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A relation called scaling theorem is formulated, which
estimates how physical scales determine the choice be-
tween classical or quantum transport regimes.

The Wigner-Boltzmann equation (WBE) provides a
relevant physical model for a variety of transport con-
ditions characterizing modern semiconducting nanos-
tructures [1]. It is defined by two operators, which,
as implied by the name, impose quantum-coherent or
scattering dominated evolution. While the former is
manifested by oscillations in the solution due to quantum
superpositions, the second strives towards classical equi-
librium causing decoherence and irreversibility. Which of
these regimes will prevail, depends on the physical scales
whose role is investigated here. The physical system
considered is of an electron interacting with a device
potentialV (R) and a sea of phonons with wave vector
Q and energy~ωQ and couplingF̃ (Q) The system is
characterized by the scales for lengthL and energyV0,
which further determine the scales for timeT0 =

√

m

V 0
L

and momentumP0 = ToVo/L. They are used to express
the Hamiltonian in terms of the dimensionless quantities:
R = Lr, Q = 1

L
q, V (R) = ηV0v(r), ~ωQ = αV0Ωq,

andF̃ (Q) = βV0F (q), defining the strength parameters
η, α, β, as well as the dimensionless parameterǫ = ~

ToV0

used to obtain a hierarchy of important notions. We
first consider the coherent case. (i) The dimensionless
Schr̈odinger equation (SE) is derived, along with an
estimate called Egorov’s theorem [2]: the mean val-
ues corresponding to classical (Poisson bracket) and
quantum (commutator) evolution for timet of a given
observable differ byO(ǫ2t); (ii) The result can then be
generalized for mixed states. A dimensionless Wigner
theory, whereǫ replaces~ of the standard formulas [3],
can be developed. In particular the Wigner function is
defined from the density matrixρt:

fw(r,p, t) =
1

(2πǫ)3

∫

dr′e−ipr′/ǫρt(r+
r′

2
, r−

r′

2
); (1)

(iii) It is then shown that the Wigner evolution
becomes closer to a ballistic Liouville evolution as
|fw − fL| < O(ǫ2t). These ideas are further pursued

to derive a dimensionless WBE in terms ofǫ, η, α, β:

Lfw =

∫

dp′
(

ηvwfw + β2Bfw
)

(2)

vw is the Wigner potential for (1), andB is the Boltz-
mann collision operator. Equation (2) yields the scaling
theorem: AN INCREASE OF THE ELECTRON-PHONON

COUPLING BY A FACTOR β′ CAUSES A DECREASE OF

THE STRENGTH PARAMETERS AS:
ǫ′ = ǫ/

√

β′, η′ = η/β′, α′ = α/β′. (3)

Thus there are two mechanisms which cause in par-
allel decoherence of the electron system. The first one
could be expected from the linearity of SE: an increase of
the phonon coupling is equivalent to a relative decrease
of η andα. Very important is the second effect related
to the decrease ofǫ. According to (iii) the reduction of
this parameter makes the quantum evolution closer to
the classical counterpart. The scaling theorem elucidates
the heuristic picture of a ’scattering-induced reduction
of the coherence length’, where electrons ’carry’ the
information about the electric potential during their free
flight. Without scattering the flight lasts forever, so that
all spatial points are correlated. Alternatively the distance
between the correlated points decreases with the increase
of the scattering rates, as they give rise to shorter flights.
This is now associated to the decrease of the effect
of higher order derivatives of the Wigner potential: in
the limit ǫ → 0 only the local electric field survives.
Eqn. (2) shows that the specific way of this reduction is
related to the establishment of the delta function from the
exponent: the contributions to the integral from regions
away from the localr are canceled due to the rapid
oscillations of the exponent there. We add to this an
insight about the physical factors affecting the limit. The
scaling theorem determines classes of physical problems
with equivalent numerical aspects. Processes with very
different initial conditions, momenta, electron-phonon
coupling, phonon energies, and local evolution time may
have equivalent evolution provided that these physical
quantities are properly scaled. Numerical experiments
illustrate this forη = 0, β′ = 2.
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Fig. 1. Initial densities (left) and momenta (right) in the phase spaceX,K in arbitrary units, of two Wigner functions each corresponding
to two entangled Gaussian wave packages. The parameters are scaled as follows: ǫ′ = ǫ/

√
β′, α′ = α/β′, T ′

0 = T0/
√
β′ and the wave

vector scaleK′

o
= K0

√
β′, whereK0 = 1/ǫL, in the case ofβ′ = 2. The two experiments have very different physical characteristics in

terms of electron-phonon coupling, phonon energies, and initial distributionsφ(X,K) andφ(X ′,K′) = φ(X,
√
β′K). However, according

to (3) they correspond to one and the same numerical task.
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Fig. 2. Scaled densities (left) and momenta (right) in arbitrary units afterT = 210fs (T ′ ≃ 150fs.) evolution time of the original (primed)
system. The scaled curves fit well within the stochastic noise, showing thatthey correspond to different stochastic processes, which, however
give rise to the same distribution of the mean values. Indeed, a third experiment defined by an inconsistent scaling only of the phonon energy
α′ = α/

√
β′ shows a different behavior. The standard GaAs model with acoustic and optical phonons has been used at a temperature of

200K.
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