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Abstract—It has recently been proposed that the inability
of the reaction-diffusion model for the negative bias tempera-
ture instability to properly predict the experimentally observed
recovery transients is due to the incomplete description of
atomic motion in the one dimensional macroscopic formulation
of the theory. In order to investigate this claim, we develop a
microscopic formulation of the modified reaction-diffusion model
and simulate it using the kinetic Monte Carlo algorithm. The
results of the macroscopic and the atomistic formulation are
compared. It shows that the recovery behavior predicted by the
RD theory is not affected by the change of the formulation.
However, differences arise for the degradation behavior, which,
as the microscopic formulation is the physically more accurate
description, raise questions regarding the physical relevance of
the reaction-diffusion theory. In extension it is shown that any
rate-equation based description in the atomic level context will
be unable to properly describe the early stages of degradation.

I. INTRODUCTION

The negative bias temperature instability (NBTI) is one of
the most critical degradation effects observed in p-channel
metal-oxide-semiconductor (pMOS) transistors. Since its sug-
gestion in 1977, the reaction-diffusion (RD) model [1] has
been the most popularized explanation for NBTI. The model
assumes that hydrogen is released from the interface and
subsequently diffuses into the bulk of the oxide. While the
reaction at the interface is assumed to be fast and in quasi-
equilibrium, it is the diffusion of the hydrogenic species
which controls the degradation. During the last decade the
model has gone through a number of refinement stages [2–4].
The current version assumes that long-term degradation and
recovery is dominated by H2 diffusion. While this version of
the RD model could successfully be calibrated to constant-
bias degradation data, striking contradictions began to emerge
when researchers started to look at the detailed features of
recovery [5–12].

It has recently been speculated that the failure of the RD
theory to explain the experimentally observed long relaxation
tails could be due to the fact that the model uses macro-
scopic rate equations together with the solution of the one-
dimensional diffusion equation [13]. The stochastic three-
dimensional motion of the diffusing atoms has been suggested

to lead to a longer effective diffusion path than what is
obtained from a one-dimensional diffusion model. According
to the authors of [13], this could explain the experimentally
observed long recovery tails, while leaving the degradation
behavior unchanged. In their paper, they correct the one-
dimensional RD model by including a reduced diffusion
coefficient during recovery.

We have recently developed a microscopic stochastic formu-
lation of the H-based RD theory to investigate these sugges-
tions [14]. Our calculations showed that while this description
leaves the recovery largely unchanged, the predicted degra-
dation strongly deviates from the results of the classic RD
model and the experimentally observed NBT degradation. In
the present work, we extend our microscopic model to include
molecular hydrogen and discuss the difference between the
stochastic and the deterministic description of the problem.

II. THE MICROSCOPIC RD MODEL

The modified RD model has been developed as an extension
of the classical RD models, which assume an instantaneous
transition between the liberated interfacial hydrogen and the
diffusing species, usually H2 [13, 15–18]. It extends the pre-
vious models by explicitly treating H as well as H2 diffusion
and interconversion between the two species.

The reactions present in the modified RD model are the
interface reaction Si−H −−⇀↽−− Si−• + H, the dimerization re-
action 2 H −−⇀↽−− H2, and the diffusion of both species. The
mathematical framework is based on reaction rate equations
of macroscopic densities [15, 16]

∂Nit

∂t
= kf(N0 −Nit)− krNitHit, (1)

∂H

∂t
= −D∇2H− kbondH2 + kbreakH2, (2)

∂H2

∂t
= −D2∇2H2 +

kbond
2

H2 − kbreak
2

H2, (3)

where Nit = [Si−•] is the interface state density, N0 =
[Si–H]0 the initial density of passivated interface defects,
Hit the hydrogen concentration at the semiconductor-oxide
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Fig. 1. Reaction channels available to the hydrogen atoms (occupancy is
indicated by the gray fill). Within the bulk SiO2 (top left), the atoms or
molecules are allowed to jump to all neighboring sites in the three-dimensional
orthogonal grid with a constant hopping rate D or D2, respectively. At the
interface, some nodes also offer a bonded state to the hydrogen atom (right
top). If a bonded state is already occupied the corresponding bonding reaction
channel is removed. When two hydrogen atoms occupy the same interstitial
position, they can undergo a dimerization at rate kbond and form H2 (bottom).
Each hydrogen molecule decays at a rate kbreak back into two hydrogen
atoms.

interface, while kf , kr, kbond, and kbreak are the reaction rates
for depassivation, passivation, dimerization, and atomization,
respectively. The motion of H and H2 is described by a simple
diffusion law, where H = [H](x, t), H2 = [H2](x, t), with the
corresponding diffusion coefficients D and D2 [19].

The microscopic view of the modified RD model is es-
tablished by tracing the macroscopic equations back to their
elemental reactions. This also requires to replace the macro-
scopic quantities Nit and N0,H, and H2 by atomic actors, i.e.
dangling bonds, hydrogen atoms and hydrogen molecules, all
and each as separate entities. The atomic motion is then treated
as hopping transport between interstitial sites, the passiva-
tion/depassivation and the dimerization/atomization reactions
are treated as elemental reactions that are spatially localized
inside an interstitial position (see Fig. 1). In the following, the
interstitial sites are assumed to form a regular and orthogonal
three-dimensional grid and the hopping rates D and D2 are
assumed to be constant in accord with the isotropic and non-
dispersive diffusion underlying the conventional macroscopic

RD model [15, 16, 20]. The distance between the interstitials
is assumed to be 4Å, which corresponds well with calculations
on atomistic silica models [21]. Additionally, a hopping rate
of 100s−1 is assumed for both H and H2, leading to a
macroscopic diffusion coefficient of 1.6× 10−13cm/s, which
matches the parameters in [22]. Although in the real SiO2 of a
MOS transistor the amorphous structure will lead to a random
network of interstitial sites [21] with a variety of hopping rates
and a more complex topology, these variations are assumed to
be unimportant in the RD model [19].

The Si/SiO2 interface is represented by an array of special
interstitial sites at the bottom of the simulation box. The
density of interface states used in macroscopic descriptions is
realized by giving selected interface sites the ability to bond or
release a diffusing hydrogen atom as illustrated in Fig. 1. For
example, a typical N0 of 1012cm−2 [16, 23] can be modeled
by selecting 16 interface interstitials of a simulation box with a
lateral extension of 100×100. This corresponds to an average
distance of the interfacial sites of 10nm.

III. COMPUTATIONAL METHOD

As explained in the previous section, the actors of our RD
system are restricted to a countable number of states as the
macroscopic diffusion in a continuous space is replaced by
a hopping between the metastable interstitial positions. It is
worthwhile to note that this discretization is not a mathe-
matical approximation but rather follows directly from the
microscopic picture. It is now possible to define a state vector
~x that contains the interstitial positions and bonding states of
all actors as well as a set of reaction channels which cause
transitions between the states of this vector. The RD system
then becomes a time-dependent stochastic process ~X(t) that
exists in one of a countable set of states ~xi. According to
the theory of stochastic chemical kinetics [24], the evolution
of the system over time can then be described by a chemical
master equation

∂P (~x, t)

∂t
=

M∑
j=1

[aj(~x− ~νj)P (~x− ~νj , t)− aj(~x)P (~x, t)],

(4)

where P (~x, t) = P ( ~X = ~x, t|~x0, t0) is the probability that the
stochastic process ~X(t) equals ~x at time t, given ~X(t0) = ~x0.
The physics are contained in the propensity functions aj and
the state-change vectors ~νj for the M reaction channels. In our
formulation, the propensity functions take very simple forms
as explained in [14].

The thus formulated master equation is straight-forward to
solve using the stochastic simulation algorithm (SSA) [24]
explained in Fig. 2, which is also known as the kinetic
Monte Carlo method. The SSA does not have any algorithmic
parameters and is a mathematically exact description of the
system defined by the states and reaction channels [24].

IV. RESULTS

As shown in Fig. 3, a random three-dimensional motion
of the diffusing hydrogen is obtained from this description as
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Fig. 2. Sketch of the stochastic simulation algorithm (SSA) [24] that was used
to simulate the microscopic RD model. The algorithm generates a realization
of the stochastic process described by the chemical master equation (4).

suggested in [13]. As in [14], all degradation and recovery cal-
culations were performed on an ensemble of two-dimensional
systems due to the lower computational demand. Nevertheless,
our test-calculations in three dimensions have shown that
all relevant effects are already present in a two-dimensional
topology. The distance between two dangling bonds in our
two dimensional model is 4nm (one dangling bond every 10
interstitials).

A. Lateral Equilibration

A typical degradation curve as generated by our RD imple-
mentation is displayed in Fig. 4. It shows that the degradation
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Fig. 3. Final part of the trajectory of a hydrogen atom in the atomic
hydrogen microscopic RD model [14] during recovery calculated using the
stochastic simulation algorithm (SSA). The motion clearly proceeds in a three-
dimensional stochastic fashion as requested by [13].

behavior of the microscopic RD model strongly deviates from
the macroscopic version, in accord with our previous work
which didn’t include hydrogen molecules [14]. Instead of the
three regions which arise from the macroscopic RD model —
reaction limited, intermediate plateau and diffusion-limited —
the H-H2 microscopic description shows five regimes.

• The earliest degradation times (t < 2×10−5s in this case)
are dominated by the depassivaton of dangling bonds.
This regime is similar to the reaction-limited regime in
macroscopic RD calculations.

• After the passivation and depassivation has reached an
equilibrium between kf and kr separately for each Si−H
bond, the fraction of depassivated dangling bonds remains
constant until the diffusion of the hydrogen atoms be-
comes dominant.

• As more and more hydrogen atoms leave their initial
position, the degradation is determined by the buildup
of the diffusion front along the Si-SiO2 interface and the
equilibration between the dangling bonds. This regime is
a direct consequence of the physical picture behind the
RD theory and has a very large power-law exponent that
is not experimentally observed. The stress time range in
which this regime is observed depends on the average
distance between two dangling bonds, the diffusion co-
efficient and the interstitial size.

• After a common diffusion front has formed, the diffusion-
limited regime begins to emerge. However, as a sufficient
amount of H2 has not formed yet, the initial diffusion-
limited regime has the typical t1/4-form that arises from
the hydrogen-atoms-based RD model [14].

• Eventually, for long degradation times the macroscopic
H2-diffusion-limited behavior is obtained.

In the macroscopic RD models, the onset of the diffusion-
limited regime only depends on the diffusion coefficient, which
needs to establish a large enough flux of particles into the
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Fig. 4. A typical degradation transient as obtained by our microscopic
RD implementation. Four main regimes can be defined, which are indicated
in the figure. The microscopic result is compared to a calculation on a
similar structure (simulation box with interface width 100 and oxide depth
1000, every tenth interface node is a dangling bond) and a rate-equation
based description. Apart from a slight deviation in the transition from the
reaction-limited to the diffusion-limited regime, the two-dimensional model
with isolated dangling bonds follows the classical one-dimensional RD model.

oxide. In the microscopic RD model, the diffusion-limited
regime can only be obtained after a sufficient number of
particles has distributed along the Si-SiO2 interface to form
a common diffusion front.

B. Limits of the Physical Validity of Rate Equations

In our calculations on the H-based RD model a new degra-
dation regime emerges that is dominated by the equilibration
between dangling bonds and the buildup of a diffusion front.
This regime cannot be reproduced in a rate-equation based
simulation even when more than one dimension and discrete
dangling bonds are used, as shown in Fig. 4. Interestingly,
the deterministic formulation always predicts a degradation
curve that closely follows the one dimensional RD model
rather than the stochastic version. This can be explained
by the unphysical self-interaction in the reaction-rate based
description, in which every hydrogen atom competes with
itself for a dangling bond and the conversion into H2 can
even proceed from one single hydrogen atom. In contrast, in
the microscopic stochastic model each hydrogen atom acts
individually before the buildup of the diffusion front, which
is certainly more physically reasonable. Therefore, only when
each atom is considered separately, as in a stochastic simulator,
the diffusion-front-buildup regime shows in the degradation
curve. In deterministic solutions, the particles are always
treated as a large ensemble, even in the regimes of very low
concentrations, where this assumption is inappropriate.

C. Modification of the Microscopic Model

It is interesting to note that the observation of the diffusion-
limited regime after a certain degradation time in this simple

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
0

10
2

10
4

10
6

N
it
 /
 N

0

Stress time/s

Stress

Diffu
sio

n lim
ite

d re
gim

e

higher D I

t
1/6

DI → ∞

DI=10
4
 DB

DI=10
3
 DB

DI=10
2
 DB

DI=10
1
 DB

DI=10
0
 DB

MRD 1D

0

0.2

0.4

0.6

0.8

1

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
it
 /
 N

it
(t

r 
=

 0
)

Recovery time/s

Recovery

ts = 1 ks

higher D I

DI → ∞

DI=10
3
 DB

DI=10
2
 DB

DI=10
1
 DB

DI=10
0
 DB

RD 1D

Fig. 5. Stress (left) and recovery (right) traces as predicted by our
microscopic RD model and the influence of an increased interface diffusion
coefficient DI. Degradation: The increase of DI reduces the lateral equili-
bration time. The newly observed diffusion front build up regime becomes
less pronounced in the degradation curve, leading to almost perfect agreement
with the macroscopic model for DI → ∞. Recovery: Contrarily to the claims
in [13], the recovery behavior of the three-dimensional stochastic RD model
almost perfectly resembles the one-dimensional macroscopic recovery for all
values of DI. The deviation at low values of DI comes from the lower degree
of equilibration during stress time in these systems. As can be seen on the
left side, after a stress time of 103 seconds, the systems with lower DI have
not yet fully entered the diffusion-limited regime.

formulation sets a lower boundary for the diffusion coefficient.
This lower bound requires the diffusion front to extend several
microns into the oxide or polysilicon gate in order to avoid sat-
uration, which is certainly curious, considering the dimensions
of modern gate stacks. There exists no comparable criterion
for the macroscopic model.

To make the microscopic RD theory compatible with the
macroscopic version, we consider first-principles calculations
that have shown a lowering of diffusion barriers for hydrogen
molecules along the Si/SiO2 interface as compared to the bulk
SiO2 [25]. These findings indicate that the motion of hydrogen
might proceed at a much higher rate along the interface,
which aids the equilibration between the dangling bonds and
therefore reduces the required bulk diffusion coefficient. To
account for this in our microscopic model, we applied different
diffusion coefficients DI and DB in the interface region and
in the bulk, respectively [14].

D. Stress and Recovery in the Microscopic Model

As can be seen in Fig. 5, the increase of the interface
diffusion coefficient reduces the effect of lateral equilibration
significantly. For a reasonable match between the microscopic
and macroscopic RD model, an increase of four orders of mag-
nitude is required, which corresponds to a diffusion coefficient
of DI ≈ 1.6×10−9cm/s. While a diffusion coefficient of this
magnitude may be hard to justify from a physical point-of-
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view, it is still closer to the physical reality than the assumption
of immediate equilibration along the Si-SiO2 interface that is
inherent to the usually employed one-dimensional macroscopic
RD model. A perfect match between the microscopic and the
macroscopic version of the RD model is only obtained in the
limit DI →∞.

Interestingly, the three-dimensional stochastic motion of the
hydrogen atoms and molecules does not influence the recovery
behavior of the system, which contradicts the predictions of
[13]. The recovery in the microscopic model matches the
macroscopic version, which is incompatible with experimental
data [5, 7, 8], independently of the choice of interface accel-
eration. This can be explained by the closed lateral boundary
conditions in our calculations, which force the random motion
of the diffusing hydrogen atoms into a straight path, therefore
creating a laterally uniform distribution of particles which
yields an effectively one-dimensional diffusive system during
recovery. We have investigated the effect of open boundaries
in [14] and found that the out flux of particles into the areas
which are forbidden in closed boundary calculations again
changes the degradation behavior, leading to an experimentally
not observed and geometry dependent increase of the power-
law slope during degradation. The closed boundary conditions
on the other hand are equivalent to periodic boundary con-
ditions and yield the behavior of an infinitely large Si-SiO2
interface.

V. CONCLUSION

We report on a stochastic three-dimensional implementa-
tion of the modified reaction-diffusion model for NBTI. The
model is theoretically well-founded on the theory of stochastic
chemical kinetics and is understood as a consequent realization
of the physical picture behind the reaction-diffusion theory. It
extends our previous efforts to microscopically simulate the
hydrogen-atom-based RD model.

The degradation predicted by the microscopic model fea-
tures a new regime which is dominated by the lateral equili-
bration of the diffusion cloud. This regime features a strongly
increased power-law exponent and is not observed experi-
mentally. It cannot be obtained from the usual macroscopic
one-dimensional RD models, which inherently assume an
instant equilibration along the interface. Further, it has been
shown that the lateral equilibration regime cannot be properly
modeled in any reaction rate based calculation, as in this de-
scription the many-particle interaction effects happen already
at times where realistically the hydrogen atoms are still well
separated.

The effect can only be reduced in a physically meaningful
way by a strong increase of the diffusion coefficient along
the interface. Perfect agreement between the microscopic and
the macroscopic one-dimensional RD model is achieved in the
limit DI →∞, which is the assumption that is inherent to all
one-dimensional RD models.

Recent claims that a stochastic three dimensional descrip-
tion of the atomic diffusion could explain the long relaxation

tails observed in NBTI experiments while leaving the degra-
dation untouched have been disproved by our calculations.
The shape of the recovery arising from the reaction-diffusion
theory is shown to be independent of the dimensionality and
atomistic occupation effects by our calculations. Moreover, the
microscopic description itself questions the physical relevance
of the usually employed RD model. Especially its implicit
assumption on the lateral equilibration in the early stages of
degradation is difficult to justify.
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W. Gustin, and C. Schlünder, “Analysis of NBTI
degradation- and recovery-behavior based on ultra fast
Vth-measurements,” in Proc. Intl.Rel.Phys.Symp., 2006,
pp. 448–453.

[6] H. Reisinger, T. Grasser, C. Schlünder, and W. Gustin,
“The statistical analysis of individual defects constituting
NBTI and its implications for modeling DC- and AC-
stress,” in Proc. Intl.Rel.Phys.Symp., 2010, pp. 7–15.

[7] V. Huard, M. Denais, and C. Parthasarathy, “NBTI
degradation: From physical mechanisms to modelling,”
Microelectronics Reliability, vol. 46, no. 1, pp. 1–23,
2006.

[8] T. Grasser, W. Goes, V. Sverdlov, and B. Kaczer,
“The universality of NBTI relaxation and its impli-
cations for modeling and characterization,” in Proc.
Intl.Rel.Phys.Symp., april 2007, pp. 268 –280.

[9] T. Grasser, H. Reisinger, W. Goes, T. Aichinger,
P. Hehenberger, P. Wagner, M. Nelhiebel, J. Franco, and
B. Kaczer, “Switching oxide traps as the missing link
between negative bias temperature instability and random
telegraph noise,” in Proc. Intl.Electron Devices Meeting,
2009, pp. 729–732.

[10] T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer,
“The time dependent defect spectroscopy (TDDS) for the

XT.10.5



characterization of the bias temperature instability,” in
Proc. Intl.Rel.Phys.Symp., 2010, pp. 16–25.

[11] B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen,
M. Aoulaiche, P. Roussel, and G. Groeseneken, “NBTI
from the perspective of defect states with widely dis-
tributed time scales,” in Proc. Intl.Rel.Phys.Symp., 2009,
pp. 55–60.

[12] B. Kaczer, T. Grasser, P. Roussel, J. Franco, R. De-
graeve, L. Ragnarsson, E. Simoen, G. Groeseneken, and
H. Reisinger, “Origin of NBTI variability in deeply
scaled pfets,” in Proc. Intl.Rel.Phys.Symp., 2010, pp. 26–
32.

[13] S. Mahapatra, A. Islam, S. Deora, V. Maheta, K. Joshi,
A. Jain, and M. Alam, “A critical re-evaluation of the
usefulness of R-D framework in predicting NBTI stress
and recovery,” in Proc. Intl.Rel.Phys.Symp., april 2011,
pp. 6A.3.1 –6A.3.10.

[14] F. Schanovsky and T. Grasser, “On the microscopic limit
of the reaction-diffusion model for negative bias tem-
perature instability,” in Proc. Intl.Integrated Reliability
Workshop, 2011, pp. 17–21.

[15] H. Kufluoglu and M. Alam, “A generalized reac-
tion–diffusion model with explicit H–H2 dynamics for
negative-bias temperature-instability (NBTI) degrada-
tion,” IEEE Trans.Electron Devices, vol. 54, no. 5, pp.
1101 – 1107, may 2007.

[16] A. E. Islam, H. Kufluoglu, D. Varghese, and M. A.
Alam, “Critical analysis of short-term negative bias
temperature instability measurements: Explaining the
effect of time-zero delay for on-the-fly measurements,”
Appl.Phys.Lett., vol. 90, no. 8, p. 083505, 2007.

[17] A. Islam, H. Kufluoglu, D. Varghese, S. Mahapatra,
and M. Alam, “Recent issues in negative-bias temper-
ature instability: Initial degradation, field dependence
of interface trap generation, hole trapping effects, and
relaxation,” IEEE Trans.Electron Devices, vol. 54, no. 9,
pp. 2143 –2154, sept. 2007.

[18] S. Mahapatra, A. Islam, S. Deora, V. Maheta, K. Joshi,
and M. Alam, “Characterization and modeling of NBTI
stress, recovery, material dependence and AC degradation
using R-D framework,” in Proc. Intl.Symp. on Physical
and Failure Analysis of Integrated Circuits, July 2011,
pp. 1–7.

[19] A. Islam, H. Kufluoglu, D. Varghese, and M. Alam,
“Temperature dependence of the negative bias tempera-
ture instability in the framework of dispersive transport,”
Appl.Phys.Lett., vol. 90, no. 1, pp. 083 505–1–083 505–3,
2007.

[20] T. Grasser, W. Goes, and B. Kaczer, “Dispersive transport
and negative bias temperature instability: Boundary con-
ditions, initial conditions, and transport models,” IEEE
Trans.Device and Materials Reliability, vol. 8, no. 1, pp.
79 –97, march 2008.

[21] G. Malavasi, M. C. Menziani, A. Pedone, and U. Segre,
“Void size distribution in MD-modelled silica glass
structures,” Journal of Non-Crystalline Solids, vol. 352,

no. 3, pp. 285 – 296, 2006.
[22] A. Islam and M. Alam, “Analyzing the distribution of

threshold voltage degradation in nanoscale transistors
by using reaction-diffusion and percolation theory,”
J.Comp.Elect., pp. 1–11, 2011, 10.1007/s10825-011-
0369-4.

[23] A. Stesmans, B. Nouwen, and V. V. Afanas’ev,
“Pb1 interface defect in thermal (100)Si/SiO2 : 29Si
hyperfine interaction,” Phys. Rev. B, vol. 58, pp.
15 801–15 809, Dec 1998.

[24] D. Gillespie, “A general method for numerically simu-
lating the stochastic time evolution of coupled chemical
reactions,” J.Comp.Phys., vol. 22, pp. 403–434, 1976.

[25] S. T. Pantelides, L. Tsetseris, S. Rashkeev, X. Zhou,
D. Fleetwood, and R. Schrimpf, “Hydrogen in MOSFETs
- a primary agent of reliability issues,” Microelectronics
Reliability, vol. 47, no. 6, pp. 903 – 911, 2007.

XT.10.6


	Select a link below
	Return to Proceedings
	Return to Main Menu


