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Abstract—The reliability of interconnects in modern integrated
circuits is determined by the magnitude and direction of the
effective valence for electromigration (EM). The effective valence
depends on local atomistic configurations of fast diffusivity paths
such as metal interfaces, dislocations, and the grain boundary;
therefore, microstructural variations lead to a statistically pre-
dictable behavior for the EM life time. Quantum mechanical
investigations of EM have been carried out on an atomistic level
in order to obtain numerically efficient methods for calculating
the effective valence. The results of ab initio calculations of the
effective valence have been used to parameterize the continuum-
level electromigration model and the kinetic Monte Carlo model.
The impact of fast diffusivity paths on long term EM behavior
is demonstrated with these models.

I. INTRODUCTION

Electromigration (EM) experiments indicate that the copper

interconnect lifetime decreases with every new interconnect

generation. In particular, fast diffusivity paths cause a sig-

nificant variation in the interconnect performance and EM

degradation [1]. In order to produce reliable interconnects,

the fast diffusivity paths must be addressed when introducing

new designs and materials. The EM lifetime depends on a

variation of material properties at the microscopic and atom-

istic levels. Microscopic properties are grain boundaries and

grains with their crystal orientation [2]. Atomistic properties

are configurations of atoms at the grain boundaries, at the

interfaces to the surrounding layers, and at the cross-section

between grain boundaries and interfaces. Modern Technology

Computer-Aided Design (TCAD) tools, in order to meet the

challenges of contemporary interconnects, must cover two

major areas: physically based continuum-level modeling and

first-principle/atomistic-level modeling. A multilevel modeling

and simulation approach is presented in order to investigate the

impact of fast diffusivity paths on EM reliability.

II. THEORETICAL BACKGROUND

The source of EM performance variation lies in the atom-

istic level, for which analyse using first-principle methods

must be employed. The crucial parameters to determine EM

behavior is the effective valence which strongly differs be-

tween bulk, grain boundaries, dislocations, and interfaces. In

general, the effective valence is a tensor field (Z̄), defined as a

linear relationship between the EM force (~F ) and an external

electric field ~E.
~F (~R) = eZ̄(~R) ~E (1)

In order to calculate the effective valence several methods

have been proposed, all of which implement a calculation of

electron scattering states [3]. Density functional theory (DFT),

in connection with the augmented plane wave (APW) method

[4] or the Korringa-Kohn-Rostoker (KKR) [5] method, has

been established as a powerful method for the determination

of scattering states while requiring a demanding computational

scheme. The cumbersome representation of scattering wave

functions with many parameters represents a heavy burden on

the stability and the accuracy of subsequent numerical steps.

However, it is possible to apply a more robust and efficient

method to calculate the effective valence which relies only on

the electron density ρ(~k, ~r).

A. Electronic Density Based Calculation of Effective Valence

Using the Born-Oppenheimer approximation, the force,

F (~R), exerted by the electron gas on an atom situated at ~R,

may be written as [6], [7], [8]

F (~R) =
∑

~k

g(~k)〈ψ~k
(~r)| − ∇~R

V (~r − ~R)|ψ~k
(~r)〉 (2)

where V is the interaction potential between an electron and

the migrating atom, ψk(~r) are the scattering states for electrons

in the absence of an external electric field, and g(~k) is the

shifted electron distribution which has the form

g(~k) = eτ(~k)~v(~k) · ~E
∂f0

∂E~k
. (3)

Here, f0 is the equilibrium electron distribution, τ(~k) is the

relaxation time due to scattering by phonons, and v(~k) is the

electron group velocity. In the low temperature limit

∂f0

∂E~k
= −δ(EF − E~k). (4)

and (2) is then re-written in the form

~F (~R) =
eΩ

4π3

∫∫∫

d3~k δ(EF − E~k)τ(
~k)[~v(~k) · ~E]·

·

∫∫∫

EZ

d3~r ψ∗

k(~r)∇~R
V (~R− ~r)ψk(~r).

(5)

Ω is the volume of a unit cell. The first integration is over

the k-space and the second over the volume of the crystal. By

taking into account (1) and

ρ(~k, ~r) = |ψk(~r)|
2 (6)
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components of the effective valence tensor Z̄ are expressed as

Zi,j(~R) =
Ω

4π3

∫∫∫

d3~k δ(EF − E~k)τ(
~k)[~v(~k) · x̂j ]·

·

∫∫∫

d3~r ρ(~k, ~r)[∇~R
V (~R− ~r) · x̂i], i, j = x, y.

(7)

For the calculation of the electron density the DFT tool VASP

[9] was used. An example of a VASP calculation is presented

in Fig. 1. The electron density alone provides a qualitative

explanation for the fact that the effective valence is higher in

the bulk than in the grain boundaries. Similar analyses can be

performed for atomic structures of different copper/insulator

interfaces. Higher electron densities lead to higher effective

valences, as can be seen from (7).

B. Jellium Model of Grain Boundary

The electric potential calculated with DFT is also applied

for a simple jellium model. Here, the grain boundary is

represented as a repulsive potential barrier for current car-

rying electrons. In this case the evaluation of integral (7) is

not necessary, since only a simple one-dimensional barrier

problem must be dealt with, e.g. the precisely calculated DFT

repulsive potential is approximated with a rectangular barrier

potential. To estimate the value of the effective valence, both

inside the grain boundary and in the copper bulk, an external

electric field parallel to the grain boundary must be applied,

obtaining the two-dimensional potential (cf. Fig. 2). Current

carrying electrons are now described with the two-dimensional

Schrödinger equation

~

2m
∆x,yψ(x, y) + V (x, y)ψ(x, y) = Eψ(x, y). (8)

The two-dimensional potential can be separated into a compo-

nent for the barrier V (x) and a component due to the external

electric field V (y)

V (x, y) = V (x) + V (y). (9)

In this case, the solution of the two-dimensional Schrödinger

equation is represented as a product of two one-dimensional

solutions [10]

ψ(x, y) = ψx(x) · ψy(y). (10)

ψx(x) is a usual potential barrier solution which is split into

solutions ψL(x), ψB(x), and ψR(x) for the region on the left

side of the barrier, for the barrier region itself, and for the

region on the right side of the barrier. ψx(x) depends explicitly

on the energy E and, therefore, the two-dimensional solution

of Schrödinger equation as denoted as ψ(x, y; E). Electrons

are accelerated in the external field ~E parallel to the grain

boundary and thus ψy(y) is given by the Airy function [10]

ψy(y) = Ai
(y − σ

γ

)

, (11)

where

γ3 =
~
2

2me| ~E|
and σ = −

E

e| ~E|
. (12)

Fig. 1. Portion of the bulk copper crystal. The electron density is represented
in two orthogonal planes. It varies from higher values (circle regions around
atoms) closer to an atomic nucleus to lower in the inter-atomic space.

The electron density ρ(~r) is easily calculated by integrating

over the continuous energy states.

ρ(~r) =

∫

∞

0

f(E − EF )DOS(E)|ψ(x, y; E)|2dE (13)

Now, the electron wind force is given by a simpler expression

[11]

~F (~R) = −

∫

ρ(~r)
∂V (~r − ~R)

∂ ~R
d3r (14)

which is subsequently used in order to calculate the effective

valence.

III. KINETIC MONTE CARLO SIMULATION OF

ELECTROMIGRATION

To utilize results of quantum mechanical calculations for

kinetic Monte Carlo simulations an average driving force along

the diffusion jump path must be calculated. In general, the

microscopic force-field may depend on the position of the

defect along the diffusion jump path. The average of the

microscopic force over the j-th diffusion jump path between

locations ~rj,1 and ~rj,2 [3] is

Fm,j =
1

|~rj,2 − ~rj,1|

∫ ~rj,2

~rj,1

~F (~r) · d~r. (15)

The change in diffusion barrier height ∆Aαj is equal to the

net work by the microscopic force as the defect is moved

from initial to final sites over the entire jump path. The

rates of defect jumps were calculated using the harmonic
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Fig. 2. Grain boundary represented by a two dimensional potential barrier. In
order to obtain the effective valence in the copper bulk and the grain boundary
an external field oriented parallel to the grain boundary is utilized.

approximation to transition state theory (TST) [12]. In this

approximation, the transition rate Γαj is given by

Γαj = ν0exp
(

−
Em −∆Aαj

kT

)

. (16)

Em is the migration energy (barrier) defined as the difference

in energy between the transition state and the initial state, and

ν0 is an attempt frequency [12]. For each defect site α, the

residence time is calculated as [13]

τα =
1

∑kα

j=1
Γαj

. (17)

kα is the number of possible jump sites from the site α. A

single point defect is created at an arbitrary site, the clock

is set to zero, and the defect is released to walk through

the system. At each step, the jump direction is decided by

a random number according to the local jump probabilities

Pαj = ταΓαj . (18)

The jump is implemented by updating the coordinates of

the defect. By repeating the described random walk procedure

for millions of defects, their concentration dependence on the

effective valence tensor and the external field is calculated.

IV. SIMULATION RESULTS

In order to construct atomistic grain boundaries, interfaces,

dislocations, and surfaces we apply an in-house molecular dy-

namic simulator with a multi-body inter-atomic potential [14].

For the construction of the grain boundary a three-dimensional

cell with 100 atoms and periodic boundary conditions has

been used. Starting with completely disordered atoms in the

Fig. 3. Formation of grain boundaries (circled regions).
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Fig. 4. Electric potential energy in the vicinity of the grain boundary and
inside the grain boundary obtained by the density functional theory.

cell and subsequently reducing the temperature results in the

emergence of a realistic grain boundary structure shown in

Fig. 3.

Between two potential methods to calculate the atomistic

EM force described in Section II-A and Section II-B, an

application of the latter has been presented.

The electric potential inside the bulk and the grain boundary

is calculated by means of DFT (cf. Fig. 4). Additionally

the Fermi energy has been determined. The one-dimensional

distribution of the effective valence is shown in Fig. 5.

According to our calculation the effective valence inside the

grain boundary is found to be 75% lower than in the bulk for

a Fermi energy of 4.3 eV, a value which is in good agreement

with the calculation of Sorbello [3].

Calculated values of the effective valence have subsequently
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Fig. 5. Average distribution of the effective valence in x-direction near a
grain boundary. The external electric field is oriented parallel to the grain
boundary.
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Fig. 6. Variation of the peak vacancy concentration with time for three
different microstructures.
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Fig. 7. Concentration difference in control boxes at four different angles (θ)
between EM force and atom migration paths.

been included in continuum-level and kinetic Monte Carlo

models. In Fig. 6 we show characteristic curves of the

EM related vacancy concentration build-up for an extended

simulation time. Here a continuum-level EM model is used

[15]. All three curves are obtained for the same layout and

operating conditions but they differ due to a different copper

microstructure.

The calculated atomistic EM force results are also used (see

Section III) for kinetic Monte Carlo simulations. This kind of

simulation provides a closer look at the migration behavior of

atoms. The change in the energy barrier between two equi-

librium sites corresponds to the net work by the microscopic

EM force. The dependence of the atomic concentration on

the angle between the EM force and the jump direction is

displayed in Fig. 7.

V. CONCLUSION

Our work introduces a novel approach for the calculation

of the EM force on an atomistic level and demonstrates its

application to continuum-level modeling. The consideration

of the accurate effective valence in grain boundaries enables a

realistic simulation of EM behavior. In addition, the combina-

tion of atomistic force calculations with a kinetic Monte Carlo

simulation provides sophisticated and quite accurate models

for vacancy dynamics inside the grain boundaries.
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