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The negative differential resistance (NDR) of res-
onant tunneling diodes (RTDs) enables their use in
fast-switching applications and logic circuit designs.
So far, RTDs have been realized in Si/SiGe or III-
V compound material systems. However, various
emerging devices have been proposed and studied in
the past two decades. Recently, graphene nanorib-
bons (GNRs) have attracted much attention as the
potential building blocks of future electronics. Their
exciting electrical properties such as high carrier
mobility [1] and width-dependent bandgap [2], as
well as their compatibility with the currently em-
ployed planar technology suggest that GNRs can be
used as high performance RTDs [3]. In this work,
we compare the I-V characteristics of the previously
studied Hydrogen (H) passivated GNR RTDs with
that of a Boron Nitride (BN) confined GNR RTDs
for the first time. Our results indicate that BN-GNR
RTDs demonstrate a higher peak-to-valley current
ratio (PVCR) compared to H-GNR RTDs.

We employed the non-equilibrium Greens func-
tion (NEGF) formalism along with a second nearest
neighbor tight-binding model [4] to describe the
electronic bandstructure. In order to resolve the
narrow resonance peaks with a resonable number of
energy grid points an adaptive algorithm has been
used [5].

We have performed simulations on different de-
vice geometries (represented byS, H, and W ),
see Fig. 1. The transmission probabilities as well
as the current-voltage characteristics of H-GNR
RTDs are shown in Fig. 2 and Fig. 3, respectively.
Although the channel length and width of these
three structures are similar, but they demonstrate
different PVCRs. TheW -shaped device exhibits
a PVCR of 5 which is the smallest among the
three types. This behavior is explained by a better
path for the off-current provided in this channel

geometry resulting in a higher valley current [3].
The other device shapes S and H have PVCRs of
about 11, which renders them more suited for RTD
applications.

Fig. 4 shows the structure of BN-GNR RTDs that
have been studied in our work. The transmission
probability and the current voltage characteristics
of theses structures are shown in Fig. 5 and Fig. 6,
respectively. The results indicate that BN-confined
devices outperform the H-passivated devices in
terms of PVCR by at least one order of magnitude.
The sharp resonant transmission peaks (see Fig. 5)
result in PVCRs of about 90 for H-shaped, 300 for
W-shaped, and 1200 for S-shaped RTDs for the first
current peak, and PVCRs of about 18 for H-shaped,
42 for W-shaped, and 27 for S-shaped RTDs is
achieved for the second current peak. BN-confined
GNR RTDs demonstrate acceptable PVCRs even
when the nanoribbon indices are3p + 2. Previous
works on H-passivated GNR RTDs have not studied
these subfamilies due to their semi-metallic nature.
The large ionic potential difference between B and
N atoms near the GNR edges causes a considerable
bandgap opening in the3p + 2 GNRs, making
them suitable for RTDs. The results indicate that
BN-confined GNRs are better candidates for RTD
applications compared to H-passivated GNRs.
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Fig. 1. Different geometrical structures of H-AGNR RTDs
denoted by (a)S, (b) H , and (c)W , respectively.

S

W

H

10-5

10-4

10-3

10-2

10-1

100

0.5 0.55 0.6 0.65 0.7 0.75
Energy [eV]

T
ra

n
sm

is
si

on

Fig. 2. Transmission probability as function of energy for
H-AGNR RTDs.
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Fig. 3. Current-voltage characteristics of H-AGNR RTDs.
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Fig. 4. Different geometrical structures of BN-AGNR RTDs
denoted by (a)S, (b) H , and (c)W , respectively.
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Fig. 5. Transmission probability as function of energy for
BN-AGNR RTDs.
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Fig. 6. Current-voltage characteristics of BN-AGNR RTDs.


