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Motivation

Take a MOSFET with 5 oxide defects

Each defect will have random capture and emission times
Each defect will have a different impact on AV,

Interface states are too fast
They do not cause RTN or BTI, visible e.g. in charge-pumping
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Motivation

Now monitor Vg @Ip ¢, or Ip@Vy,

Defect responses: independent stationary noise processes’
Lead to random telegraph noise (RTN) in AVg or Alp

Vg =-0.5V
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1 Simulation with TDDS defect parameters, see Grasser et al., PRB '10



Motivation

Now apply a stress bias
Capture times depend exponentially on bias, say by 4 orders

Conventionally known as bias temperature instability (BTI)

Vg =-1.8V
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Motivation

Now remove the stress bias
Defects go back to their equilibrium occupancies

Known as recovery of bias temperature instability

Equilibrium
VG =-0.5v | RTN

Sum
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Discharging Time [s]



Motivation

Defects have a wide distribution of time constants
Due to the amorphous nature of the oxide

The same defects are responsible for RTN and BTI

Only a few ‘lucky’ defects cause RTN
A much larger number of defects contributes to BTI
Same for pMOS/NBTI (holes) and nMOS/PBTI (electrons)

Charge exchange is a thermally activated process
Nonradiative multiphonon process
Due to changes in the defect structure
Defects can have metastable states

In small area devices BTl is a stochastic process
Lifetime becomes a stochastic quantity

A more detailed account of the material presented here will be available soon in
Grasser et al., Microelectronics Reliability, 2011
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Fundamentals of Stochastic Processes



Two-State Stochastic Process
Simple defect with two states
Example: state 1 is neutral, state 2 is positively charged

6
Time [ms]

Transitions can be described by a Markov process
Transition at time t only depends on current state
System has no memory

Occupancies of each state

Xi(t) = 1 when the defect is in state i at time t
Xi(t) = 0 when the defect is not in state i at time t
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Two-State Stochastic Process

Assume system is in state 1 at time t
Probability of going from 1 to 2 within infinitesimal time-step h

P{Xzo(t +h) = 1| Xy(t) = 1} = kyoh

Assume system is in state 2 at time t
Probability of staying in 2 within h

P{Xa2(t +h) =1|Xz(t) =1} =1 —ka1h
Shorthand for probability of being in state i at time t
pi(t) = P{Xi(t) =1}

The above conditional probabilities define p,(t)
Probability of being in state 2 at time t + h
p2(t +h) =P{Xz(t +h) = 1 Xa(t) = 1} pa(t) +
P{Xa(t +h) =1[Xz(t) = 1} po(t)
= klzh pl(t) + (1 — k21h) pz(t)
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Two-State Stochastic Process
This equation determines p(t)

P2(t + h) =Kizh pa(t) + (1 — karh) pa(t)
Rearrange

p2(t +h) — pa(t)
h

At any time t, the process has to be in either 1 or 2

= k12 p1(t) — ko1 pa(t)

p1(t) +pa(t) =1

For h — 0 we obtain the Master equation of the process

dp(;t(t) = ko1 (1 — pa(t)) — ka2 pa(t)
dpjt(t) = k12 (1 — p2(t)) — koz pa(t)
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Two-State Stochastic Process

Solution of the Master equation
p1(t) = p1(00) + (p1(0) — p1(o0)) €Y7
p2(t) = p2(00) + (p2(0) — p2(c0)) e™Y/"

_ ka
Pa(o0) = ki + ko1
ko
Pa(00) = ki2 + ko1
1
T = ——
kiz + ko1

T T T T T
| k,=9 k=1 1=01
p,(0)=0.9 p,(0)=0.1

0.5t i
RS p2
0_
L 1 L 1 ) I .
0 02 04 06 08

Time [s]
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First Passage Times

How long does it take to go from state i to state j?

Known as first passage time (FPT) fromi toj

Obviously, the first passage time is a stochastic quantity
Capture time: how long does it take to go from 1 to 27?

Modified problem, independent of kj;

K12
O

Modified Master equation

ko1 =0and p1(0) =1

P~ dopa) = pal) = expl-kaat)
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First Passage Times

Probability that at time t we are in state 2 is given by p,(t)
This tells us that 7, < t, which defines the c.d.f.!
The p.d.f.? of 7. is thus
dF (Tc)
ch
The random variable 7. is exponentially distributed with mean
7_'(: £ E{Tc} = / ch(Tc) dTC = i
0

k12

f(re) =

= kaz exp(—Ki27c)

Analogous procedure for the emission time
Emission time 7, is exponentially distributed, 7e = 1/kz;

Perfectly general procedure
Works also for multi-state defects

1 cumulative distribution function

2 probability density function
15



Exponential Distribution

P.d.f. on a linear scale
1 T
f(r) = zep(3)
P.d.f. on a logarithmic scale
T T
f(r) = 7t(r) = Zexp(~2)

10 T T T
T=1s

f(r)

f()
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Moments

The moments of p;(t) are trivially obtained
Since realization of X;(t) can only be O or 1

E{XK(t)} = Y _x*P{Xi(t) =x} = pi(t)
x=0

Mean: (what we see on average)

fi(t) = E{Xi(t)} = pi(t)

Variance: (related to the noise power)
ot (t) = E{(Xi(t) = fi(1))*} = pi(t) — PE(t)

Under stationary conditions as used for RTN analysis
Simple two-state defect

k1o
f =
2(>¢) kiz + ko1
2 kioko1
02

(00) = (k12 + k21)?
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Stationary Moments of a Two-State Defect

Introduce r = k1 /Kq»

1+
1
fo = ——
2T 11
2_ 2 r
T2 T T2

Maximum std.dev.
r=1= 0=1/2

Detection optimum
Provided

1 1
lpus < —,— <1ks
# ~ kiz kop ™
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Stationary Realization of a Two-State Defect

Easy to detect 1/9s71t
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Stationary Realization of a Two-State Defect

Hard to detect 1/999s~1
— i
kip = 1/999s1 ~
1s-
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Detection of Defects

Serious problem
Large variance required for detection
Defects have a very wide distribution of r = kp1 /K12
Only defects with r reasonably close to 1 detectable
RTN analysis misses most defects!

1 T T

0.8

0.6

0.4

0.2
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Detection of Defects
Solution: bias switches between V§ and V§ (V5| < [VE))

Capture time depends exponentially on |Vg|

Detects the most important defects

Defects with r(V§) < Land r(V{) > 1

These defects are uncharged at V§ and become charged at V{
At both V§ and V[ the std.dev. will be small, o < 1/2

=- cause PBTI in nMOS and NBTI in pMOS transistors

Switch to high-level
Defects become charged
During charging std.dev. will become a maximum, o = 1/2

Switch to low-level

Defects become discharged
During discharging std.dev. will become a maximum, o = 1/2

22



Two-State Stochastic Process
Probability of being in state 2
At time t = 0, we are in state 2 with probability p,(0)

P2(t) = pa(c0) + (p2(0) — pa(co)) e t/™

Consider the special case of p,(0) ~ 0 and p,(c0) ~ 1
The first two moments 1
o

ft)y=1—e /"

O'Z(t) — e—t/T _ e—2t/‘r
’
1 = T
T=— 2
K12 + K21
. o2
Maximum of o —

fl(tmax) = fz(tmax) = U(tmax) I 1 I \ fa

23



Two-State Stochastic Process
Charging of a two-state defect
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Charging of a Two-State Defect
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Charging of a Two-State Defect
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Charging of a Two-State Defect
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Charging/Discharging of a Two-State Defect
Can be generalized to arbitrary switching sequences

Switching between V| and Vy @
Fort <ty m VH
P2(t) = Pz
Forty <t < t; (stress) , Vi ,
1o 't1 Time

N
p2(t) = p5 + (P5 —p)e ™™™ o
Fort > t; (recovery)

pa(t) = p5 + (Pc — ps) e /™ A

Pc = P2 (tl) ? ?

1 Stress Time tg

Rec. Time t,

—_—
28



Experimental

Charging of a single defect in a pMOS
Charging probability: 30%
From 1 — exp(—ts/7:) = 0.3 we get 7; = 3ms
Defect discharges around 7 = 4s
Averaging results in the correct exp(—t/7) behavior
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Experimental

Charging of a single defect in a pMOS
Charging probability: 30%
From 1 — exp(—ts/7:) = 0.3 we get 7; = 3ms
Defect discharges around 7 = 4s
Averaging results in the correct exp(—t/7) behavior
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Experimental

Charging of a single defect in a pMOS
Charging probability: 30%
From 1 — exp(—ts/7:) = 0.3 we get 7; = 3ms
Defect discharges around 7 = 4s
Averaging results in the correct exp(—t/7) behavior

2.2- MR | AL | AL | T ""'_
2r ]
1.81 ]
Lo~ ) J\ i\'l\fh,\“ W .
e
£ 1.2f
< 1F F=6Mvicm

|
|
|
T=170C |
U !
< 0-8__ t =1ms !
I

I

]

[}

0.6F WL = 150nm/100nm
0.4

102 100 10° 10

Relaxation Time [s] 2



Experimental

Charging of a single defect in a pMOS
Charging probability: 30%
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Experimental

Charging of a single defect in a pMOS
Charging probability: 30%
From 1 — exp(—ts/7:) = 0.3 we get 7; = 3ms
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Experimental

Charging of a single defect in a pMOS
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Experimental

Charging of a single defect in a pMOS
Charging probability: 30%
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Experimen

tal

Charging of a single defect in a pMOS
Charging probability: 30%

From1 —

exp(—ts/7c) =

Defect discharges around 7 =
Averaging results in the correct exp(—t/7) behavior
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Experimental

Charging of a single defect in a pMOS
Charging probability: 30%
From 1 — exp(—ts/7:) = 0.3 we get 7; = 3ms
Defect discharges around 7 = 4s
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Charging of a single defect in a pMOS
Charging probability: 30%

From1 —

exp(—ts/7c) =

Defect discharges around 7 =
Averaging results in the correct exp(—t/7) behavior
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General Defect Model
Defects can have more than two states
Anomalous RTN, where RTN is turned on/off!

e— c —4

L L 1 ' I '

Time [a.u.]
Temporary RTN following NBTI stress?

End of NBTI Stress
| End of Temporary RTN

PR " PR R I I I
2 4 6 8 10 12 14 16 18
Time [ms]

1 Uren et al., PRB '88
2 Grasser et al., IRPS "10 and PRB '10
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General Defect Model

Generalization of this procedure gives*

P{Xj(t +h) =1|X(t) =1} = kjh,

P{Xi(t+h)=1|Xi(t) =1} =1- Zkijh
j#i

From this one obtains the Master equation

dpl = —pi(t Z ku + Z le pj

i i
Note

Since ), pi(t) = 1, only N — 1 equations are linearly independent

1 Gillespie, Markov Processes, Academic Press, 1992
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Example: Anomalous RTN

RTN Pause
20 s 1 3 s1

3005 1 1s—1 :
— 1_ | 7]
0_
—~ 1_
0_

()
o =

0 10 20 30 40
Time [s]
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Example: Temporary RTN

Equilibrium < tRTN
1076s71 1000s~?!

— —
~N—— ~~N——
05s71 200s 1
= 1 I I I
NS
XN
0 1 1 1
I
g
><"—|
1
_aF T T T
g
e
0 1 1 1
1 1 1 I
x
W
0 1 1 1
0 1 2

Time [s]
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Charge Capture for a Three-State Defect

140s1 05s71
— — i
@v@v
0.3s71 10651

I I I I

1 R pe—

10* 10" 10
Time [s]

10
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Multi-State Defect Model Reduction
Can the stochastic multi-state defect model be simplified?
Yes, under certain conditions a model reduction is possible

Consider the first passage time from Ato C
Modified state-transition diagram

O @
@‘\g/

Modified Master equation

d
%:—bpﬁapa

d

%: bpa—aps —cCcps
dpc:

ot CpPs
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Multi-State Defect Model Reduction
Solution of the modified Master equation

1
T2—T1

(7’2877—/7—2 — TleiT/Tl)

pc(t) =1-

T =2(s+Vs2—4bc)t>1/b
> =2(s —V/s2—4bc)t>1/c

— b o
s=a+tb+tc @/‘\/\@
N— —
a

First passage time
‘Normalized’ difference of two exponential distributions

_dpc(r) e/ —eT/m
(r) = dr

T2 —T1
Expectation value
°° at+b+c
F:E{T}:/ Tf(T)dT:Tl-I-Tz:i—’— +
0 bc
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Three-State Defect: First Passage Time
P.d.f. on a linear scale

e—‘r/‘rz _ e—T/7'1 b C
NG ="CmC
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e _ E
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10002 04 06 08 1
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Three-State Defect: First Passage Time

P.d.f. on a linear scale
b c
— —
®O—=E" ~©
a

e—‘r/‘rz _ e—T/7'1

f(r) = ——"—
(T) T2 —T1

P.d.f. on a logarithmic scale

efr/‘rz _ e*T/Tl
(r)=r1
T2 —T1

0 — Combined
— - Exponential

— Combined
— Exponential

10 T T T

f(t)
f(1)

10
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Three-State Defect Capture Time

[CPY ko2
— T — i
N— — N— —

k2/ 1 k22/

Average capture time (for transition 1 — 2)
- kon+ ki + Koz

Tc —

k1o Koro

Average emission time (for transition 2 — 1)
_ koo ko + ko

e —

k22’ k2’l

Approximation for three-state defect
Mean value exact, variance may differ slightly
1/7_—(;

@@
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Outline

Experimental Determination of the Capture and Emission Times

40



Experimental Aspects

Experimental determination of 7, and 7

Conventional: analysis of RTN signals®
Recently: time-dependent defect spectroscopy (TDDS)?

Drawbacks of RTN analysis
Only defects with reasonably large o can be analyzed
Only devices with a few defects can be analyzed
Defects with larger 7. are missed (= cause BTI)

Time-dependent defect spectroscopy (TDDS)
Analyzes discrete recovery traces following BTI stress
Many more relevant defects with 7. > 7, can be analyzed
Works for a wide temperature-range
Works from threshold to oxide breakdown

1 Ralls et al., PRL '84; Nagumo et al., IEDM 09 & '10
2 Grasser et al., IRPS '10 and PRB '10
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Time-Dependent Defect Spectroscopy (TDDS)
Deconvolutes multiple traps via spectral maps
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Time-Dependent Defect Spectroscopy (TDDS)
Deconvolutes multiple traps via spectral maps
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Time-Dependent Defect Spectroscopy (TDDS)
Deconvolutes multiple traps via spectral maps
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Time-Dependent Defect Spectroscopy (TDDS)
Deconvolutes multiple traps via spectral maps
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Time-Dependent Defect Spectroscopy (TDDS)
Spectral maps as a function of stress time
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Time-Dependent Defect Spectroscopy (TDDS)

Spectral maps as a function of stress time
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Time-Dependent Defect Spectroscopy (TDDS)

Spectral maps as a function of stress time
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Time-Dependent Defect Spectroscopy (TDDS)

Spectral maps as a function of stress time
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Time-Dependent Defect Spectroscopy (TDDS)

Spectral maps as a function of temperature
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Time-Dependent Defect Spectroscopy (TDDS)

Spectral maps as a function of temperature
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Time-Dependent Defect Spectroscopy (TDDS)

Spectral maps as a function of temperature
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Time-Dependent Defect Spectroscopy (TDDS)

Spectral maps as a function of temperature
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Step Height [a.u.]

Time-Dependent Defect Spectroscopy (TDDS)

Spectral maps agree with two-state Markov process

Recall: exponential distribution is on a logarithmic scale
Capture and emission times are widely distributed
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A Few Notes on the Step-Height

Each defect causes a different contribution to AVy,

Courtesy:
Glasgow University




A Few Notes on the Step-Height

RTN/BTI step-heights are exponentially distributed*

Charge-Sheet: 1.2mV ® 1
B 1900s

100

WI/L = 90nm/35nm

n=44mv
0.8nm HfO,,

Counts

10F ' Lifetime

1 Criterion
1

Tail of the
Distribution

Iz

[ ) ) . ! ) ) ]
0 10 20 30 40 50
Step Height [mV]

1 Kaczer et al., IRPS '10
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(1)

Time-Dependent Defect Spectroscopy (TDDS)

Would a three-state defect be visible?
Capture via intermediate state experimentally challenging
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Step Height [mV]

Step Height [mV]
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Time-Dependent Defect Spectroscopy (TDDS)
Metastable states visible as temporary RTN

1 T=150°C/t =1s/V, =-1.7V i
10 -
#4 Trace 23
5 [~ #1]
— ' ' | ' ' ' 'Trace' 16 -
> 15 #14
£ 10} i -
IS #4
2 5
OMWWMUWM\WWMW ] L
s Trace 14
10 |le LA i No Modulation
5 i~ Modulation
0 ‘ it

0 2 4 6 8 10 12 14 16 18
Relaxation Time [ms]



Outline

Distribution of the Capture and Emission Times
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Discrete Distribution

Discrete capture/emission time map (CET) of 7. and 7,
Strong bias dependence of 7
Strong temperature dependence of both 7; and 7.
Note: 7 = 7c(Vnu) and 7e = Te(VL)

T(Ve) [s]
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Discrete Capture/Emission Time Map (CET)

What is the use of the capture/emission time map (CET)?
Reconstruct the temporal behavior (just like Fourier transform)
Macroscopic version (expectation value)

N
AVin(ts, tr) = > di ax hi (s, tr; 7ok, Te k)
k

N ... Number of defects
dx ... step-height

a €1[0...1] ... maximum occupancy
he(ts, t;) = (1—e %/7x)e%/7x  dynamics

Stochastic version also possible
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Continuous Distribution
Continuous capture/emission time (CET) map*

AVi(ts, tr) z/ dTC/ d7e 9(7e, 7e) h(ts, tr; 7¢, 7e)
0 0

ts [e’e)
~ / ch dTe g(Tc, Te)
0 tr

10 1010
1070081010410 10° 102 10* 108 1081010107210741076
Emission Time [s]

-10 Vel
107%108106104102 10 102 104 108 108101010'21014106
Emission Time [s]

Simple extraction scheme for g using measured AVy,

_ 82 AVth (Tc, Te)

g(TC' TE) - 87_(: 379

1 Reisinger et al., IRPS "10
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Continuous Distribution

Example CET map for an SION pMOS with EOT=2.2 nm

0? AV (7¢, Te)
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CET Maps from Theory: RD Model
Analytical solution of the reaction-diffusion model
ts
1+ /t/ts
Analytical CET map becomes negative
9(re, 70) = _82Avth(’7'c,7'e) _2n-1 +(@2n+1)y/7e/7c 1

N N X CRAN L R

AVth (ts , tr) ==

106 7
104 ‘
@
O V
° 10
£
100
[0
5
2102
(&)

r=0.98
RD Analytic

104

10® 104 1072 100 102

108
Emission Time [s]
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CET Maps from Theory: Hole Trapping

Analytical solution of a simple hole-trapping model
AVi(ts, tt) = Alog(1 + Bt /ts)  for ts <t

Analytical CET map

9(7c, 7e) S
Tc)Te) = -
2 2
(B + 7e/7c)? 72
B=1 B =10
108 108
104 104
@ o)
o 107 o 102
£ o £ 0
= -
s 10 5 10
2 -2 2 -2
810 810
o [&]
104 r=0.99 104
Simple Hole Trapping
108 10
10 104 102 100 102 104 108 106 104 102 100 102

Emission Time [s] Emission Time [s]

104

r=0.97

Simple Hole Trapping

108
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CET Maps from Theory: Universal Recovery

Empirical universal recovery expression *

At2
S =+ Pty

AVl ) = 1580 i p

Analytical CET map

g(TCv Te) -

_GZAVth(TC, o) a—b+(a+ b)B(7e/7¢)P

87’c87’e N (1 + B(Te/TC)b)3

a=1/6,b=0.15B =2

102

Cagture Time [s]
e
n

r=0.87
6 Universal Analytic
10 ==
10 104 102 100 102 104 108
Emission Time [s]

1 Grasser et al., IEDM '07

(Te/mc)tP
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Outline

Physical Models for the Capture and Emission Times
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Conventional Model: Extended SRH Theory

SRH theory
Developed for bulk defects, defect level E; inside the bandgap
No ‘explicit’ assumption on capture and emission mechanism
Assumption: capture rate is represented by an averaged value
Gives Boltzmann factor in the emission rate, exp(—3(Ez — E;))

Extension to oxide defects?®

WKB factor to account for tunneling, exp(—x/Xo)
Defect level may lie outside the Si bandgap

Defect is described by a two-state Markov process
Example: hole trap, neutral in state 1, positive in state 2
K12

— T
~—— —

k21

1 McWhorter '57; Masuduzzaman, T-ED '08
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Conventional Model: Extended SRH Theory

Defect level inside Si bandgap

Hole capture: no barrier
Hole emission: Boltzmann factor e Az

o Hole Capture Hole Emission
A A
2
w | —E; —E
2
§ 1 e BEn
13
u% — e NN —F) — W\ —E
X X

Defect Reservoir Defect Reservoir



Conventional Model: Extended SRH Theory

Defect level outside Si bandgap

Hole capture: Boltzmann factor e ~#E2
Hole emission: no barrier

Electronic Energy

A

Hole Capture

=]

L E,
% e BExn

X

A

Hole Emission

=]

—F,
1

X

Defect

Reservoir

Defect

Reservoir
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Conventional Model: Extended SRH Theory

Electronic defect level depends on oxide field
Depending on field, defect level changes relative to E, ~ E,

A

|

F>
F <

Electronic Energy —ys

Defect Reservoir Defect Reservoir



Conventional Model: Extended SRH Theory

Model results in a ‘tunneling front’ due to WKB factor
Charging: only defects which moved from below to above Eg
Discharging: only defects that had just been charged
Both charging and discharging are independent of defect level
Tunneling front reaches 1 nm in about 10 ms

Init
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= Gate Oxide Channel
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Conventional Model: Extended SRH Theory

Model results in a ‘tunneling front’ due to WKB factor
Charging: only defects which moved from below to above Eg
Discharging: only defects that had just been charged
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Problems with Extended SRH Theory

Too fast

Tunneling front reaches 1 nm in about 10 ms

Experimental 7, and 7. can be considerably larger (h, m, w, y?)
Capture rate temperature independent

Experimental 7, can have Ep =~ 1eV

Bias dependence of 7. weak
Depends dominantly on surface hole concentration, 7. ~ 1/p
Experimental 7. depends exponentially on oxide field
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Problems with Extended SRH Theory

No similarity with experimental CET map (right)
Te correlated with 7

105
104
108
=z @102
g e
= £ 0
=10 =10
(0] (0]
=1 Sin2
= =1
g10° g0
[&] [&]

-2.7V170C

103 1071 10? 108 10°
Emission Time [s]

105 10% {01 10

108 10°
Emission Time [s]

The SRH model cannot describe oxide defects
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How are Charges Really Trapped in Oxides?

Where does the
charge go?
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How are Charges Really Trapped in Oxides?

Neutral defect ? ;
y T - . S
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How are Charges Really Trapped in Oxides?

Positive defect
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The Total Potential Energy

The charge-state determines the atomic positions

Known as electron-phonon coupling

The atomic positions determine the electronic levels
Adiabatic approximation: electrons are much faster than atoms

The vibronic properties determine the barriers
This effect dominates the transition rates

We need to consider two contributions to the ‘total energy’

Electronic energy: the information displayed in the band-diagram
Vibronic energy: the information missing in the band-diagram
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This Phenomenon is Everywhere!

Chemistry
Electron transfer reactions (intra- and intermolecular)
Marcus theory (Nobel Prize in Chemistry 1992)

Spectroscopy

Certain types of fluorescence
Broadening of absorption and emission peaks to bands

Physics
Vibronic solid-state lasers
Organic semiconductors
Non-radiative capture/emission in semiconductors (deep centers)

Biology
Photosynthesis
Sense of smell
Lightsensitivity (the very reason you can read this)
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This Phenomenon is Everywhere!

ET at ET at ET at ET at
liquid-liquid polymer-liquid semiconductor modified
interfaces interfaces electrodes electrodes
ET at 1chemiluminescence l
electrodes | [inverted | |solar energy
effect conversiom
ET at colloids T

and micelles

! photosynthesis |

ET in solids and polymers - quantum
organic ETs chemistry
| | and SN-2's calculation

solvent dynamics

and ET Electron Transfer .
in the ﬂ cross-reactions

jon pairs, 1950’s & 1960’s
recombination, . methyl and
escape L ~ other transfers
| coupled ET and

magnetic effects proton transfer ET in proteins long, range ET

on ET inrigid media

ET across rigid
organic bridges

From: R.A. Marcus, “Electron Transfer Reactions in Chemistry”, Nobel Lecture, 1992.



The year is 2011 AD. The Whole world is c0n5|der|ng )
vibronic transitions. Well, not entirely ... One small
group of indomitable reliability engineers still holds
out against the invaders.

U c a2 .




100 Femtoseconds in the Life of an E’ center
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100 Femtoseconds in the Life of an E’ center
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Coordinate Transformation onto Si-Si Bond
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The Total Potential Energy

Vibronic energy model: quantum harmonic oscillator

Energy levels
&n = hw(n + 3)
Level occupancy

P(&) e Pén
P(go) o e P&

UJWWU

WA

_ [
n=7
n_6\ b/
n=>5
n=4
n=3
n=2
n=1
n=20 q
-

oG
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The Total Potential Energy

Total energy contains vibronic + electronic energy*

Harmonic oscillator in each state (parabolic potential)
Equilibrium g depends on defect state (adiabatic approximation)

Vi(q) = 3Mwi(q — a1)® + Ex

Va(q) = $Mw3(q — d2)° + Ez . v,
Optical transition
Occur at constant g from min V;(q)
(Franck-Condon principle)?

Nonradiative transition E
2

Occur at V1(q) = V2(q)
(Classical limit) E
1

Vi

Total Energy

G 02

1 Abakumov et al., Nonradiative Recombination in Semic. North-Holland '1991

2 Franck, Trans.Far.Soc. '25; Condon, Phys.Rev. '28 .



Optical Transitions

Optical transitions (radiative transitions)
Ocecur at constant g from min V;(q) (Franck-Condon principle)

Photon absorption (1 — 2)
E12 = V2(d1) — Va1(a1)
Photon emission (2 — 1)
Exn = V2(02) — V1(92)
Photon energies differ, £15 # &1

|

Total Energy

Difference due to lattice relaxation

&12 = Ep1 + ER

&n = E12 — Er
Er is the relaxation energy* . q

1 Stoneham, Rep.Prog.Phys. '81
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Nonradiative Transitions

Nonradiative transitions
No photons are absorbed or emitted

Ocecur in the classical limit at V1(q) = V2(q) (‘over the barrier’)

Total Energy

|

V2

Vi

di G2
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The Total Energy

Three model parameters: Mw?/Mw?, g, — qs, E; — E;

Vi(q) = %wa(q — 1)’ +E;
Va(q) = 3Mw3(q — 02)* + Ez

Classical barrier: V,(q) = V1(q)
Two important cases, depending on R = w; /w»

Linear electron-phonon coupling:* R = 1 (w1 = w»)
= V,(q) — V1(q) is linear in g

(Er + E21)?
4Eg

Er = Mw?(q2 — a1)?/2

1o =

S = Er/Aw is the Huang-Rhys factor?
Number of phonons required to reach Er

1 For quadratic electron-phonon coupling see Grasser et al., MR '11
2 Huang and Rhys, Proc.Roy.Soc. '50
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The Final Rates

The total rate consists of two contributions
The vibrational matrix element in the high-temperature limit
~ e—ﬁglz
The electronic matrix element is approximately
~ oVihpP
To account for tunneling: WKB factor in o
o =0ooexXp(—X/Xo)  Xo=1h/(2\/2m¢)
So in total we have

kip = ovinp e P

Koy =~ oV Ny e~ (Maxwell-Boltzmann statistics)

Compare to SRH model (defect inside Si bandgap)

Kiz = oVinp

Koy ~ oviN, e PEe2 (Maxwell-Boltzmann statistics)
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Charge Trapping in an E’ Center
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Charge Trapping in an E’ Center

Total Energy [eV]
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Amorphous Oxide

All defects are different
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Charging of a Large Number of Defects

Nonradiative multiphonon model
There is no longer a tunneling front
Capture and emission times uncorrelated with x*

Init

-30 -25 -20 -15 -10 05 00 05 1.0

1 See detailed RTN study of Nagumo et al., IEDM 10
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Charging of a Large Number of Defects

Nonradiative multiphonon model
There is no longer a tunneling front
Capture and emission times uncorrelated with x*
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Field-Dependence

What is the meaning of the electronic energy levels?

E; is the electronic defect level (a.k.a Et)
E, is the electronic energy level of the reservoir (e.g. Ec or Ey)

As in the SRH model, E;; = E; — E; depends linearly on F

Ez; = Ez — Eyo — OxF
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S p—
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< Q
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w
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77777777777777777777 _—LM—
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— | X

Defect Reservoir
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Field-Dependence

E,; = E>; — E; depends linearly on F

Ez; = Ex — Eyo — OxF

Application of a field reduces £;, and increases &,
Results in exponential sensitivity of the rates to F

<
N

Total Energy
Electronic Energy

=
q X

o[ Jo1 02 Defect  Reservoir
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Bias Dependence of the Rates

The electronic matrix element

Below Vi, strong bias sensitivity due to p
Above Vy,, weak bias dependence of p
Weak bias dependence of the (complete) WKB factor

The vibrational matrix element
Depends on the electric field F

Er + E2 — E10 — qXF)Z))

exp(—pE12) = exp (‘B(( 4Eg

Below Vi, weak bias dependence of F
Above Vy,, exponential bias dependence
= the vibrational properties dominate the bias-dependence
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Bias Dependence: Weak Coupling

Weak-coupling limit
Er < Exo — E1o — OxF

Quadratic field-dependence

(ER + Ez]_) E21 1

Eip =R =2 ~E
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| €y
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Time Constants [s]

Bias Dependence: Weak Coupling

Crazy trap?

Well, something like this has been reported*

1 Schulz, JAP '93
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Bias Dependence: Strong Coupling

Strong-coupling limit
Er > Ezo — E10 — gxF

Linear field-dependence
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Bias Dependence: Strong Coupling
Compare the bias dependence to experlmental datal

Model: 7. and 7. are symmetric W jpnnn;
o P
Data: 7 can be flat/sudden drop . -7 10%mp
Model: 7 is nearly linear in F g wr 1
£ 107
Data: 7. has curvature 510t
2 10%
Reason 107
ol |
Metastable defect states et
o 1,@125°C 10— ; ; ; ; o 1,@125°C
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1 Grasser et al., IRPS '10



Problems with the Simple NMP Model

Model captures the ‘essence’, important details missing

Symmetric 7. and 7 (linear electron-phonon coupling)
Cannot describe the rapid drop of 7e below Vi,

Nearly linear F dependence of 7¢

No full decorrelation between 7. and 7. possible

1038 1077 10° 108 107 10 1038 1077 10°
Emission Time [s] Emission Time [s]

103

-2.7V 170C

105

92



Reminder: Metastable States
Defects can have more than two states
Anomalous RTN, where RTN is turned on/off!

e— c —4

L L 1 ' I '

Time [a.u.]
Temporary RTN following NBTI stress?

End of NBTI Stress
| End of Temporary RTN

PR " PR R I I I
2 4 6 8 10 12 14 16 18
Time [ms]

1 Uren et al., PRB '88
2 Grasser et al., IRPS "10 and PRB '10
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Metastable States: Puckering of an E’ Center

Total Energy [eV]

s
0 2 4 6 8 10 12 14 16
Reaction Coordinate [a.u.]

u Silicon

@ Oxygen
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Metastable States: Puckering of an E’ Center

Total Energy [eV]

s
0 2 4 6 8 10 12 14 16
Reaction Coordinate [a.u.]

u Silicon

@ Oxygen

94



Improved Defect Model: Metastable States

Defect model must include metastable states
RTN: anomalous RTN, curvature in 7, flat vs. drop in ¢
BTI: temporary RTN, bias-dependence of recovery
Pre- and post-stress f /T dependence/hysteresis of Icp*

Positive

Charge M etastable
Exchange

with Structural
Substrate Relaxatlon
Neutral Positive
Stable Stable

— ®

Structural Charge
Relaxation Exchange
with

Substrate
Neutral
Metastable

1 Hehenberger et al., IRPS '09; Grasser et al., IRPS "11
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AV, V]

Charge Trapping vs. Defect Generation

Switching traps have a density of states in the bandgap
= React to changes in Vigaq
Trapped charges couldn’t be bothered

Switching traps recover faster under more positive bias
Trapped charges couldn’t be bothered

— V -0.4v

T T — read =
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Charge Trapping vs. Defect Generation

Switching traps have a density of states in the bandgap
React to changes in V(eqq
Recover faster under more positive bias
Cause a change in the subthreshold-slope

Trapped charges do not have states in the bandgap
The charge is independent of V eaq
Cause a rigid shift of the Ip — Vg curves
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Model Summary

All features can be explained with a general defect model
Different defect potentials in the amorphous oxide
Anomalous RTN

Standard RTN

® Neutral
O Positively charged

Total Energy
[

Reaction Coordinate

Standard N\BTI NBTI Switching Trap/Temporary RTN

[ N -
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Outline

Stochastic BTI
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Ay, mv]

Stochastic Lifetimes

Small area devices: lifetime is a stochastic quantity*
Charge capture/emission stochastic events
Capture and emission times distributed
Number of defects follow Poisson distribution
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Sample =2 / [ 7
100 7
_ /
s I /
s 4 ’H
< JLI/ T
z 1
q I
é I
|
m— [ w—
= = E30 = = E30
= = F430 = = E+30
10 1 1 10 1 l 1
10° 10* 10° 10° 10° 10° 10"
Stress Time [s]

Stress Time [s]

1 Rauch, TDMR '07; Kaczer et al., IRPS '10; Grasser et al., IEDM '10
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4y, [mv]

Stochastic Lifetimes

Small area devices: lifetime is a stochastic quantity*
Charge capture/emission stochastic events
Capture and emission times distributed
Number of defects follow Poisson distribution

AV, [mV]
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1 Kaczer et al., IRPS '10; Grasser et al., IEDM "10
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Stochastic Lifetimes

Distribution of lifetime*
Variance increases with decreasing number of defects

0
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1 Kaczer et al., IRPS '11
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Stochastic Impact on Circuit

Example circuit with inverter* Vee
Jitter vs. NBTI

8 %n? Vi
(a) L

o

Vin(V)

495 515 4495 4515 8495 8515ps

1 Kaczer et al., IRPS '11 103



Stochastic Impact on Circuit

Example circuit with inverter* Voo
Jitter vs. NBTI

0.8 Vin

495 515 4495 4515 8495 8515ps

1 Kaczer et al., IRPS '11 104



Conclusions

Defects have a wide distribution of time constants
Due to the amorphous nature of the oxide

The same defects are responsible for RTN and BTI

Only a few ‘lucky’ defects cause RTN

‘Double-jackpot’ required for anomalous RTN

A much larger number of defects contributes to BTI

Same for NBTI/pMOS (holes) and PBTI/nMOS (electrons)

Charge exchange is a thermally activated process

Nonradiative multiphonon process
Due to changes in the defect structure
Defects can have metastable states

In small area devices BTl is a stochastic process
Lifetime becomes a stochastic quantity

A more detailed account of the material presented here will be available soon in
Grasser et al., Microelectronics Reliability, 2011
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