

Charge Trapping in Oxides From RTN to BTI

Institute for Microelectronics TU Wien

IRPS 2011

<u>Acknowledgments</u>

My reliability Ph.D. students

F. Schanovsky, W. Gös, P.-J. Wagner, Ph. Hehenberger, ...

Collaborators and colleagues

- B. Kaczer, J. Franco, Ph. Roussel, and G. Groeseneken (IMEC) Th. Aichinger, G. Pobegen (K-AI)
- H. Reisinger, C. Schlünder, and W. Gustin (Infineon Munich)
- M. Nelhiebel, J. Fugger, and O. Häberlen (Infineon Villach)
- R. Minixhofer, H. Enichlmair, M. Schrems (austriamicrosystems)
- P. Lenahan, J. Campbell, and J. Ryan (Penn State University)
- M. Toledano-Luque (UC Madrid)
- B. Knowlton and R. Southwick III (Boise State Univ)
- G. Bersuker, V. Huard, V. Afanas'ev, N. Mielke, S. Mahapatra,
- S. Zafar, A. Alam, E. Islam, ... (I bet I forgot someone, sorry ...)

Special thanks go to Franz Schanovsky

Who burnt 6 CPU and 2 Ph.D. months creating nice animations

Outline

Motivation

Fundamentals of Stochastic Processes

Experimental Determination of the Capture and Emission Times

Distribution of the Capture and Emission Times

Physical Models for the Capture and Emission Times

Stochastic BT

Take a MOSFET with 5 oxide defects

Each defect will have random capture and emission times Each defect will have a different impact on ΔV_{th}

Interface states are too fast

They do not cause RTN or BTI, visible e.g. in charge-pumping

4

Now monitor $V_G@I_{D,th}$ or $I_D@V_{th}$

Defect responses: independent stationary noise processes¹ Lead to random telegraph noise (RTN) in ΔV_G or ΔI_D

Simulation with TDDS defect parameters, see Grasser et al., PRB '10

Now apply a stress bias

Capture times depend exponentially on bias, say by 4 orders

Conventionally known as bias temperature instability (BTI)

Now remove the stress bias

Defects go back to their equilibrium occupancies

Known as recovery of bias temperature instability

7

Defects have a wide distribution of time constants

Due to the amorphous nature of the oxide

The same defects are responsible for RTN and BTI

Only a few 'lucky' defects cause RTN
A much larger number of defects contributes to BTI
Same for pMOS/NBTI (holes) and nMOS/PBTI (electrons)

Charge exchange is a thermally activated process

Nonradiative multiphonon process

Due to changes in the defect structure

Defects can have metastable states

In small area devices BTI is a stochastic process

Lifetime becomes a stochastic quantity

A more detailed account of the material presented here will be available soon in Grasser et al., Microelectronics Reliability, 2011

Outline

Motivation

Fundamentals of Stochastic Processes

Experimental Determination of the Capture and Emission Times

Distribution of the Capture and Emission Times

Physical Models for the Capture and Emission Times

Stochastic BTI

Simple defect with two states

Example: state 1 is neutral, state 2 is positively charged

Transitions can be described by a Markov process

Transition at time *t* only depends on current state System has no memory

Occupancies of each state

 $X_i(t) = 1$ when the defect is in state i at time t

 $X_i(t) = 0$ when the defect is *not* in state *i* at time *t*

Assume system is in state 1 at time *t*

Probability of going from 1 to 2 within infinitesimal time-step *h*

$$P{X_2(t+h) = 1 | X_1(t) = 1} = k_{12}h$$

Assume system is in state 2 at time t

Probability of staying in 2 within h

$$P\{X_2(t+h)=1 \mid X_2(t)=1\}=1-k_{21}h$$

Shorthand for probability of being in state *i* at time *t*

$$p_i(t) = P\{X_i(t) = 1\}$$

The above conditional probabilities define $p_2(t)$

Probability of being in state 2 at time t + h

$$p_{2}(t+h) = P\{X_{2}(t+h) = 1 \mid X_{1}(t) = 1\} p_{1}(t) + P\{X_{2}(t+h) = 1 \mid X_{2}(t) = 1\} p_{2}(t)$$

$$= k_{12}h p_{1}(t) + (1 - k_{21}h) p_{2}(t)$$

This equation determines $p_2(t)$

$$p_2(t+h) = k_{12}h p_1(t) + (1 - k_{21}h) p_2(t)$$

Rearrange

$$\frac{p_2(t+h)-p_2(t)}{h}=k_{12}\,p_1(t)-k_{21}\,p_2(t)$$

At any time t, the process has to be in either 1 or 2

$$p_1(t) + p_2(t) = 1$$

For $h \rightarrow 0$ we obtain the *Master equation* of the process

$$\frac{dp_1(t)}{dt} = k_{21} (1 - p_1(t)) - k_{12} p_1(t)$$

$$\frac{dp_2(t)}{dt} = k_{12} (1 - p_2(t)) - k_{21} p_2(t)$$

Solution of the Master equation

$$p_1(t) = p_1(\infty) + (p_1(0) - p_1(\infty)) e^{-t/\tau}$$

$$p_2(t) = p_2(\infty) + (p_2(0) - p_2(\infty)) e^{-t/\tau}$$

First Passage Times

How long does it take to go from state *i* to state *j*?

Known as *first passage time* (FPT) from *i* to *j*Obviously, the first passage time is a stochastic quantity

Capture time: how long does it take to go from 1 to 2?

Modified problem, independent of k_{21}

Modified Master equation

$$k_{21} = 0$$
 and $p_1(0) = 1$

$$\frac{dp_1(t)}{dt} = -k_{12} p_1(t)$$
 \Rightarrow $p_1(t) = \exp(-k_{12}t)$

14

First Passage Times

Probability that at time t we are in state 2 is given by $p_2(t)$

This tells us that $\tau_{\rm c} < t$, which defines the c.d.f.¹

$$F(\tau_c) = P\{\tau_c \le t\} = p_2(\tau_c) = 1 - \exp(-k_{12}\tau_c).$$

The p.d.f.² of τ_c is thus

$$f(\tau_{\rm c}) = \frac{\mathsf{d}F(\tau_{\rm c})}{\mathsf{d}\tau_{\rm c}} = k_{12} \exp(-k_{12}\tau_{\rm c})$$

The random variable τ_c is exponentially distributed with mean

$$ar{ au}_{\mathtt{C}} riangleq \mathsf{E}\{ au_{\mathtt{C}}\} = \int_{0}^{\infty} au_{\mathtt{C}} f(au_{\mathtt{C}}) \, \mathsf{d} au_{\mathtt{C}} = rac{1}{k_{12}}$$

Analogous procedure for the emission time

Emission time $\tau_{\rm e}$ is exponentially distributed, $\bar{\tau}_{\rm e}=1/k_{21}$

Perfectly general procedure

Works also for multi-state defects

¹ cumulative distribution function

² probability density function

Exponential Distribution

P.d.f. on a linear scale

$$f(au) = rac{1}{ar{ au}} \exp\left(-rac{ au}{ar{ au}}
ight)$$

P.d.f. on a logarithmic scale

$$ilde{f}(au) = au f(au) = rac{ au}{ar{ au}} \exp \left(-rac{ au}{ar{ au}}
ight)$$

Moments

The moments of $p_i(t)$ are trivially obtained

Since realization of $X_i(t)$ can only be 0 or 1

$$\mathsf{E}\{X_i^k(t)\} = \sum_{x=0}^1 x^k P\{X_i(t) = x\} = p_i(t)$$

Mean: (what we see on average)

$$f_i(t) = \mathsf{E}\{X_i(t)\} = p_i(t)$$

Variance: (related to the noise power)

$$\sigma_i^2(t) = \mathsf{E}\{(X_i(t) - f_i(t))^2\} = p_i(t) - p_i^2(t)$$

Under stationary conditions as used for RTN analysis

Simple two-state defect

$$f_2(\infty) = \frac{k_{12}}{k_{12} + k_{21}}$$
$$\sigma_2^2(\infty) = \frac{k_{12}k_{21}}{(k_{12} + k_{21})^2}$$

Stationary Moments of a Two-State Defect

Introduce $r = k_{21}/k_{12}$

$$f_{1} = \frac{r}{1+r}$$

$$f_{2} = \frac{1}{1+r}$$

$$\sigma_{1}^{2} = \sigma_{2}^{2} = \frac{r}{(1+r)^{2}}$$

Maximum std.dev.

$$r = 1 \Rightarrow \sigma = 1/2$$

Detection optimum

Provided

$$1 \, \mu \mathrm{s} \lesssim \frac{1}{k_{12}}, \frac{1}{k_{21}} \lesssim 1 \, \mathrm{ks}$$

Stationary Realization of a Two-State Defect

Time [s]

0.5

Stationary Realization of a Two-State Defect

Detection of Defects

Serious problem

Large variance required for detection Defects have a very wide distribution of $r = k_{21}/k_{12}$ Only defects with r reasonably close to 1 detectable RTN analysis misses most defects!

Detection of Defects

Solution: bias switches between V_G^L and V_G^H ($|V_G^L| < |V_G^H|$)

Capture time depends exponentially on $|V_G|$

Detects the most important defects

Defects with $r(V_{\rm G}^{\rm L}) \ll 1$ and $r(V_{\rm G}^{\rm H}) \gg 1$

These defects are uncharged at $V_{\rm G}^{\rm L}$ and become charged at $V_{\rm G}^{\rm H}$

At both $V_{\rm G}^{\rm L}$ and $V_{\rm G}^{\rm H}$ the std.dev. will be small, $\sigma\ll 1/2$

⇒ cause PBTI in nMOS and NBTI in pMOS transistors

Switch to high-level

Defects become charged

During charging std.dev. will become a maximum, $\sigma = 1/2$

Switch to low-level

Defects become discharged

During discharging std.dev. will become a maximum, $\sigma = 1/2$

Probability of being in state 2

At time t = 0, we are in state 2 with probability $p_2(0)$

$$p_2(t) = p_2(\infty) + (p_2(0) - p_2(\infty)) e^{-t/\tau}$$

Consider the special case of $p_2(0) \approx 0$ and $p_2(\infty) \approx 1$

The first two moments

$$f_2(t) = 1 - e^{-t/\tau}$$

$$\sigma^2(t) = e^{-t/\tau} - e^{-2t/\tau}$$

$$\tau = \frac{1}{k_{12} + k_{21}}$$

Maximum of σ

$$f_1(t_{\sf max}) = f_2(t_{\sf max}) = \sigma(t_{\sf max}) \ t_{\sf max} = au \ln(2)$$

Charging of a two-state defect

Charging of a Two-State Defect

Charging of a Two-State Defect

Charging of a Two-State Defect

Charging/Discharging of a Two-State Defect

Can be generalized to arbitrary switching sequences

Switching between V_{L} and V_{H} For $t < t_0$ $\rho_2(t) = \rho_2^{\mathsf{L}}$

$$ho_2(t) =
ho_2^{\mathsf{H}} + (
ho_2^{\mathsf{L}} -
ho_2^{\mathsf{H}}) \, \mathrm{e}^{-t_{\mathsf{s}}/ au^{\mathsf{H}}}$$

For $t > t_1$ (recovery)

For $t_0 < t < t_1$ (stress)

$$p_{2}(t) = p_{2}^{L} + (P_{c} - p_{2}^{L}) e^{-t_{r}/\tau^{L}} \ P_{c} = p_{2}(t_{1})$$

Charging of a single defect in a pMOS

Charging probability: 30%

From $1 - \exp(-t_s/\bar{\tau}_c) = 0.3$ we get $\bar{\tau}_c \gtrsim 3$ ms

Defect discharges around $\bar{\tau}_e = 4 \, \text{s}$

Charging of a single defect in a pMOS

Charging probability: 30%

From $1 - \exp(-t_s/\bar{\tau}_c) = 0.3$ we get $\bar{\tau}_c \gtrsim 3$ ms

Defect discharges around $\bar{\tau}_{e} = 4 \, s$

Charging of a single defect in a pMOS

Charging probability: 30%

From $1 - \exp(-t_s/\bar{\tau}_c) = 0.3$ we get $\bar{\tau}_c \gtrsim 3$ ms

Defect discharges around $\bar{\tau}_{e} = 4 \, s$

Charging of a single defect in a pMOS

Charging probability: 30%

From $1 - \exp(-t_s/\bar{\tau}_c) = 0.3$ we get $\bar{\tau}_c \gtrsim 3$ ms

Defect discharges around $\bar{\tau}_{e} = 4 \, s$

Charging of a single defect in a pMOS

Charging probability: 30%

From $1 - \exp(-t_s/\bar{\tau}_c) = 0.3$ we get $\bar{\tau}_c \gtrsim 3$ ms

Defect discharges around $\bar{\tau}_e = 4 \, \text{s}$

Charging of a single defect in a pMOS

Charging probability: 30%

From $1 - \exp(-t_s/\bar{\tau}_c) = 0.3$ we get $\bar{\tau}_c \gtrsim 3$ ms

Defect discharges around $\bar{\tau}_{e} = 4 \, s$

Charging of a single defect in a pMOS

Charging probability: 30%

From $1 - \exp(-t_s/\bar{\tau}_c) = 0.3$ we get $\bar{\tau}_c \gtrsim 3$ ms

Defect discharges around $\bar{\tau}_{e} = 4 \, s$

Charging of a single defect in a pMOS

Charging probability: 30%

From $1 - \exp(-t_s/\bar{\tau}_c) = 0.3$ we get $\bar{\tau}_c \gtrsim 3$ ms

Defect discharges around $\bar{\tau}_{e} = 4 \, s$

Experimental

Charging of a single defect in a pMOS

Charging probability: 30%

From $1 - \exp(-t_s/\bar{\tau}_c) = 0.3$ we get $\bar{\tau}_c \gtrsim 3$ ms

Defect discharges around $\bar{\tau}_e = 4 \, \text{s}$

Averaging results in the correct $\exp(-t/\bar{\tau}_{\rm e})$ behavior

Experimental

Charging of a single defect in a pMOS

Charging probability: 30%

From $1 - \exp(-t_s/\bar{\tau}_c) = 0.3$ we get $\bar{\tau}_c \gtrsim 3$ ms

Defect discharges around $\bar{\tau}_{e} = 4 \, s$

Averaging results in the correct $\exp(-t/\bar{\tau}_{\rm e})$ behavior

General Defect Model

Defects can have more than two states

Anomalous RTN, where RTN is turned on/off

Temporary RTN following NBTI stress²

¹ Uren et al., PRB '88

² Grasser et al., IRPS '10 and PRB '10

General Defect Model

Generalization of this procedure gives¹

$$P\{X_{j}(t+h) = 1 \mid X_{i}(t) = 1\} = k_{ij}h,$$

$$P\{X_{i}(t+h) = 1 \mid X_{i}(t) = 1\} = 1 - \sum_{i \neq i} k_{ij}h$$

From this one obtains the Master equation

$$rac{\mathsf{d} p_i(t)}{\mathsf{d} t} = -p_i(t) \sum_{i
eq j} k_{ij} + \sum_{i
eq j} k_{ji} p_j(t)$$

Note

Since $\sum_{i} p_{i}(t) = 1$, only N-1 equations are linearly independent

¹ Gillespie, Markov Processes, Academic Press, 1992

Example: Anomalous RTN

Example: Temporary RTN

Charge Capture for a Three-State Defect

Multi-State Defect Model Reduction

Can the stochastic multi-state defect model be simplified?

Yes, under certain conditions a model reduction is possible

Consider the first passage time from A to C

Modified state-transition diagram

Modified Master equation

$$\frac{dp_{A}}{dt} = -b p_{A} + a p_{B}$$

$$\frac{dp_{B}}{dt} = b p_{A} - a p_{B} - c p_{B}$$

$$\frac{dp_{C}}{dt} = c p_{B}$$

Multi-State Defect Model Reduction

Solution of the modified Master equation

$$\rho_{C}(t) = 1 - \frac{1}{\tau_{2} - \tau_{1}} (\tau_{2} e^{-\tau/\tau_{2}} - \tau_{1} e^{-\tau/\tau_{1}})$$

$$\tau_{1} = 2(s + \sqrt{s^{2} - 4bc})^{-1} \geqslant 1/b$$

$$\tau_{2} = 2(s - \sqrt{s^{2} - 4bc})^{-1} \geqslant 1/c$$

$$s = a + b + c$$

First passage time

'Normalized' difference of two exponential distributions

$$f(\tau) = \frac{\mathsf{d} \rho_{\mathsf{C}}(\tau)}{\mathsf{d} \tau} = \frac{\mathsf{e}^{-\tau/\tau_2} - \mathsf{e}^{-\tau/\tau_1}}{\tau_2 - \tau_1}$$

Expectation value

$$\bar{\tau} = \mathsf{E}\{\tau\} = \int_0^\infty \tau \, f(\tau) \, \mathsf{d}\tau = \tau_1 + \tau_2 = \frac{a+b+c}{bc}$$

Three-State Defect: First Passage Time

P.d.f. on a linear scale

$$f(\tau) = \frac{e^{-\tau/\tau_2} - e^{-\tau/\tau_1}}{\tau_2 - \tau_1}$$

P.d.f. on a logarithmic scale

$$\tilde{f}(\tau) = \tau f(\tau) = \tau \frac{\mathsf{e}^{-\tau/\tau_2} - \mathsf{e}^{-\tau/\tau_1}}{\tau_2 - \tau_1}$$

Combined Exponential

10⁰

Three-State Defect: First Passage Time

P.d.f. on a linear scale

$$f(\tau) = \frac{e^{-\tau/\tau_2} - e^{-\tau/\tau_1}}{\tau_2 - \tau_1}$$

P.d.f. on a logarithmic scale

$$\tilde{f}(\tau) = \tau f(\tau) = \tau \frac{\mathsf{e}^{-\tau/\tau_2} - \mathsf{e}^{-\tau/\tau_1}}{\tau_2 - \tau_1}$$

Three-State Defect Capture Time

Average capture time (for transition $1 \rightarrow 2$)

$$\bar{\tau}_{c} = \frac{k_{2'1} + k_{12'} + k_{2'2}}{k_{12'} k_{2'2}}$$

Average emission time (for transition $2 \rightarrow 1$)

$$\bar{\tau}_{\mathsf{e}} = \frac{k_{2'2} + k_{22'} + k_{2'1}}{k_{22'} \ k_{2'1}}$$

Approximation for three-state defect

Mean value exact, variance may differ slightly

Outline

Motivation

Fundamentals of Stochastic Processes

Experimental Determination of the Capture and Emission Times

Distribution of the Capture and Emission Times

Physical Models for the Capture and Emission Times

Stochastic BT

Experimental Aspects

Experimental determination of $\bar{\tau}_{c}$ and $\bar{\tau}_{e}$

Conventional: analysis of RTN signals¹

Recently: time-dependent defect spectroscopy (TDDS)²

Drawbacks of RTN analysis

Only defects with reasonably large σ can be analyzed Only devices with a few defects can be analyzed Defects with larger $\bar{\tau}_{\rm c}$ are missed (\Rightarrow cause BTI)

Time-dependent defect spectroscopy (TDDS)

Analyzes discrete recovery traces following BTI stress Many more relevant defects with $\bar{\tau}_{\rm c}\gg\bar{\tau}_{\rm e}$ can be analyzed Works for a wide temperature-range Works from threshold to oxide breakdown

¹ Ralls et al., PRL '84; Nagumo et al., IEDM '09 & '10

² Grasser et al., IRPS '10 and PRB '10

Spectral maps agree with two-state Markov process

Recall: exponential distribution is on a *logarithmic scale*Capture and emission times are widely distributed

A Few Notes on the Step-Height

A Few Notes on the Step-Height

RTN/BTI step-heights are exponentially distributed¹

¹ Kaczer et al., IRPS '10

Would a three-state defect be visible?

Capture via intermediate state experimentally challenging

Metastable states visible as 'disappearing defects'

Metastable states visible as temporary RTN

Outline

Motivation

Fundamentals of Stochastic Processes

Experimental Determination of the Capture and Emission Times

Distribution of the Capture and Emission Times

Physical Models for the Capture and Emission Times

Stochastic BT

Discrete Distribution

Discrete capture/emission time map (CET) of $\bar{\tau}_{c}$ and $\bar{\tau}_{e}$

Strong bias dependence of $\bar{ au}_{c}$

Strong temperature dependence of both $\bar{\tau}_{c}$ and $\bar{\tau}_{e}$

Note: $\bar{\tau}_{c} = \bar{\tau}_{c}(V_{H})$ and $\bar{\tau}_{e} = \bar{\tau}_{e}(V_{L})$

Discrete Capture/Emission Time Map (CET)

What is the use of the capture/emission time map (CET)?

Reconstruct the temporal behavior (just like Fourier transform) Macroscopic version (expectation value)

$$\Delta V_{\mathsf{th}}(t_{\mathsf{S}},t_{\mathsf{r}}) = \sum_{k}^{N} d_{k} \, a_{k} \, h_{k}(t_{\mathsf{S}},t_{\mathsf{r}};\tau_{\mathsf{c},k},\tau_{\mathsf{e},k})$$

$$egin{array}{lll} N & & & ... & {
m Number \ of \ defects} \ d_k & & ... & {
m step-height} \ a_k & \in [0 \dots 1] & & ... & {
m maximum \ occupancy} \ h_k(t_{
m s}, t_{
m r}) & = (1 - {
m e}^{-t_{
m s}/\tau_{
m c},k}) \, {
m e}^{-t_{
m r}/\tau_{
m e},k} & ... & {
m dynamics} \ \end{array}$$

Stochastic version also possible

Continuous Distribution

Continuous capture/emission time (CET) map¹

$$egin{aligned} \Delta \mathit{V}_\mathsf{th}(\mathit{t}_\mathsf{s},\mathit{t}_\mathsf{r}) &pprox \int_0^\infty \; \mathsf{d} au_\mathsf{c} \int_0^\infty \; \mathsf{d} au_\mathsf{e} \, g(au_\mathsf{c}, au_\mathsf{e}) \, \mathit{h}(\mathit{t}_\mathsf{s},\mathit{t}_\mathsf{r}; au_\mathsf{c}, au_\mathsf{e}) \ &pprox \int_0^{\mathit{t}_\mathsf{s}} \; \mathsf{d} au_\mathsf{c} \int_{\mathit{t}_\mathsf{c}}^\infty \; \mathsf{d} au_\mathsf{e} \, g(au_\mathsf{c}, au_\mathsf{e}) \end{aligned}$$

Simple extraction scheme for g using measured ΔV_{th}

$$g(au_{ extsf{c}}, au_{ extsf{e}}) = -rac{\partial^2 \Delta \, V_{ extsf{th}}(au_{ extsf{c}}, au_{ extsf{e}})}{\partial au_{ extsf{c}} \, \partial au_{ extsf{e}}}$$

¹ Reisinger et al., IRPS '10

Continuous Distribution

Relaxation Time [s]

Example CET map for an SiON pMOS with EOT=2.2 nm

$$g(au_{
m c}, au_{
m e}) = -rac{\partial^2 \Delta \, V_{
m th}(au_{
m c}, au_{
m e})}{\partial au_{
m c}\,\partial au_{
m e}}$$

CET Maps from Theory: RD Model

Analytical solution of the reaction-diffusion model

$$\Delta V_{\mathsf{th}}(t_{\mathsf{S}}, t_{\mathsf{r}}) = \frac{t_{\mathsf{S}}^{\prime\prime}}{1 + \sqrt{t_{\mathsf{r}}/t_{\mathsf{S}}}}$$

Analytical CET map becomes negative

$$g(\tau_{\rm c},\tau_{\rm e}) = -\frac{\partial^2 \Delta \, V_{\rm th}(\tau_{\rm c},\tau_{\rm e})}{\partial \tau_{\rm c} \partial \tau_{\rm e}} = \frac{2n-1+(2n+1)\sqrt{\tau_{\rm e}/\tau_{\rm c}}}{4\sqrt{\tau_{\rm e}/\tau_{\rm c}}(1+\sqrt{\tau_{\rm e}/\tau_{\rm c}})^3} \frac{1}{\tau_{\rm c}^{2-n}}$$

CET Maps from Theory: Hole Trapping

Analytical solution of a simple hole-trapping model

$$\Delta \textit{V}_{\text{th}}(\textit{t}_{\text{S}},\textit{t}_{\text{r}}) = \textit{A} \; \text{log}(1 + \textit{Bt}_{\text{r}}/\textit{t}_{\text{S}}) \qquad \text{for } \textit{t}_{\text{S}} < \textit{t}_{\text{S}}^{\text{max}}.$$

Analytical CET map

CET Maps from Theory: Universal Recovery

Empirical universal recovery expression ¹

$$\Delta V_{\mathsf{th}}(t_{\mathsf{s}},t_{\mathsf{r}}) = \frac{At_{\mathsf{s}}^{a}}{1 + B(t_{\mathsf{r}}/t_{\mathsf{s}})^{b}} + Pt_{\mathsf{s}}^{n}$$

Analytical CET map

$$g(\tau_{\rm c},\tau_{\rm e}) = -\frac{\partial^2 \Delta V_{\rm th}(\tau_{\rm c},\tau_{\rm e})}{\partial \tau_{\rm c} \partial \tau_{\rm e}} = \frac{a-b+(a+b)B(\tau_{\rm e}/\tau_{\rm c})^b}{(1+B(\tau_{\rm e}/\tau_{\rm c})^b)^3} \frac{bAB}{\tau_{\rm c}^{2-a}(\tau_{\rm e}/\tau_{\rm c})^{1-b}}$$

¹ Grasser et al., IEDM '07

Outline

Motivation

Fundamentals of Stochastic Processes

Experimental Determination of the Capture and Emission Times

Distribution of the Capture and Emission Times

Physical Models for the Capture and Emission Times

Stochastic BT

SRH theory

Developed for bulk defects, defect level E_1 inside the bandgap No 'explicit' assumption on capture and emission mechanism Assumption: capture rate is represented by an averaged value Gives Boltzmann factor in the emission rate, $\exp(-\beta(E_2-E_1))$

Extension to oxide defects¹

WKB factor to account for tunneling, $\exp(-x/x_0)$ Defect level may lie outside the Si bandgap

Defect is described by a two-state Markov process

Example: hole trap, neutral in state 1, positive in state 2

¹ McWhorter '57; Masuduzzaman, T-ED '08

Defect level inside Si bandgap

Hole capture: no barrier

Hole emission: Boltzmann factor $e^{-\beta E_{12}}$

Defect level outside Si bandgap

Hole capture: Boltzmann factor $e^{-\beta E_{21}}$

Hole emission: no barrier

Electronic defect level depends on oxide field

Depending on field, defect level changes relative to $E_2 \approx E_v$

Model results in a 'tunneling front' due to WKB factor

Charging: only defects which moved from below to above E_F Discharging: only defects that had just been charged Both charging and discharging are independent of defect level Tunneling front reaches 1 nm in about 10 ms

Model results in a 'tunneling front' due to WKB factor

Charging: only defects which moved from below to above E_F Discharging: only defects that had just been charged Both charging and discharging are independent of defect level Tunneling front reaches 1 nm in about 10 ms

Problems with Extended SRH Theory

Too fast

Tunneling front reaches 1 nm in about 10 ms Experimental $\bar{\tau}_c$ and $\bar{\tau}_e$ can be considerably larger (h, m, w, y?)

Capture rate temperature independent

Experimental $\bar{\tau}_{c}$ can have $E_{A}\approx 1~\text{eV}$

Bias dependence of $\bar{\tau}_c$ weak

Depends dominantly on surface hole concentration, $\bar{\tau}_c \sim 1/p$ Experimental $\bar{\tau}_c$ depends exponentially on oxide field

Problems with Extended SRH Theory

No similarity with experimental CET map (right)

 $\bar{ au}_{\mathrm{c}}$ correlated with $\bar{ au}_{\mathrm{e}}$

The SRH model cannot describe oxide defects

How are Charges Really Trapped in Oxides?

How are Charges Really Trapped in Oxides?

How are Charges Really Trapped in Oxides?

The Total Potential Energy

The charge-state determines the atomic positions Known as electron-phonon coupling

The atomic positions determine the electronic levels

Adiabatic approximation: electrons are much faster than atoms

The vibronic properties determine the barriers

This effect dominates the transition rates

We need to consider two contributions to the 'total energy' Electronic energy: the information displayed in the band-diagram Vibronic energy: the information missing in the band-diagram

This Phenomenon is Everywhere!

Chemistry

Electron transfer reactions (intra- and intermolecular)

Marcus theory (Nobel Prize in Chemistry 1992)

Spectroscopy

Certain types of fluorescence

Broadening of absorption and emission peaks to bands

Physics

Vibronic solid-state lasers

Organic semiconductors

Non-radiative capture/emission in semiconductors (deep centers)

Biology

Photosynthesis

Sense of smell

Lightsensitivity (the very reason you can read this)

This Phenomenon is Everywhere!

From: R.A. Marcus, "Electron Transfer Reactions in Chemistry", Nobel Lecture, 1992.

100 Femtoseconds in the Life of an E' center

100 Femtoseconds in the Life of an E' center

Coordinate Transformation onto Si-Si Bond

The Total Potential Energy

Vibronic energy model: quantum harmonic oscillator

Energy levels

$$\mathcal{E}_n = \hbar\omega(n + \frac{1}{2})$$

Level occupancy

$$\frac{P(\mathcal{E}_n)}{P(\mathcal{E}_0)} = \frac{e^{-\beta \mathcal{E}_n}}{e^{-\beta \mathcal{E}_0}}$$

The Total Potential Energy

Total energy contains vibronic + electronic energy¹

Harmonic oscillator in each state (parabolic potential) Equilibrium q depends on defect state (adiabatic approximation)

$$V_1(q) = \frac{1}{2}M\omega_1^2(q - q_1)^2 + E_1$$

 $V_2(q) = \frac{1}{2}M\omega_2^2(q - q_2)^2 + E_2$

Optical transition

Occur at constant q from min $V_i(q)$ (Franck-Condon principle)²

Nonradiative transition

Occur at $V_1(q) = V_2(q)$ (Classical limit)

¹ Abakumov et al., Nonradiative Recombination in Semic. North-Holland '1991

² Franck, Trans.Far.Soc. '25; Condon, Phys.Rev. '28

Optical Transitions

Optical transitions (radiative transitions)

Occur at constant q from min $V_i(q)$ (Franck-Condon principle)

Photon absorption $(1 \rightarrow 2)$

$$\mathcal{E}_{12} = V_2(q_1) - V_1(q_1)$$

Photon emission (2 \rightarrow 1)

$$\mathcal{E}_{21} = V_2(q_2) - V_1(q_2)$$

Photon energies differ, $\mathcal{E}_{12} \neq \mathcal{E}_{21}$

Difference due to lattice relaxation

$$\mathcal{E}_{12} = E_{21} + E_{R}$$

$$\mathcal{E}_{21} = E_{12} - E_{R}$$

E_R is the relaxation energy¹

¹ Stoneham, Rep.Prog.Phys. '81

Nonradiative Transitions

Nonradiative transitions

No photons are absorbed or emitted

Occur in the classical limit at $V_1(q) = V_2(q)$ ('over the barrier')

The Total Energy

Three model parameters: $M\omega_1^2/M\omega_2^2$, q_2-q_1 , E_2-E_1

$$V_1(q) = \frac{1}{2}M\omega_1^2(q - q_1)^2 + E_1$$

$$V_2(q) = \frac{1}{2}M\omega_2^2(q - q_2)^2 + E_2$$

Classical barrier: $V_2(q) = V_1(q)$

Two important cases, depending on $R = \omega_1/\omega_2$

Linear electron-phonon coupling: $R = 1 \ (\omega_1 = \omega_2)$

$$\Rightarrow V_2(q)-V_1(q)$$
 is linear in q $\mathcal{E}_{12}=rac{(E_{
m R}+E_{
m 21})^2}{4E_{
m R}}$ $E_{
m R}=M\omega^2(q_2-q_1)^2/2$

 $S = E_R/\hbar\omega$ is the Huang-Rhys factor² Number of phonons required to reach E_R

¹ For quadratic electron-phonon coupling see Grasser et al., MR '11

² Huang and Rhys. Proc.Rov.Soc. '50

The Final Rates

The total rate consists of two contributions

The vibrational matrix element in the high-temperature limit

$$pprox \mathrm{e}^{-eta\mathcal{E}_{12}}$$

The electronic matrix element is approximately

$$\approx \sigma V_{\rm th} p$$

To account for tunneling: WKB factor in σ

$$\sigma = \sigma_0 \exp(-x/x_0)$$
 $x_0 = \hbar/(2\sqrt{2m\phi})$

So in total we have

$$k_{12} = \sigma v_{\text{th}} p e^{-\beta \mathcal{E}_{12}}$$

$$k_{21} \approx \sigma v_{\text{th}} N_{\text{v}} e^{-\beta \mathcal{E}_{21}}$$
 (Maxwell-Boltzmann statistics)

Compare to SRH model (defect inside Si bandgap)

$$k_{12} = \sigma v_{\text{th}} p$$

$$k_{21} \approx \sigma v_{th} N_v e^{-\beta E_{12}}$$
 (Maxwell-Boltzmann statistics)

Charge Trapping in an E' Center

Charge Trapping in an E' Center

Amorphous Oxide

All defects are different

Charging of a Large Number of Defects

Nonradiative multiphonon model

There is no longer a tunneling front Capture and emission times uncorrelated with x^1

¹ See detailed RTN study of Nagumo et al., IEDM '10

Charging of a Large Number of Defects

Nonradiative multiphonon model

There is no longer a tunneling front Capture and emission times uncorrelated with x^1

¹ See detailed RTN study of Nagumo et al., IEDM '10

Field-Dependence

What is the meaning of the electronic energy levels?

 E_1 is the electronic defect level (a.k.a E_T)

 E_2 is the electronic energy level of the reservoir (e.g. E_C or E_V)

As in the SRH model, $E_{21} = E_2 - E_1$ depends linearly on F

$$E_{21} = E_{20} - E_{10} - qxF$$

Field-Dependence

 $E_{21} = E_2 - E_1$ depends linearly on F

$$E_{21} = E_{20} - E_{10} - qxF$$

Application of a field reduces \mathcal{E}_{12} and increases \mathcal{E}_{21} Results in exponential sensitivity of the rates to F

Bias Dependence of the Rates

The electronic matrix element

Below $V_{\rm th}$, strong bias sensitivity due to pAbove $V_{\rm th}$, weak bias dependence of pWeak bias dependence of the (complete) WKB factor

The vibrational matrix element

Depends on the electric field F

$$\exp(-\beta \mathcal{E}_{12}) = \exp\left(-\beta \left(\frac{(E_{R} + E_{20} - E_{10} - qxF)^{2}}{4E_{R}}\right)\right)$$

Below $V_{\rm th}$, weak bias dependence of F

Above V_{th} , exponential bias dependence

⇒ the vibrational properties dominate the bias-dependence

Bias Dependence: Weak Coupling

Weak-coupling limit

$$\textit{E}_{R} \ll \textit{E}_{20} - \textit{E}_{10} - qx\textit{\textbf{F}}$$

Quadratic field-dependence

$$\mathcal{E}_{12} = \frac{(E_R + E_{21})^2}{4E_R} \approx \frac{E_{21}^2}{4E_R} + \frac{1}{2}E_{21}$$

Bias Dependence: Weak Coupling

Crazy trap?

Well, something like this has been reported¹

¹ Schulz, JAP '93

Bias Dependence: Strong Coupling

Strong-coupling limit

$$\textit{E}_{R} \gg \textit{E}_{20} - \textit{E}_{10} - qx\textit{F}$$

Linear field-dependence

$$\mathcal{E}_{12} = \frac{(E_R + E_{21})^2}{4E_R} \approx \frac{E_R}{4} + \frac{E_{21}}{2}$$

Bias Dependence: Strong Coupling

Compare the bias dependence to experimental data¹

Model: $\tau_{\rm c}$ and $\tau_{\rm e}$ are symmetric Data: $\tau_{\rm e}$ can be flat/sudden drop

Model: τ_c is nearly linear in F

Data: τ_c has curvature

Reason

Metastable defect states

¹ Grasser et al., IRPS '10

<u>Problems with the Simple NMP Model</u>

Model captures the 'essence', important details missing

Symmetric τ_c and τ_e (linear electron-phonon coupling)

Cannot describe the rapid drop of τ_e below V_{th}

Nearly linear F dependence of τ_c

No full decorrelation between $\tau_{\rm c}$ and $\tau_{\rm e}$ possible

Reminder: Metastable States

Defects can have more than two states

Anomalous RTN, where RTN is turned on/off

Temporary RTN following NBTI stress²

¹ Uren et al., PRB '88

² Grasser et al., IRPS '10 and PRB '10

Metastable States: Puckering of an E' Center

Metastable States: Puckering of an E' Center

Improved Defect Model: Metastable States

Defect model must include metastable states

RTN: anomalous RTN, curvature in $\tau_{\rm C}$, flat vs. drop in $\tau_{\rm e}$ BTI: temporary RTN, bias-dependence of recovery Pre- and post-stress f/T dependence/hysteresis of $I_{\rm CP}^{-1}$

¹ Hehenberger et al., IRPS '09; Grasser et al., IRPS '11

Charge Trapping vs. Defect Generation

Switching traps have a density of states in the bandgap

 \Rightarrow React to changes in V_{read} Trapped charges couldn't be bothered

Switching traps recover faster under more positive bias

Trapped charges couldn't be bothered

Charge Trapping vs. Defect Generation

Switching traps have a density of states in the bandgap

React to changes in V_{read} Recover faster under more positive bias Cause a change in the subthreshold-slope

Trapped charges do not have states in the bandgap

The charge is independent of V_{read} Cause a rigid shift of the $I_{\text{D}} - V_{\text{G}}$ curves

Model Summary

All features can be explained with a general defect model

Different defect potentials in the amorphous oxide

Outline

Motivation

Fundamentals of Stochastic Processes

Experimental Determination of the Capture and Emission Times

Distribution of the Capture and Emission Times

Physical Models for the Capture and Emission Times

Stochastic BTI

Stochastic Lifetimes

Small area devices: lifetime is a stochastic quantity¹

Charge capture/emission stochastic events

Capture and emission times distributed

Number of defects follow Poisson distribution

10⁴

¹ Rauch, TDMR '07; Kaczer et al., IRPS '10; Grasser et al., IEDM '10

Stochastic Lifetimes

Small area devices: lifetime is a stochastic quantity¹

Charge capture/emission stochastic events

Capture and emission times distributed

Number of defects follow Poisson distribution

¹ Kaczer et al., IRPS '10; Grasser et al., IEDM '10

Stochastic Lifetimes

Distribution of lifetime¹

Variance increases with decreasing number of defects

¹ Kaczer et al., IRPS '11

Stochastic Impact on Circuit

¹ Kaczer et al., IRPS '11

Stochastic Impact on Circuit

¹ Kaczer et al., IRPS '11

Conclusions

Defects have a wide distribution of time constants

Due to the amorphous nature of the oxide

The same defects are responsible for RTN and BTI

Only a few 'lucky' defects cause RTN 'Double-jackpot' required for anomalous RTN A much larger number of defects contributes to BTI Same for NBTI/pMOS (holes) and PBTI/nMOS (electrons)

Charge exchange is a thermally activated process

Nonradiative multiphonon process

Due to changes in the defect structure

Defects can have metastable states

In small area devices BTI is a stochastic process

Lifetime becomes a stochastic quantity

A more detailed account of the material presented here will be available soon in Grasser et al., Microelectronics Reliability, 2011