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Abstract—A transport model for quantum cascade lasers based
on the Pauli master equation is presented. An efficient Monte
Carlo solver has been developed. The numerical methods to
reduce the computational cost are discussed in detail. Finally,
the simulator is used to obtain current-voltage characteristics as
well as microscopic quantities of a mid infrared QCL structure.

I. INTRODUCTION

Quantum cascade lasers (QCLs) offer a wide range of
advantages which make them a popular choice for coherent
light sources [1]. Their light emission is based on intersubband
transitions. Due to the periodic nature of QCLs a single
electron will contribute repeatedly to the photon emission. The
properties of the laser are mainly determined by the designer’s
choice of material and quantum well geometry.

For this purpose simulation is a useful tool to tune the QCL
design to the desired optical and electrical characteristics. A
requirement for such a simulator as design tool is a good
balance between computational speed and physical accuracy.
To describe the electronic properties of the laser a quantum
mechanical transport model is necessary. Previously the non-
equilibrium Green’s function formalism (NEGF) has been used
as a rigorous approach to capture the QCL’s physics [2, 3].
Unfortunately the inherently high computational costs of the
NEGF formalism render it unfeasible as a design tool.

II. QCL TRANSPORT MODEL

In our approach we use the Pauli master equation (PME) [4]
to model current transport through the QCL’s semiconductor
heterostructure. Based on the experiences of a MATLAB
prototype presented in [5], an optimized Monte Carlo (MC)
simulator has been implemented in C++ within the Vienna-
Schrödinger-Poisson (VSP) simulation framework [6].

A. Pauli Master Equation

Theoretical studies showed that in many practical cases
the steady state transport in QCLs is incoherent and a
semiclassical description was found to be sufficient [7, 8].
Following this approach, we developed a transport model for
quantum cascade lasers based on the Pauli master equation [5].
The transport is described via in and out-scattering between
quasi-stationary basis states, which are found by solving the
Schrödinger equation. The Hamiltonian includes the band edge
formed by the heterostructure, and thus, tunneling is accounted

for through the delocalized eigenstates. The transport occurs
via scattering between these states.

The transport equations are derived from the Liouville-von
Neumann equation in the Markov limit in combination with
the diagonal approximation. This means that the off-diagonal
elements of the density matrix are neglected and one arrives
at the Boltzmann-like Pauli master equation [9].
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The transition rate from state |k′,m〉 to state |k, n〉 for an
interaction Hint follows from Fermi’s golden rule

Smn (k,k′) =
2π

~
|〈k′,m|Hint|k, n〉|

2
δ (E(k′)− E(k)∓ ~ω) .

We make use of the translational invariancy of the QCL
structure and simulate the electron transport over a single stage
only. The wave function overlap between the central stage and
spatially remote stages is small. Therefore, the assumption that
interstage scattering is limited only to the nearest neighbour
stage holds and interactions between basis states of remote
stages can be safely neglected.

The electron states corresponding to a single stage of
the quantum cascade laser are determined as discussed in
Sec. II-B. The states of the whole QCL device structure are
assumed to be a periodic repetition of the states of a central
stage. This approach ensures charge conservation and allows
to impose periodic boundary conditions on the Pauli master
equation.

Since transport is simulated over a central stage only, every
time a carrier undergoes an interstage scattering process the
electron is reinjected into the central stage with an energy
changed by the voltage drop over a single period. The corre-
sponding electron charge then contributes to the total current.

The transport equations can be solved with a Monte Carlo
approach. We developed an algorithm and devised several new
numerical methods to reduce the computational cost of the
simulation. The implementation details will be discussed in
Sec. II-C.

B. Calculation of Basis States

The task at hand can be separated into two parts. First, the
basis states need to be determined. Second, the states have to
be mapped to a stage according to their periodicity. For this
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Fig. 1. Multiple cascades of a QCL need to be considered to obtain suitable
basis states for the PME Monte Carlo solver.
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Fig. 2. Application of our subband selection routine which automatically
assigns the periodic wavefunctions to a stage of the QCL (only the states of
two stages are shown).

purpose the equation definition and solver facilities of the VSP
were used beneficially.

Since it is essential to consider band nonparabolicity for
QCLs the user can choose one of several models for the
Hamiltonian of the Schrödinger equation. For this purpose,
additionally to the single band effective mass model, an
effective two-band k·p model [10] or a three-band k·p model
are available. For the case of k‖ = 0 the eight-band k·p model
reduces to the three-band k·p model. Therefore, it needs not
to be considered.

To describe the openness of the quantum system we make
use of the perfectly matched layer (PML) boundary condi-
tions for the Schrödinger equation [11]. Perfectly matched
layers were originally used as boundary conditions for electro-
magnetic and waveguide problems [12]. The PML boundary
conditions give rise to a general complex eigenvalue problem.
It is solved by means of Arnoldi iteration and the ARPACK

[13] library linked to VSP. The calculated eigenvectors cor-
respond to the complex wavefunctions. The real part of
the eigenvalue is the eigenenergy of the quasi-bound state,
whereas the imaginary part can be related to its finite lifetime
due to the openness of the system. This allows to estimate the
tunneling current using the relation JTunnel =

∑ ni

τi
[14].

We calculated the eigenenergies and eigenvectors for an
In0.53Ga0.47As/GaAs0.51Sb0.49 mid infrared (MIR) quantum
cascade laser developed by [15]. The barrier thicknesses
(bold) and the well thicknesses of one period in nanometer are
8.1/2.7/1.3/6.7/2.2/5.9/7.0/5.0/1.9/1.2/1.9/3.8/2.7/3.8/2.8/3.2.
We will use this device as benchmark throughout this paper.
The calculated wavefunctions for a two-band k·p Hamiltonian
with PML boundary conditions are shown in Fig. 1.

To use the eigenvectors as basis states in the MC routine
we need to consider the periodicity of the device and automat-
ically select the appropriate states of a single stage. For that
purpose we calculate the cross-correlation and auto-correlation
of all subbands. We make use of the relation F{Ψi ? Ψj} =
F{Ψi}∗ · F{Ψj} and the Fast Fourier Transform to obtain
the result quickly. Then the maxima of the correlations of
all the subbands are determined. If its position equals the
geometric period length of the QCL structure, the two states
are considered periodic and given an appropriate stage index.
As an example the periodic states of the InGaAs/GaAsSb QCL
are given in Fig. 2.

C. Monte Carlo Solver

The wavefunctions provided by the routines discussed above
are processed to initialize the MC code. After calculating
the scattering rates using functor classes and filling the data
structures, the initial valley, subband and energy of the carrier
are selected randomly. In the MC loop the precalculated
possible scattering processes are looked up according to the
current electron state. A random number r is determined
using a uniform distribution in the interval [0, Pn] where
Pn =

∑n
j=1 Γj is the total scattering rate. The scattering

process i is selected from the table such that the relation
Pi−1 < r ≤ Pi holds for the partial sums of the scattering
rates. The data structure for the selection method is given in
Fig. 3. As shown, the C++ standard template library containers
are used with regard to minimize the look up time.

The current state and the chosen scattering process are used
to update the statistical quantities such as subband population,
energy distribution and current. Afterwards the state variable is
set to its new value given by the scattering event. The MC loop
is terminated, when the given number of events is reached.

To account for the periodic structure of the device the
subbands of three stages are included. Whenever the electron
scatters from the central to the left or right stage it is reinjected
into the corresponding state of the central stage and contributes
to the current.

We identified the calculation of the polar-optical phonon
scattering rate as one of the major contributions to the sim-
ulation run time. Therefore, we optimized the calculation of
the scattering rate for this process by exchanging the order
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Fig. 3. Data structures for the selection of a scattering process. Valleys and subbands are accessed by index. Each subband uses its own energy grid. For a
fast lookup the grid is implemented as a STL map with the energy as key value. Similarly, scattering processes are stored in a map where the partial sums of
their transition rates are used as key. The selected scattering process instance contains all essential information to update the statistics and the state variable.
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Fig. 4. Current density vs. applied electric field of the MIR QCL. The
simulation shows that the inclusion of the X valley has no considerable
influence on the characteristics around the laser threshold of 30kV/cm.

of the multiple integrations. An analytic integration over the
final states is carried out first. The integration related to the
matrix element is carried out last. The remaining integration
is in momentum space and has the form

Γmn(k‖) =
m∗

~2
e2ωPO

4πε

(
nPO + 1

2 ∓
1
2

)
∫

|ρ̂mn(qz)|2√
(k2‖ + k2f + q2z )2 − 4k2‖k

2
f

dqz

where k2f = k2‖ + 2m∗

~2 (Em − En ± ~ωPO) has to be positive
to satisfy energy conservation. This allows us to use a Fast
Fourier Transform (FFT) to exactly calculate the overlap in-
tegrals ρ̂mn(qz) = F{ρmn(z)} where ρmn(z) = ψ∗m(z)ψn(z)
which reduces the calculation time of the PO scattering rate
by three to four orders of magnitude.

Currently, acoustic and optical deformation potential, and
polar optical electron-phonon scattering as well as alloy,
intervalley and interface roughness scattering are included. The
object oriented implementation allows for simple inclusion of
additional physics for further investigation of QCL devices
such as electron-electron and electron-photon interaction.
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Fig. 5. Calculated scattering rates of the lower laser level. At energies near
the subband minimum the polar optical emission is the dominant process.
This ensures fast depopulation of the lower laser level.

III. RESULTS AND DISCUSSION

We used the implemented transport model to simulate the
InGaAs/GaAsSb mid infrared (MIR) quantum cascade laser
from [15]. The electric field vs. current density characteristics
at 78 Kelvin are shown in Fig. 4. The simulation result is in
good agreement with the experiment. The current peak around
the laser threshold can be attributed to a PO phonon resonance
in the laser design for fast depletion of the lower laser level.
The current drop above threshold is due to increasing coherent
tunneling to the continuum as well as the electron-photon
interaction not yet included in the model. The characteristics
show that transport in the X valley contributes only marginally
to the total current near the laser threshold. This is also
indicated by the scattering rates for the lower laser level
(Fig. 5) where PO emission is also shown to be dominant.

The calculation of a single operating point typically takes
a few minutes, depending on number of valleys, subbands
and energy grid resolution. This is orders of magnitude faster
than a full quantum treatment using non-equilibrium Green’s
functions, but still gives insight to microscopic quantities such
as the carrier density spectrum shown in Fig. 6.
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Fig. 6. Conduction band edge and carrier density spectrum obtained by the Pauli master equation solver at an electric field strength of 30kV/cm. The
occupation of the upper laser state is clearly visible.

IV. CONCLUSION

We have presented a semiclassical transport model for
quantum cascade lasers based on the Pauli master equation. We
devised new numerical methods to reduce the computational
demand and realized an efficient Monte Carlo simulator imple-
mented in C++. The model was applied to a mid infrared QCL.
It gives insight to macroscopic and microscopic quantities
such as current-voltage characteristics, scattering rates, carrier
density spectrum, subband population, and optical gain.
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