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INTRODUCTION shear strain componenty * =m™*-m;*, and
N _ _ _ _ D=14eV is the shear strain deformation potential.
Silicon, the main material of microelectronics, The term proportional to
is predominantly composed of nuclei with zero <X,|p,In><n|0Vxp], X, > 5
spin and is characterised by weak spin-orbit Aso=2>; ) E -E ; @
n X

interaction in the conduction band. This insures
long distance spin propagation through the bulk,
which in combination with a possibility of s
injecting spin at room temperature [2] makes 2so=1.27mevnm computed by the empirical
fabrication of spin-based switching devices in the pseudopotential method (Fig.2) is close to the one
near future feasible. However, the experimentally used in [5]. In the presence of strain and
observed enhancement in spin relaxation inconfinement the four-fold degeneracy of the
electrically gated lateral-channel silicon struesir lowest subband is partly lifted. However, the
[3] is an obstacle and a deeper understanding ofdegeneracy of the eigenstates with opposite spin
fundamental spin relaxation mechanisms in projections, > and |> is preserved. The
silicon MOSFETSs is urgently needed. degenerate states must be chosen to satisfy

<ft|o,|U>=0. The surface roughness scattering

matrix elements are taken to be proportional to

) ] ) the square of the product of the subband function
We investigated numerically the dependences yerivatives at the interface [6]. Fig.3 and Fig.4

of the matrix elements responsible for surface gpoyy their dependences on strain and silicon film
roughness induced scattering and spin relaxationyyickness for intra-subband and inter-subband
in silicon transistors as a function of shear strai scattering for the same spin projection. The inter-
and energy. To accurately describe the bandgyphand spin relaxation matrix element mixing
structure in the presence of the intrinsic spintorb 54 the up- and down-spin states from the two
interaction the two-bank'p Hamiltonian [4] has  opposite valley is shown to decrease with strain
been generalized to mcl_ude_the spin degree_ Ofrapidly (Fig.5). Thus, applying uniaxial stress
freedom [5]. The Hamiltonian (1) (shown in along the [110] direction suppresses spin

Fig.1) is written in the vicinity of theX point — rejaxation and can be used to boost both, mobility
along thek; axis in the Brillouin zone. The basis 5nq spin lifetime.

is conveniently chosen as Xj(1), Xy!),
(X2,1 ), (X2,1 )], where the up- and down-arrows REEERENCES
indicate the spin projection at the quantization
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couples the states with the opposite spin
projections from different valleys. The value
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Fig.1. Hamiltonian including strain and spin-oribiteraction.U(z) is the square well confinment of widthThe Hamiltonian
was resolved numerically with respect to the eigeafions and eigenenergies by discretiziggp/oz.
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Fig. 2. Empirical pseudopotential calculations bé tspin-
orbit interaction strength by evaluating the gapropg at the
X-point betweerX; andX,- for finite k.
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Fig. 3. Normalized intra-subband scattering magtements.
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Fig. 4. Normalized intervalley scattering matrleraents as

function of strain for different silicon film thiclesses. Being

elastic, this scattering is zero in unstrained dasp
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Fig. 5. Intervalley spin relaxation matrix elemreneduction

with strain for two values of energy.
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