is given,
which was first released in the end of May 2010. To account
for the youth of ViennaCL, we give a short overview in this
section. More details can be found in [15].

The programming language of choice for ViennaCL on the
host is C++ due its wide availability and high abstraction
capabilities. OpenCL [3] is chosen for low level hardware
programming, because it supports a much larger variety of
devices compared to for example CUDA [4].

A major design goal of ViennaCL is to be convenient and
easy to use. For simple integration into existing projects, Vi-
ennaCL is a header-only library, which simplifies the build
process considerably. On the other hand, initialization and
management of OpenCL is done completely in the back-
ground, so the user does not have to know details about the
underlying hardware. Thus, ViennaCL does not require ded-
icated initialization routines such as for example the solver
library PETSc [8].

There are many linear algebra libraries available in C++,
one of the most commonly used is uBLAS included in the
peer-reviewed Boost libraries [2]. In contrast to early imple-
mentations of BLAS functionality in FORTRAN, overloaded
operators are used in uBLAS whenever appropriate. Vien-
naCL accounts for the broad acceptance of the approach by
uBLAS and provides an interface that is to a large extent a
subset of that of uBLAS.

The basic types used for linear algebra operations are the
following in both uBLAS and ViennaCL:

scalar <NumericT> s; //scalar

vector <NumericT> v; //wvector
matrix<NumericT> m; //dense matriz
compressed_matrix <NumericT> cl; //CSR
coordinate_matrix <NumericT> c2; //(%i,7,a1j)

[T N

Here, NumericT denotes the underlying floating point type
(either float or double). The compressed_matrix type stores
a sparse matrix in a compressed sparse rows format (see
e.g. [16]), while coordinate_matrix stores all matrix entries
as triplets (i, j, a;j), where 7 is the row index, j is the column
index and a;; is the corresponding entry.

BLAS functionality in ViennaCL is provided just as in
uBLAS by overloaded operators in order to maximize read-
ability of the source code. The following snippet gives a
brief impression on how to use basic operations as defined
on BLAS level 1:

// BLAS level 1

// z, y and z are vectors
2.0 * x;

x +y;

X += 3.1415 * z;
NumericT nl = norm_1(x);
NumericT n2 = norm_2(y);
NumericT ninf = norm_inf (z);
plane_rotation(x, y, nl, n2);

I I N N I e

Temporary objects are eliminated to a large extent by the
use of expression templates [20, 21] for operations such as
(possibly scaled) additions and subtractions of two vectors,
either in place or when assigned to a third vector. This
avoids costly temporary memory allocations on the respec-
tive computing device.

On BLAS level 2, ViennaCL is also uBLAS compatible:

// BLAS level 2
// ©, y are wvectors, A is a matriz

y = prod(A, x); //matriz-vector product
x = prod(trans(A), x); //transposed product
y = alpha * prod(A, x) + beta * y

y = solve(A, x, tag); //triangular solver
inplace_solve (A, x, tag);
A += alpha * outer_prod(x,y); //rankl update

[o RN TN T SO U O

For dense matrices, the type of the variable tag is either
upper_tag, lower_tag, unit_upper_tag Or unit_lower_tag and
is used to choose the dense, triangular linear solver.

BLAS level 3 as well as the BLAS levels defined for sparse
matrices [12] are not fully implemented in the first release of
ViennaCL, but are in preparation. An important sparse
operation, namely sparse matrix vector products, is pro-
vided and serves as a building block for iterative solvers,
of which a conjugate gradient solver (CG) [14] for sym-
metric positive definite systems, a stabilized bi-conjugate
gradient solver (BiCGStab) [19] and a generalized minimal
residual solver(GMRES) [17,22] for indefinite systems are
provided. An optional CPU-based ILUT preconditioner is
also included. Since the ViennaCL API is essentially a sub-
set of that of uBLAS, the iterative solvers can be used with
objects from both libraries thanks to templates in C++-.

Initialization of data on the device memory is a copy op-
eration, thus ViennaCL reuses the conventions introduces
with the Standard Template Library (STL) (see e.g. [18]).
In order to copy the entries of a vector cpu_vec from the host
to a vector gpu_vec in the GPU memory, the call

copy(cpu_vec.begin(),
2 cpu_vec.end(),
3 gpu_vec.begin());

is sufficient. In this way, also parts of a vector can be ma-
nipulated. Thus, programmers acquainted with the iterator
concept and the STL can reuse their knowledge.

For data types where the iterator concept cannot be ap-
plied easily, a modified copy function is provided. For exam-
ple, a matrix cpu_matrix on the host, no matter if dense or
sparse, is copied to a matrix gpu_matrix on the device using

1 | copy(cpu_matrix, gpu_matrix);

For this generic interface a number of type requirements
such as iterator retrieval and entry access have to be posed
on the cpu_matrix type in order to access the data. These
requirements are chosen such that they are automatically
fulfilled by the concepts modelled by uBLAS types.

3. KERNEL PARAMETER TUNING

The OpenCL specification decomposes each compute de-
vice into compute units and processing elements [3]. Each
compute unit consists of at least one processing element.
Processing elements within a compute unit can be synchro-
nized, while compute units execute independently from each
other. Compute units are an abstraction of a collection of
processing elements in hardware and may, but do not have
to, refer to a collection of processing units in hardware.

Threads executing a particular kernel on a device have to
be grouped in compute units at kernel launch. The maxi-
mum number of processing elements per compute unit de-
pends on the device and is typically 256, 512 or 1024, hence
not equal to the physical number of processing elements.
This allows the scheduler on the device to process a group of
threads, say A, while another group of threads, say B, waits
for data from the global device memory. As a consequence,
the general advice of hardware vendors is to use large num-
bers of threads in order to get best performance. More pre-
cisely, the two parameters associated with an OpenCL kernel
launch are the number of compute units and the number of
processing elements per compute unit.

The simplest possibility for the determination of an opti-
mal parameter set is to test all parameters from the discrete
set [1,..., N|x[1,..., M], where N refers to a suitable upper
limit for the number of compute units and M denotes the
maximum number of processing elements per compute unit.
Typical values of N are in the range 100 to 1000. Current
GPUs report 256, 512 or 1024 processing elements per com-
pute unit. Therefore, a brute force approach testing N x M
parameter sets is impractical.

To account for the optimality of parallel reduction schemes
for data that is a power of two, a rough overview can be ob-
tained from benchmarking the set [1,...,2"] x [1,...,2™],
where n = [ldN] and m = [ldM] with || denoting the
round to next smallest integer operation. For reasons of
uniform hardware utilization, the parameter for the number
of compute units can also be chosen as a multiple of the
physically available compute units. Hence, instead of test-
ing powers of two, one may also test with first parameter
u, 2u, 4u, 8u, ..., where u denotes the number of compute
units on the device.

Typically small numbers of processing elements per com-
pute unit show poor performance and can be skipped. In
principle one can selectively search for a better parameter
set after the coarse sampling step, but the results in Sec. 5
suggest that an eventual performance gain is negligible and
does not justify the additional benchmarking effort.

Such a search for the best parameter set can be carried out
for each compute kernel, which is currently accomplished in
dedicated programs. After moderate execution times in the
range of several seconds for each optimization program, the
best parameters obtained are written to a file. Other pro-
grams using ViennaCL can then read these optimized pa-
rameters. This file-based approach also allows to distribute
the results of one or more optimization runs to other ma-
chines with similar hardware.

4. STORING AND LOADING PARAMETERS

ViennaCL internally associates compute kernels with the
main data type for the computation. Thus, compute kernels
are grouped as follows:

e Scalars: Compute kernels that operate on scalar argu-
ments only

e Vectors: Compute kernels for vector operations
e Matriz: Compute kernels for dense matrix operations

e Sparse: Compute kernels for sparse matrix operations
grouped by sparse matrix type.

Each group consists of 5 to 25 kernels and new kernels may
be added in future releases. For a discussion of the just-
in-time compilation of these kernels, the reader is referred
to [15].

Good parameters for the number of compute units and
the number of processing elements not only depend on the
kernel, they also depend on the device and the numerical
data type. To be able to store this hierarchy of dependencies,
a XML data structure is used. A specialized XML tree setup
is applied, which satisfies the aforementioned need to map
the hierarchy of dependencies for the parameters on the data
structure. Furthermore, additional meta-information can be
added, for example, the total number of available compute
units. For creating and accessing XML files by XPath [7],
PugiXML has been used [5]. In the following, the device part
is depicted, which contains information about the device to
which the parameters are related to.

<parameters>
<devices>
<device>
<name>GeForce GTX 470</name>
<driver>195.36.31</driver>
<computeunits>40</computeunits>
<workgroupsize>512</workgroupsize>

© W N U W N e

</device>

<device>
<name>Intel Core i7</name>
<computeunits>8</computeunits>

=
w N = O

</device>
15 </devices>
16 | </parameters>

[
'S

The presented XML format allows to store parameters for
different devices (Lines 3-9, 10-14). Note that the parame-
ters are stored in subtrees of the device nodes (Lines 8, 13).
An example is given in the next snippet.

<optimizations>
<optimization>
<name>vector</name>
<numeric>float</numeric>
<kernels>
<kernel>
<name>add</name>
<params>
<param>
<name>compute units</name>
<value>128</value>
</param>

© W N U W N e

BB R R e
S O

15 </params>
16 </kernel>
17 </kernels>
18 </optimization>
19 | </optimizations>
20

A set of nodes is wrapped by a corresponding set node.
For example, the individual parameter subtrees are placed
within an enveloping parameters node (Lines 9-15). This
approach imposes a structuring of the data, which not only
supports convenient data traversal but also maps the natural
structure of the data on the XML data structure. Although
this XML setup seems overloaded, it supports unique dis-
tinction of different parameter sets and especially the ex-
tendibility for new, not yet recognized, nodes or subtrees.
Moreover, a collection of parameters for frequently used de-
vices can be shipped with ViennaCL.

The XML data can be accessed by using XPath. For ex-
ample, the following XPath expression returns the parame-
ter subtree for a specific device.

1 | "/parameters/devices/device [name=’GeForce
GTX 470°]";

If an ViennaCL application loads a parameter file, it can be
tested if a parameter set is available which fits the present
device.

Another more specific access can be realized by accessing
a certain numerical data type

1 | "/parameters/devices/device [name=’GeForce
GTX 470’]/optimizations/optimizationl[
numeric=’float’]";

And finally, to access the values for a specific environment,
the following expression may be used.

1 | "/parameters/devices/device [name=’GeForce
GTX 470’]/optimizations/optimizationl[
numeric=’float’]/kernels/kernel [name="’
add’]/params/param[name=’work_groups ’]1/
value/text () ";

With this line, the number of work groups is accessed for:
e a GeForce GTX 470
e a numerical data type float
e an add kernel

This XPath expression would, for example, return the value:

1 nqogn

Apparently, applying XPath expressions allows to conve-
niently access the stored data within an extensively formu-
lated XML data structure.

S. PERFORMANCE GAINS

The performance of the compute kernels in ViennaCL,
version 1.0.5, has been compared on a Radeon HD 5850
from ATI and a GTX 470 from NVIDIA. Comments are
also given on a low-end NVIDIA Geforce 8500 GT, but no
detailed execution times are given for the latter. The test
platform was a Intel Core i7 960 with 6 Gigabytes of random
access memory, running a 64-bit Linux kernel. For the ATI
GPU, the kernel version was 2.6.33 with GPU driver version
10.7 using Stream SDK 2.2. For NVIDIA GPUs, a kernel
with version 2.6.34 and a GPU driver, version 195.36.24, was
used.

In ViennaCL 1.0.x, a single parameter pair of 128 com-
pute units and 128 processing elements per compute unit
was chosen uniformly for all compute kernels, because no

32 64 128 256 512
32 1 0.769 | 0.541 | 0.439 | 0.398 | 0.380
64 | 0.538 | 0.439 | 0.397 | 0.378 | 0.379

128 | 0.544 | 0.444 | 0.396 | 0.378 | 0.384

256 | 0.485 | 0.407 | 0.385 | 0.386 | 0.379

512 | 0.452 | 0.399 | 0.381 | 0.377 | 0.376

Table 1: Execution times (in milliseconds) for the
addition of two vectors with 1000000 entries assigned
to a third vector on a NVIDIA GTX 470 in single
precision. The chosen number of compute units is
given at the beginning of each row, the number of
processing units per compute unit is given at the
beginning of each column. The execution time for
the fastest and the default parameter set are printed
in bold.

32 64 128 256
32 | 1.346 | 0.722 | 0.478 | 0.420
64 | 0.776 | 0.478 | 0.419 | 0.420

128 | 0.858 | 0.538 | 0.475 | 0.438

256 | 0.732 | 0.479 | 0.446 | 0.427

512 | 0.674 | 0.448 | 0.432 | 0.421

Table 2: Execution times (in milliseconds) for the
addition of two vectors with 1000000 entries assigned
to a third vector on a ATI Radeon HD 5850 in single
precision. The chosen number of compute units is
given at the beginning of each row, the number of
processing units per compute unit is given at the
beginning of each column. The execution time for
the fastest and the default parameter set are printed
in bold.

automated optimization environment for the individual op-
timization of parameters for each of the about 40 kernels was
available. Compute kernels bound to a single compute unit
due to synchronization requirements also use 128 processing
elements. On less powerful GPUs we have observed that
a number of processing elements per compute unit larger
than 128 may fail, so the default parameter set is not only
a tradeoff among the performance of compute kernels, but
also a tradeoff with support for weaker hardware.

Even for operations such as the additions of two vectors,
which can be parallelized trivially, the choice of parameters
has notable impact on performance, see Tab. 1 and Tab. 2.
On NVIDIA hardware, the best parameter pair leads to a
performance gain of five percent over the default param-
eters (128,128). Taking the best parameter set obtained
from NVIDIA hardware Tab. 1 for comparable ATI hard-
ware fails, because on a Radeon HD 5850 only up to 256
threads per compute unit are possible.

The best parameter for the Radeon HD 5850 in Tab. 2 is
(64,128), which is by twelve percent faster than the default
parameter set. However, taking the best parameter set on
the ATT hardware for the NVIDIA GPU, a runtime slightly
below the default parameter set is obtained. Thus, even a
simple operation such as vector addition shows a consider-
able dependence on the choice of the number of compute
units and processing elements per compute unit.

32 64 128 256 512
32 1 0.564 | 0.317 | 0.198 | 0.149 | 0.153
64 | 0.320 | 0.199 | 0.146 | 0.144 | 0.149

128 | 0.322 | 0.206 | 0.161 | 0.149 | 0.153

256 | 0.264 | 0.179 | 0.152 | 0.150 | 0.165

512 | 0.246 | 0.171 | 0.151 | 0.160 | 0.201

Table 3: Execution times (in milliseconds) for the
computation of inner products of two vectors with
1000000 entries assigned to a third vector on a
NVIDIA GTX 470 in single precision. The chosen
number of compute units is given at the beginning of
each row, the number of processing units per com-
pute unit is given at the beginning of each column.
The execution time for the fastest and the default
parameter set are printed in bold.

32 64 128 256
321 0.632 | 0.584 | 0.410 | 0.328
64 | 0.584 | 0.410 | 0.329 | 0.314

128 | 0.595 | 0.380 | 0.360 | 0.333

256 | 0.514 | 0.388 | 0.343 | 0.332

512 | 0.481 | 0.373 | 0.343 | 0.341

Table 4: Execution times (in milliseconds) for the
computation of inner products of two vectors with
1000000 entries assigned to a third vector on a ATI
Radeon HD 5850 in single precision. The chosen
number of compute units is given at the beginning
of each row, the number of processing units per com-
pute unit is given at the beginning of each column.
The execution time for the fastest and the default
parameter set are printed in bold.

The best common parameter set in Tab. 1 and Tab. 2 is
to be (64,256), which is almost optimal for both GPUs and
also gives best performance on a NVIDIA Geforce 8500 GT.
On this low-end board, execution times for vector addition
show a similar picture and only four percent of performance
can be gained by optimized parameters. Thus, taking vector
addition alone, an optimization framework may not pay off
compared to setting a common parameter set (64,256) on
current hardware.

While entry-wise arithmetic operations on vectors all show
a picture similar to that of vector addition, the situation is
different for more complicated compute kernels such as inner
products. Here, the input vectors are split into small blocks,
where products are summed up by parallel reduction in on-
chip shared memory and the intermediate results are then
summed up to obtain the final result.

The results in Tab. 3 and Tab. 4 again identify a best
parameter set (64,256), which is the same as for vector ad-
dition. The performance benefit over the default parameter
set is eleven and thirteen percent respectively.

However, for the low-end NVIDIA Geforce 8500 GT, the
best parameter set is (2, 512) with an execution time of 1.062
milliseconds. The default parameter set takes 6.960, the set
(64, 256) takes 6.946 milliseconds. Thus, while the optimiza-

32 64 128 256 512
32 | 0.303 | 0.182 | 0.176 | 0.185 | 0.210
64 | 0.191 | 0.151 | 0.174 | 0.193 | 0.201

128 | 0.194 | 0.177 | 0.195 | 0.214 | 0.221

256 | 0.161 | 0.164 | 0.195 | 0.214 | 0.218

512 | 0.145 | 0.157 | 0.198 | 0.211 | 0.222

Table 5: Execution times (in milliseconds) for sparse
matrix-vector multiplication using a sparse matrix
with 65025 rows and columns and seven entries per
row on a NVIDIA GTX 470 in single precision. The
chosen number of compute units is given at the be-
ginning of each row, the number of processing units
per compute unit is given at the beginning of each
column. The execution time for the fastest and the
default parameter set are printed in bold.

32 64 128 256
32 1 0.508 | 0.325 | 0.259 | 0.252
64 | 0.324 | 0.262 | 0.256 | 0.249

128 | 0.357 | 0.290 | 0.272 | 0.247

256 | 0.307 | 0.264 | 0.256 | 0.248

512 | 0.282 | 0.255 | 0.258 | 0.253

Table 6: Execution times (in milliseconds) for sparse
matrix-vector multiplication using a sparse matrix
with 65025 rows and columns and seven entries per
row on a ATI Radeon HD 5850 in single precision.
The chosen number of compute units is given at the
beginning of each row, the number of processing
units per compute unit is given at the beginning
of each column. The execution time for the fastest
and the default parameter set are printed in bold.

tion run improved execution speed on high-end hardware by
only slightly above ten percent, it reduced execution time on
low-end hardware down to one seventh. It has to be noted
that the physical number of compute units on the Geforce
8500 GT is two, which is just the best parameter for the
compute units found in the optimization run.

Execution times for sparse matrix-vector products are com-
pared in Tab. 5 and Tab. 6. The sparse matrix used for the
benchmark has 65025 rows and stems from a finite element
discretization of the Laplace operator. On average, seven
nonzero values in each row are present. The matrix is stored
in a CSR-format [16], which is known not to give optimal
performance on GPUs [9,10], but is the fastest matrix type
available in ViennaCL 1.0.x.

On a NVIDIA GTX 470, the best parameter set yields an
improvement of 26 percent over the default parameter set.
The set (64, 256), which gave best performance on the previ-
ous benchmarks, gives an improvement of only one percent.
Thus, even on a single high-end GPU board, one static pa-
rameter set does not yield good performance for all kernels.

The ATI GPU performance could be improved by nine
percent compared to the default parameters. The parameter
set (64,256) from the previous benchmark is again close to
best performance, which is obtained for the set (128, 256).

On the low-end NVIDIA Geforce 8500 GT, most param-
eter sets are within three percent of the best performance,
indicating that the operation is severely memory bandwidth-
limited on this GPU. Thus, a parameter optimization does
not pay off in this case.

6. OUTLOOK

This work investigates the automated tuning of the num-
ber of compute units and processing elements per compute
unit. Further performance gains can be obtained by com-
paring different implementations that e.g. make use of vec-
tor data types within the OpenCL kernels. The benefit of
such vectorized types comes at the cost of additional effort
needed for memory management and it strongly depends
on the underlying hardware whether there is a performance
gain at all.

The presented optimization functionality can also be ap-
plied directly to future many-core CPUs. Current CPUs
with four to six cores lead to a small of reasonable param-
eter sets, but future CPUs are expected to have a much
higher degree of parallelism.

Furthermore, it is likely that the optimal parameters also
show a dependence on the provider of the OpenCL imple-
mentation. While it is unlikely that OpenCL implemen-
tations for GPUs from non-vendors will be available, sev-
eral OpenCL implementations for mainstream CPUs could
emerge.

7. CONCLUSIONS

Even though good performance can be achieved with the
default parameter pair for the number of compute units and
the number of processing elements per compute unit [15],
it is shown in this work that the automated optimization
framework scheduled for ViennaCL 1.1.0 leads to signifi-
cantly improved execution performance ranging from a few
percent to up to a factor of seven on a low-end GPU. Thus,
even though ViennaCL is designed to be a general purpose
linear algebra library, it now automatically adopts to the
available target hardware to obtain the best possible perfor-
mance for a bearable tuning time frame.

The parameter set (64,256) was found to yield better per-
formance by around ten percent than the default parameter
set (128,128). This is remarkable, since the total number of
threads, given by the products of the two parameters, is the
same for both sets.

The possibility to save the best parameter set for the de-
vice to an XML file allows a quick and simple adaption to
the target hardware. Even if users decide not run the opti-
mizer, the insights gained from the investigations presented
in this work allow us to ship with better default parameters
that are deduced from certain device characteristics.

Acknowledgements

Karl Rupp gratefully acknowledges support by the Grad-
uate School PDEtech at the Vienna University of Tech-
nology. Moreover, the authors wish to thank Peter Lag-
ger for his work-in-progress on a profiling application that
greatly simplified the comparison of different parameters,
and Prof. Siegfried Selberherr for providing a test platform
for benchmarking and regression tests. This work has been
supported by the European Research Council through the
grant #247056 MOSILSPIN.

8. REFERENCES

] BLAS homepage. http://www.netlib.org/blas/.

] Boost C++ Libraries. http://www.boost.org/.

] Khronos OpenCL. http://www.khronos.org/opencl/.

] NVIDIA CUDA.

http://www.nvidia.com/object/cuda_home_new.html.

[5] PugiXML. http://code.google.com/p/pugixml/.

[6] ViennaCL. http://viennacl.sourceforge.net/.

] XML Path Language (XPath) Version 1.0.

http://www.w3.org/ TR /xpath/.

[8] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. Curfman McInnes, B. F. Smith,
and H. Zhang. PETSc Web page.
http://www.mcs.anl.gov/petsc.

[9] M. M. Baskaran and R. Bordawekar. Optimizing
Sparse Matrix-Vector Multiplication on GPUs. IBM
RC24704, 2008.

[10] N. Bell and M. Garland. Efficient Sparse
Matrix-Vector Multiplication on CUDA. NVIDIA
Technical Report NVR-2008-004, 12, 2008.

[11] J. Bolz, I. Farmer, E. Grinspun, and P. Schrider.
Sparse Matrix Solvers on the GPU: Conjugate
Gradients and Multigrid. ACM Trans. Graph.,
22:917-924, July 2003.

[12] 1. S. Duff, M. A. Heroux, and R. Pozo. The Sparse
BLAS. Technical Report TR/PA/01/24, September
2001.

[13] D. Géddeke, R. Strzodka, and S. Turek. Accelerating
Double Precision FEM Simulations with GPUs.
Proceedings of ASIM 2005 - 18th Symposium on
Simulation Technique, 2005.

[14] M. R. Hestenes and E. Stiefel. Methods of Conjugate
Gradients for Solving Linear Systems. Journal of
Research of the National Bureau of Standards, 49,
1952.

[15] K. Rupp, F. Rudolf, and J. Weinbub. ViennaCL - A
High Level Linear Algebra Library for GPUs and
Multi-Core CPUs. In Proc. GPUScA, pages 51-56,
2010.

[16] Y. Saad. Iterative Methods for Sparse Linear Systems,
Second Edition. Society for Industrial and Applied
Mathematics, April 2003.

[17] Y. Saad and M. H. Schultz. GMRES: A Generalized
Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems. SIAM J. Sci. Stat.
Comput., 7(3):856-869, 1986.

[18] B. Stroustrup. The C++ Programming Language.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[19] H. A. van der Vorst. Bi-CGSTAB: A Fast and
Smoothly Converging Variant of Bi-CG for the
Solution of Non-Symmetric Linear Systems. SIAM
Journal on Scientific and Statistical Computing,
12:631-644, 1992.

[20] D. Vandevoorde and N. M. Josuttis. C++ Templates.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[21] T. Veldhuizen. Expression Templates. C++ Report,
7(5):26-31, June 1995.

[22] H. F. Walker and L. Zhou. A Simpler GMRES.

Numer. Linear Algebra Appl., 1(6):571-581, 1994.

=

