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Abstract. We analyze the thermoelectric power factor in ultra-narrow low-dimensional silicon nanowires (NWs) by 

employing atomistic considerations for the electronic structures and linearized Boltzmann transport theory. We consider 

different transport orientations and both n-type and p-type NWs. We show that the NW properties are highly anisotropic, 

especially for p-type, and as the diameter is reduced from D=12nm (bulk-like) down to D=3nm (1D-like), changes appear 

in the dispersions of the NWs, that can affect the power factor (σS2). We show that the conductivity has a stronger 

influence on the power factor compared to the Seebeck coefficient under geometrical changes. In the case of p-type NWs, 

bandstructure changes through confinement can improve the carrier velocities and result in power factor improvements.  
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INTRODUCTION 

Low dimensional silicon channels, such as nanowires (NWs) and 2D ultra-thin-body (UTB) layers, have 

attracted significant attention as efficient thermoelectric materials since the work of Hicks and Dresselhaus [1], who 

pointed out that low dimensionality can be beneficial to the Seebeck coefficient. Recently, Boukai et al. [2], and 

Hochbaum et al. [3] showed that it is indeed possible to achieve ZT~0.5 at room temperature in Si NWs of diameters 

less than 50nm (compared to bulk Si ZTbulk~0.01). This, however, was mostly a result of significant reduction in the 

lattice part of the thermal conductivity, kl. In nanostructures and low-dimensional materials, narrow features sizes 

not only reduce phonon transport, but they also reduce the electronic conductivity (σ). On the other hand, high 

power factor is still important in achieving high thermoelectric performance. Proper optimization of the power factor 

is therefore essential, and for this, proper theoretical tools are needed to provide design guidance.  

In this work, we calculate the thermoelectric power factor of scaled silicon NWs using the sp3d5s*-spin-orbit-

coupled (SO) atomistic tight-binding (TB) model and Boltzmann transport. We examine cylindrical n-type and p-

type NWs of diameters from D=3nm (ultra-scaled) to D=12nm (electrically approaching bulk), in [100], [110] and 

[111] transport orientations. We show that especially for p-type NWs, the power factor is strongly anisotropic. As 

the diameter is reduced, changes in the dispersions of the NWs influence the electronic properties significantly. This 

can provide optimization strategies for high efficient thermoelectric NW devices.           

 

APPROACH 

The sp3d5s*-SO TB model [4] accurately captures the electronic structures and inherently includes the effects of 

quantum confinement. It represents a compromise between computationally expensive fully ab-initio methods, and 

numerically inexpensive but less accurate effective mass models. Our calculations can include up to 5500 atoms, a 

challenging, but achievable computational task within this model. The electronic structures of the NWs are different 

in different orientations and therefore the NWs have different electronic properties. The electronic structures are also 

sensitive to the diameter of the NW, which makes their properties diameter dependent as well.  

In some cases, reduction in the diameter can actually improve the performance of the NW. Figure 1a shows the 

bandstructure carrier velocities of NW categories in which the velocity undergoes an improvement with diameter 

reduction. These are the p-type [111] and [110] NWs, and the n-type [110] NWs. In the case of the p-type NWs, the 

carrier velocity can increase as much as ~2X with diameter reduction.   
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FIGURE 1.  The bandstructure velocities of cylindrical NWs as a function of the diameter under non-degenerate, ballistic 

transport conditions. n- and p-type NWs in [100], [110] and [111] transport orientations are shown. (a) NW categories for which 

the carrier velocity increases with confinement. (b) NW categories for which the carrier velocity remains rather constant. 

 

On the other hand, for the n-type [100] and [111] NWs, and the p-[100] NWs, the carrier velocities remain 

constant with diameter. Possibilities for performance optimization are therefore available, both with regards to 

orientation, as well as diameter. This is particularly important for nanostructures in which narrow feature sizes are 

favorable in order to reduce the phonon part of the thermal conductivity, kl.   

 

The electrical conductivity and Seebeck coefficient follow from linearized Boltzmann theory as: 
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where the transport distribution function  is defined as [5]: 
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subbands (per spin),  n xk   is the momentum relaxation time for a state with kx in subband n, and EF is the Fermi 

level. We use Fermi’s Golden Rule to extract the transition rate for a carrier in an initial state kx in subband n to a 

final state kx’ in subband m. Elastic and inelastic scattering processes are considered. We consider all bulk electron-

phonon scattering mechanisms. Although the NW dispersions are all projected onto the 1D k-space from the bulk 

3D k-space, we carefully select the final scattering states for each initial state according to the selection in bulk Si 

processes. As an example, we demonstrate the selection of the final scattering states of a particular state kx in 

subband n for the D=3nm [110] n-type and p-type NWs. Their dispersions are shown in Fig. 2a and Fig. 2b 

respectively. The dispersion of the n-type NW consists of six valleys, originating from the six equivalent energy 

ellipsoids of Si conduction band. These are projected onto the 1D k-space, and in the [110] orientation, three two-

fold degenerate valleys are formed as shown in Fig. 2a. From bulk Si scattering selection “rules” the elastic 

processes are only intra-valley, whereas inelastic ones are only inter-valley. Since these two-fold degenerate valleys 

originate from different conduction band ellipsoids, we allow scattering within these valleys as follows: i) For elastic 

scattering, in a specific valley (either Γ or off-Γ) transitions are allowed only from even to even and odd to odd 

subband numbers. ii) Inelastic inter-valley scattering transitions are allowed from even to odd and vice versa only 

within a specific valley (Γ or off-Γ). For inelastic transitions between the different valleys as shown in Fig. 2a, the 

final state of each scattering event is selected according to whether the process is of f- or g-type. All six relevant 

phonon modes in Si are included [6]. Similar procedure is followed for the final state selection in n-type NWs in the 

other transport orientations. For p-type, the selection rules are simpler. We allow all inter-band and intra-band 
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FIGURE 2.  The dispersion of the [110] NW of D=3nm. Elastic and inelastic transitions are shown. (a) Conduction band. (b) 

Valence band. 

 

scattering within all subbands as shown in Fig. 2b. The full description of the procedure is described in [7]. 

 

RESULTS AND DISCUSSION 

From Eqs. 1 and 2 it can be deduced that the electrical conductivity increases exponentially as the Fermi level 

moves closer to the band edges, whereas the Seebeck coefficient decreases linearly, at least for non-degenerate 

conditions. At a specific carrier concentration, the position of the Fermi level with respect to the band edges (
F ) 

will be determined by the density of states (DOS) of the NW dispersions. The DOS is determined by the effective 

mass of the subbands and their degeneracies.  The 
F  of NWs in the [100], [110], and [111] transport orientations, 

at carrier concentrations of 1018/cm3 vs. the NW diameter is shown in Fig. 3a and 3b for n-type and p-type NWs, 

respectively. At larger diameters, the dispersions approach the bulk electronic structure and bulk DOS, and therefore 

F  is the same for NWs is all orientations. As the diameter is reduced, the dispersions are different for each 

orientation, and 
F changes. For the narrowest D=3nm NWs, in the n-type case the [110] oriented NW has a smaller 

F , whereas for the p-type NWs the [111] and [110] NWs have the smallest
F . The 

F  for NWs with lighter 

effective masses (and higher carrier velocities), are smaller. This provides higher electrical conductivity, but also 

lower Seebeck coefficient. Since the electrical conductivity is benefited exponentially from this reduction in F  

whereas the Seebeck coefficient is degraded linearly, the diameter reduction will influence the power factor more 

through changes in the conductivity than the Seebeck coefficient.  
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FIGURE 3.  The difference of the conduction/valence band minimum/maximum from the Fermi level (
F )assuming a carrier 

concentration 1018/cm3 for NWs in the [100] (diamond-blue), [110] (triangle-red) and [111] (square-green) transport orientations 

versus the NWs’ diameter. (a) n-type NWs. (b) p-type NWs. 
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FIGURE 4.  The phonon-limited thermoelectric power factor for NWs with D=3nm in [100] (blue), [110] (red) and [111] (green) 

transport orientations. (a) n-type NWs. (b) p-type NWs 

 

 

This is indicated in Fig. 4, which shows the power factor versus carrier concentration for the D=3nm NWs in the 

three orientations examined. Figure 4a shows the power factor for n-type NWs and Fig. 4b for p-type NWs. In the 

non-degenerate limit, for carrier concentrations below 1019/cm3, the power factor is larger for the NWs with 

smaller
F , (i.e. [110] n-type NW), although at higher concentrations the order can change. N-type NWs do not 

show large anisotropy, but the p-type NWs are highly anisotropic, with the [111] and [110] NWs having almost an 

order of magnitude higher performance compared to the [100] NWs. The first two NWs have a much larger 

conductivity because: i) their carrier velocity is highly advantageous and increases with diameter reduction (Fig. 1a), 

and ii) at a specific carrier concentration their band edges reside closer to the Fermi level. This is reflected on the 

higher power factor as well.           

 

CONCLUSIONS 

We analyze the thermoelectric power factor in ultra-narrow silicon nanowires (NWs) by employing atomistic 

considerations for the electronic structures and linearized Boltzmann transport theory. We consider different 

transport orientations and both n-type and p-type NWs. We show that as the diameter of the NWs is reduced from 

D=12nm (bulk-like) down to D=3nm (1D-like), the NW carrier velocities, the DOS, and the position of the band 

edges with respect to the Fermi level change, and influence the power factor. The power factor is highly anisotropic 

especially for p-type NWs, for which the D=3nm [111] and [110] NWs have ~10X higher performance than the 

[100] NWs. We also indicate that geometrical changes affect the conductivity more than they affect the Seebeck 

coefficient and that the conductivity finally determines the power factor. Performance optimization strategies can be 

identified to improve the design of low-dimensional thermoelectrics. 
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