
An Automatic OpenCL Compute Kernel Generator
for Basic Linear Algebra Operations
Philippe Tillet1, Karl Rupp1,2, Siegfried Selberherr1

1 Institute for Microelectronics, TU Wien
Gußhausstraße 27-29/E360, 1040 Wien, Austria

2 Institute for Analysis and Scientific Computing, TU Wien
Wiedner Hauptstraße 8-10/E101, 1040 Wien, Austria

Phil.Tillet@gmail.com, {rupp|selberherr}@iue.tuwien.ac.at

Keywords: Automatic Code Generation, Linear Algebra,
High Performance Computing, OpenCL, ViennaCL

Abstract
An automatic OpenCL compute kernel generator framework
for linear algebra operations is presented. It allows for spec-
ifying matrix and vector operations in high-level C++ code,
while the low-level details of OpenCL compute kernel gener-
ation and handling are dealt with in the background. Our ap-
proach releases users from considerable additional effort re-
quired for learning the details of programming graphics pro-
cessing units (GPUs), and we demonstrate that higher perfor-
mance than for a fixed, predefined set of OpenCL compute
kernels is obtained due to the minimization of launch over-
head. The generator is made available in the Vienna Com-
puting Library (ViennaCL) and is demonstrated here with the
stabilized bi-conjugate gradient algorithm, for which perfor-
mance gains up to a factor 1.6 are observed.

1. INTRODUCTION
The emergence of general purpose computations on graph-

ics processing units (GPUs) has lead to new programming ap-
proaches, which require a reconsideration of algorithm design
as well as program flow. While a purely CPU-based program
on a single machine directly operates on data in random ac-
cess memory (RAM), which is managed by the operating sys-
tem, a GPU-based function (denoted as compute kernel in the
following) first and foremost requires the data as well as the
executable to be available on the respective device. The com-
pute kernel is then launched and manipulates the data on the
GPU, where typically hundreds of threads operate simulta-
neously. Further compute kernels can be loaded and launched
on the GPU for additional independent data manipulation. Fi-
nally, the result data is copied back from GPU RAM to CPU
RAM, where the CPU-based execution can continue to pro-
cess the results. In order to obtain a performance gain over
a purely CPU-based execution, all data transfer and program
launch overhead plus the execution time on the GPU must be
smaller than the time required in the CPU-based execution.

For programming GPUs, basically two approaches are

in wide-spread use in the scientific community: The Com-
pute Unified Device Architecture (CUDA) from NVIDIA [1],
which is a vendor-specific environment for NVIDIA hard-
ware, and the Open Computing Language (OpenCL) [2],
which is an open industry standard for program execution
across heterogeneous platforms. Even though both the CUDA
and the OpenCL language are derived from the C program-
ming language, they require to learn a new language and to
get acquainted with the details of the underlying hardware.
This is certainly not desirable from an abstraction point of
view.

In many application scenarios, the time required for trans-
ferring data from CPU RAM to GPU RAM is negligible com-
pared to the accumulated execution time of all compute ker-
nels. This is mostly due to the high speed of the PCI-Express
link, which typically provides a bandwidth of 8 gigabytes per
second (GB/s) in Version 2, and a bandwidth of 16 GB/s in
Version 3. For example, the whole GPU RAM can thus be
written and read from the host within one second for most
current GPU boards. In contrast, the overhead for launching a
compute kernel can accumulate to significant values, if many
compute kernels with very short execution times are involved.
Our measurements confirm the kernel launch overhead in the
range of 10 to 100 microseconds specified by the vendors,
which is a long latency considering that clock frequencies are
in the range of gigahertz. In practice, kernel launch overheads
are about one order of magnitude smaller, because the launch
of a kernel can already be prepared while another kernel is
as yet active. Still, with an internal memory bandwidth of,
say, 160 GB/s of current mid- to high-end GPU boards, the
overhead is in the order of the execution time of a single vec-
tor accumulation using two vectors with around 10000 en-
tries. Consequently, the execution time of compute kernels
should be sufficiently large in order to keep any compute ker-
nel startup overhead negligible.

For linear algebra operations, the OpenCL-based Vienna
Computing Library (ViennaCL) [3, 4] provides a high-level
application programming interface comparable to the purely
CPU-based UBLAS library shipped with the Boost libraries
[5]. A similar high-level approach for CUDA hardware is pro-
vided by Cusp [6]. The library MAGMA [7] is also based on

CUDA and aims at providing fast BLAS routines for dense
matrices using multi-core CPUs and NVIDIA GPUs.

Unlike purely CPU-based BLAS implementations, where
function calls have negligible costs, the overhead of OpenCL
compute kernel launches becomes significant for most vector
operations defined at BLAS Level 1, and for operations on
BLAS Level 2, if the operands are of small dimensionality.
For example, the assignment x← a+b+c for vectors x, a, b
and c can be computed in principle by the use of a single loop.
Using BLAS Level 1 routines, three calls of e.g. the *AXPY
subroutine are required, each looping over all elements of the
operands. Similarly, ViennaCL requires the same number of
compute kernel launches and may, depending on how the user
writes the code, even create a temporary object, which is even
more detrimental to performance than it is on CPU-based pro-
grams. As a remedy, the user could provide a custom compute
kernel for the vector addition example, but this is not desir-
able from a usability point of view.

In this work we present an OpenCL compute kernel source
generator for linear algebra operations defined at BLAS Level
1 and Level 2. Level 3 is not considered, because kernel
launch overhead is negligible, when compared to execution
times obtained already at small dimensions [8]. Our gener-
ator is based on a C++ domain specific embedded language
for the generation of OpenCL kernels defined by high-level
specifications provided by the user. Any kernel launch over-
head for simple operations such as x← a+b+ c is removed
to the highest extent possible. The generator is presented in
Sec. 2. and the benchmark results in Sec. 3. clearly show the
efficiency of the generator at small to moderate problem sizes.
An outlook to further applications is given and a conclusion
is drawn in Sec. 4.

2. THE GENERATOR
Before going into the details of the generator, a glimpse

of the operator overloads in ViennaCL is given. In order to
instantiate three vectors in GPU RAM, to add two of them
and to store the result in the third vector, it is sufficient to
write

1 viennacl::vector<double> x, y, z;
2 /* Fill vectors with data here */
3 x = y + z;

Consequently, computations on the GPU can be carried out
at a level of convenience comparable to purely CPU-based li-
braries such as Boost.UBLAS. Internally, operators are over-
loaded using so-called expression templates [9], by which the
arithmetic expression on the right hand side is transformed
into an expression tree at compile time. The benefit of such
an approach is the possibility to minimize the demand of tem-
porary objects, while the price to pay is increased compila-
tion time, if expression templates and other metaprogram-

ming techniques are used excessively. Due to the fixed set
of OpenCL kernels shipped with ViennaCL, the expression
tree is only generated up to the complexity covered by the
OpenCL kernels. If the vector expression is more compli-
cated, temporaries are introduced.

In the context of the generator, the expression template
technique is used to encode the full calculation specification.
Instead of actually performing the calculation, the respective
OpenCL kernel is generated at runtime, which can then be
used to launch the kernel with appropriate arguments. Similar
functionality could in principle be achieved by pure runtime
programming techniques, yet the functional flavor of template
metaprogramming simplifies evaluations and manipulations
of the expression trees significantly.

For the specification of the kernel operations, separate
classes are provided for representing vector arguments:

1 symbolic_vector<double, 0> symb_x;
2 symbolic_vector<double, 1> symb_y;
3 symbolic_vector<double, 2> symb_z;

The objects symb_x, symb_y, symb_z refer to the first three
vector operands with double-precision floating point entries
of the resulting OpenCL compute kernel. Arithmetic op-
erators for the symbolic_vector are then overloaded as
usual in the expression template setting. Binary operators are
encoded by the compound_node<LHS, OP, RHS> class,
which takes the type of the left hand side operand as the first
template argument, the operation encoded by a suitable tag
as the second argument, and the type of the right hand side
operand is the third template argument. For example, the type
of the statement symb_y + symb_z evaluates to

1 compound_node< symbolic_vector<double,1>,
2 add_type,
3 symbolic_vector<double,2> >

where add_type is a tag class referring to the addition op-
eration. The resulting nested type hierarchy of the statement
symb_x = symb_y + symb_z is depicted in Fig. 1.

In order to create an OpenCL kernel from the ex-
pression tree, the nested types are unwrapped recursively.
The OpenCL kernel name is deduced by a textual rep-
resentation of the encoded operation, which is obtained
from a recursive iteration over all nodes in the tree. For
symb_x = symb_y + symb_z, the resulting kernel name
is vec0_eq_vec1_plus_vec2. The second step is to de-
duce the function arguments, for which purpose all leaf nodes
(i.e. all operands) of the expression tree are collected in a
typelist [10] consisting of distinct types only. Each of the
symbolic_vector classes then leads to one kernel argu-
ment referring to the OpenCL memory buffer of the vector
and to an integer kernel argument referring to the number of
entries of the vector. The generated function head for the vec-
tor addition thus is

compound_node<
symbolic_vector

<double,0>
,eq_type

,compound_node<...>
>

compound_node
<symbolic_vector

<double,1>
,add_type

,symbolic_vector
<double,2> >

symbolic_vector
<double,0>

symbolic_vector
<double,1>

symbolic_vector
<double,2>

Figure 1. Expression tree for the calculation specification
symb_x = symb_y + symb_z.

1 __kernel void vec0_eq_vec1_plus_vec2(
2 __global double* vec0, uint size_vec0,
3 __global double* vec1, uint size_vec1,
4 __global double* vec2, uint size_vec2
5)

In a similar manner, the kernel arguments for symbolic scalars
and matrices are determined: A scalar leads to one argument,
which is passed by value, if it originates from CPU RAM, or
a pointer if passed from GPU RAM. A matrix leads to five ar-
guments, namely a pointer to its first element, two arguments
for the number of rows including possible alignment of the in-
ternal memory buffer to powers of two, and analogously two
arguments for the number of columns.

In the OpenCL kernel body the worker threads are dis-
tributed over all entries in the result vector. Then, the expres-
sion tree is unwrapped and the code in the function body is
generated. Overall, the resulting code in the OpenCL kernel
body is

1 {
2 f o r (u i n t k = g e t g l o b a l i d (0) ;
3 k < s i z e v e c 1 ;
4 k += g e t g l o b a l s i z e (0))
5 { vec1 [k] = vec2 [k] + vec3 [k] ; }
6 }

Now as the kernel generation in the background is completed,
we can now turn to the discussion of the user interface. The
purpose of the kernel is to be launched for one or several sets
of function arguments, hence it takes the role of a function ob-
ject (functor). Consequently, the user interface is designed as
follows: The symbolic expression is provided as constructor
argument to the class custom operation:

1 s y m b o l i c v e c t o r <double , 0> symb x ;
2 s y m b o l i c v e c t o r <double , 1> symb y ;
3 s y m b o l i c v e c t o r <double , 2> symb z ;
4

5 c u s t o m o p e r a t i o n
6 my op (symb x = symb y + symb z) ;

This triggers the kernel source code generation and compi-
lation within the OpenCL just-in-time compiler while my op
is created. The kernel is executed by passing the kernel argu-
ments to the parentheses-operator:

1 / / E x e c u t e f o r v e c t o r s x , y , z :
2 v i e n n a c l : : o c l : : enqueue (my op (x , y , z)) ;

Here, x, y and z refer to the plain viennacl :: vector<> objects
introduced in the beginning of this section. The three vec-
tors are internally mapped to two OpenCL kernel arguments
each, namely the OpenCL memory handle and the vector size.
The enqueue() function adds the operation to an OpenCL com-
mand queue. In the above case no queue is specified, hence
the default queue is used.

The basic example of vector addition has been used to
demonstrate the main steps during the OpenCL kernel gen-
eration process. Arbitrary additions, subtractions, and multi-
plications of vectors by scalars can be tackled in the same
way. However, additional complications arise as soon as dot-
products and matrix-vector multiplications are included. Con-
sider a slight modification of the previous vector addition ex-
ample, where here and in the following we do not distinguish
between a symbolic specification, or an actual computation
statement:

1 x = i n n e r p r o d (y , z) ∗ (y + z) ;

Due to the inherent serial nature of the inner product, it is
for large vectors most efficient to split it into several chunks
xi and zi, i = 1, . . . ,N, where N denotes the number of work
groups and is typically a small power of two, e.g. 32. Each
chunk is computed using parallel reduction inside a work
group and the intermediate results of each work group are
summed in a second kernel to obtain the final result. There-
fore, the resulting expression tree is first scanned for opera-
tions which need to be carried out in one or more separate ker-
nels prior to the final assignment. It is important to mention
that our generator is able to fuse the final summation from the
inner product into the next kernel. More precisely, instead of
three kernels for the operations:

• In work groups i, compute inner prod (y i , z i), i =
1, . . . ,N. Store the result in a temporary array t .

• Sum up the entries in t to obtain the final result alpha of
inner prod (y, z).

• Compute x = alpha ∗ (y+z).

Our kernel generator fuses the second and the third kernel in
order to avoid any kernel launch overhead resulting from the
quite simple second kernel.

We proceed with an operation involving a dense matrix A,
and now consider the slightly more complicated operation:

1 x = y − a l p h a ∗ (p rod (A, y) − z)

Here, prod() denotes the matrix-vector product. The straight-
forward approach to the computation of this expression using
BLAS functionality is the computation of a temporary vector
t = prod(A,y) − z, and then to compute z = y− alpha∗t. How-
ever, as already mentioned, temporary objects on the GPU
should be avoided whenever possible. In order to generate ef-
ficient kernels for the above operation, our generator decom-
poses the initial operation into an equivalent set of elementary
tokens. In the above example two tokens are obtained which
refer to the operations

1 x = y + a l p h a ∗z
2 x −= a l p h a ∗ prod (A, y)

Note that no temporary vector is required in this case. The
code for the kernel body is then generated by processing the
tokens in the semantically correct order.

The first step of the tokenization process is to expand the
encoded expression into tokens which are connected either
by addition or subtraction. For vectors or matrices x,y, and a
scalar value α, every sub-tree corresponding to an operation
of the form α ∗ (x+ y) (resp. (x+ y) ∗α) is transformed to
α ∗ x+α ∗ y (resp. x ∗α+ y ∗α). This results in two tokens
α ∗ x and α ∗ y. In summary, the recursive expansion of the
expression tree is accomplished by the following algorithm:

Procedure 1 Expand(): Expansion of an expression tree
Input: compound node<L, OP, R>
Output: compound node<L out, OP out, R out>

OP MULT=scalar mult
if IsScalMul(OP) and IsAddOrSub(R) then

L out=Expand(compound node<L, OP MULT, R::L>)
OP out= R::OP
R out=Expand(compound node<L, OP MULT, R::R>)

else if IsScalMul(OP) and IsAddOrSub(L) then
L out=Expand(compound node<L::L, OP MULT, R>)
OP out= L::OP
R out=Expand(compound node<L::R, OP MULT, R>)

else
L out = Expand(L)
OP out = OP
R out = Expand(R)

end if

Here, scalar mult refers to multiplication by a scalar, :: L
and :: R refer to the left and right hand side operands of the ex-

pression, :: OP refers to the operator token, IsScalMul() is true
, if the supplied operator refers to multiplication by a scalar,
and IsAddOrSub() returns true , if the supplied expression is a
addition or subtraction.

After the expansion procedure, the expression tree is trans-
formed into a sequence of tokens using typelists [10], for
which correct signs must be preserved. For example, the ex-
pression x−(y−z) becomes x−y+z, while (x−y)−z does
not require sign changes. The resulting list of tokens is then
scanned for dependencies among the tokens. If there are no
dependencies, such as in the first example x = y+ z, the list
of tokens directly leads to the body of the for-loop over all en-
tries in the result vector or matrix. Inner products are always
computed in a separate kernel, while matrix-vector products
only lead to a temporary object, if one of the operands de-
pends on the left hand side of the assignment statement.

Another frequent requirement for linear algebra al-
gorithms are element-wise modifications. This require-
ment is addressed by our generator using the meta-object
elementwise_modifier. In order to release the user
from some implementation details required for setting up the
meta-object by hand, a convenience macro is provided. For
instance, an elementwise modifier F for modifying all entries
xi of a scalar, vector or matrix to 1/(1+ xi) can be declared
as follows:

1 VIENNACL EW MODIFIER(F , ” 1 / (1 +X) ”)

It is also possible to combine elementwise_modifiers
with each other.

A schematic of the final generator is given in Fig. 2. It
should be emphasized that basically all complexity is hidden
from the user, only the mnemonic specification of the kernel
action at a high level of abstraction is required.

C++ Code Expression
Parsing

Expression
Tree

Just-in-time
Compilation

OpenCL
 binary

Execution on
the device

Identification
and extraction

of kernel
sub-trees

Generation of
kernels

source code

OpenCL

Code Generator

User

A
rg

um
en

ts

C++ Compiler's internals

Interface
class

Figure 2. General execution model of the generator.

3. EXAMPLES/RESULTS
In this section we consider a synthetic BLAS Level 1 ex-

ample demonstrating the impact of kernel launch times for
BLAS Level 1 functions, a BLAS Level 2 example consist-
ing of a matrix-vector product with nested vector operations,
and the application of our generator to the iterative solver
BiCGStab. The benchmarks are carried out in single preci-
sion on a Linux machine equipped with an NVIDIA Geforce
GTX 470, driver version 285.05.09. We present execution
times rather than the typically employed Gigaflops, because
the kernel launch overhead cannot be suitably reflected in the
latter.

The BLAS Level 1 example we consider in our first test
case is

x+= (α+β)∗x− (y−F(G(z))) ,

where the element-wise modifiers F and G are given by
(F(x))i = (1 + xi)

−1 and (G(x))i = x2
i . Note that x, y and

z can either be all vectors, or all matrices. The required C++
code is:

1 / / The e l e m e n t w i s e m o d i f i e r s
2 VIENNACL EW MODIFIER(F , ” 1 / (1 +X) ”)
3 VIENNACL EW MODIFIER(G, ”X∗X”)
4

5 / / I n s t a n t i a t i o n o f t h e s y m b o l i c v a r i a b l e s
6 s y m b o l i c v e c t o r <NumericT ,0> sX ;
7 g p u s y m b o l i c s c a l a r <NumericT ,1> sAlpha ;
8 g p u s y m b o l i c s c a l a r <NumericT ,2> s B e t a ;
9 s y m b o l i c v e c t o r <NumericT ,3> sY ;

10 s y m b o l i c v e c t o r <NumericT ,4> sZ ;
11

12 / / C r e a t i o n o f t h e cus tom o p e r a t i o n
13 c u s t o m o p e r a t i o n example
14 (sX += (sAlpha + s B e t a) ∗sX
15 − (sY − F (G(sZ)))) ;
16

17 / / E x e c u t i o n o f t h e cus tom o p e r a t i o n
18 enqueue (example (x , a lpha , be t a , y , z)) ;

NumericT denotes the underlying floating point type (float or
double).

Benchmark results are depicted in Fig.3. An implementa-
tion using three BLAS Level 1 calls and one separate ker-
nel for the element-wise modification is taken as reference.
Since the operation is memory bandwidth limited, the refer-
ence implementation using four kernels requires four times
the execution time than the single kernel generated by our
kernel generator. Execution times start to saturate for vectors
below a size of about 100.000, and a kernel launch overhead
of about 30 microseconds is identified.

As our second example, we consider the operation

x = A×
[
(y · (y+ z))y+ z

]
,

 1e-05

 0.0001

 0.001

 0.01

 100 1000 10000 100000 1e+06 1e+07 1e+08

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Size

Comparison of Execution Times

Without Generator
With Generator

Figure 3. Performances of the generator on BLAS Level 1.

where x, y and z denote vectors, A is a dense matrix and the
dot denotes the inner vector product. With the proposed gen-
erator it is sufficient to write the following C++ code:

1 / / I n s t a n t i a t i o n o f t h e s y m b o l i c v a r i a b l e s
2 s y m b o l i c v e c t o r <NumericT ,0> sX ;
3 s y m b o l i c m a t r i x<NumericT ,1> sA ;
4 s y m b o l i c v e c t o r <NumericT ,2> sY ;
5 s y m b o l i c v e c t o r <NumericT ,3> sZ ;
6

7 / / C r e a t i o n o f t h e cus tom o p e r a t i o n
8 c u s t o m o p e r a t i o n example2
9 (sX = prod (sA , i n n e r p r o d (sY , sY+sZ) ∗ sY

10 + sZ)) ;
11

12 / / E x e c u t i o n o f t h e cus tom o p e r a t i o n
13 enqueue (example2 (x , A, y , z)) ;

Only two kernels are generated: The first is responsible for
computing the inner product, while the second sums the in-
termediate results from the inner product calculation chunks
and computes the matrix-vector product.

The benchmark results in Fig. 4 clearly show that the
generator is superior for matrix sizes below 1000× 1000.
The difference of a factor of about 1.5 at a matrix size of
100× 100 can make a considerable difference in real-time
scenarios. As the dimensions of A increase to higher values,
the BLAS Level 2 operation becomes dominant and the sav-
ings at BLAS Level 1 become negligible.

Finally, the generator is applied to the implementation of
the non-preconditioned stabilized bi-conjugate gradient algo-
rithm (BiCGStab) [11]. The generic implementation included
in ViennaCL 1.1.2 is taken as a reference, which uses BLAS
Level 1 functions for the vector updates and does not create
hidden temporary objects. Tests have been carried out using
matrices from the discretization of the Poisson equation in
two spatial dimensions using piecewise linear finite elements

 0.0001

 0.001

 10 100 1000 10000

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Size

Comparison of Execution Times

Without Generator
With Generator

Figure 4. Performances of the generator on BLAS Level 2.

on a triangular grid. On average, there are five nonzero en-
tries per row of the system matrix. Note that the performance
of BiCGStab in terms of execution time heavily depends on
the sparsity pattern of the system matrix and may thus be the
limiting factor already at low matrix dimensions. The results
have therefore to be taken with a grain of salt, yet they pro-
vide a realistic benchmark for many two-dimensional finite
element simulations in practice.

The iteration loop of BiCGStab can be written as follows,
where checks for convergence are omitted for brevity:

Procedure 2 BiCGStab loop
Input: Matrix A, vectors b, r, p, scalar ρ0, int n
Output: Result vector x

1: for i = 1→ n do
2: t = A×p
3: α = ρi−1/(t ·b)
4: s = r−αt
5: v = A× s
6: ω = (v · s)/(v ·v)
7: x = x+αp+ωs
8: r = s−ωv
9: ρi = r ·b

10: β = ρi
ρi−1

α

ω

11: p = r+β∗ (p−ω∗ t)
12: end for

Since sparse matrix-vector products are not included in the
generator, we apply the generator to the vector operations
only. One custom operation was applied to each of the Lines
on 3, 4, 6, 7, 9 and 11, with Line 8 reusing the kernel from
Line 4. The simple operation in Line 10 is evaluated on the
CPU after the convergence check.

In Fig. 5 one can clearly see that in our test case BiCGStab
is limited by OpenCL kernel launch overheads up to systems

 0.0001

 0.001

 0.01

 100 1000 10000 100000 1e+06

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Size

Comparison of Execution Times

Without Generator
With Generator

Figure 5. Execution time for a single BiCGStab iteration.

of about 100000 unknowns. A performance gain of up to
40 percent is obtained with our kernel generator for smaller
matrices. We expect that similar results hold true for other
Krylov methods such as the conjugate gradient algorithm or
the generalized minimal residual method [12].

4. OUTLOOK AND CONCLUSION
The new C++11 standard provides additional support for

metaprogramming, which gives additional convenience to the
user. Most notably, the auto-keyword hides the template hier-
archy from the user:

1 auto op1 = i n n e r p r o d (sX + sZ , sX − sZ) ;
2 auto op2 = i n n e r p r o d (sY + sZ , sY − sZ) ;
3 c u s t o m o p e r a t i o n example
4 (sX = (op1 + op2) ∗sY)
5 enqueue (example (x , y , z))

Apart from higher convenience, the generator could also
be extended for multiple assignment statements. Consider the
plane rotation as defined at BLAS Level 1(

x
y

)
=

(
α β

−β α

)(
x
y

)
.

In order to avoid a temporary vector, the OpenCL kernel has
to process both vector updates at the same time. Setting for
simplicity α = β = 1, a natural extension of the existing user
interface is:

1 c u s t o m o p e r a t i o n r o t
2 (sX = sX + sY ,
3 sY = −sX + sY) ;

However, severe complications arise in the case where in-
ner products and matrix products are considered, because the
handling of data dependencies becomes much more involved
than for the single operation case.

In summary, the role of OpenCL compute kernel launch
overheads was studied in this work and a generator for linear
algebra operations at BLAS Level 1 and Level 2 was pre-
sented. We have further shown that the use of modern C++
techniques provides a convenient user front-end, which ab-
stracts the details of the underlying hardware without sacrific-
ing performance and which invalidates productivity concerns
related to GPU computing [13]. In addition, our benchmark
results show that BLAS Level 1 routines on GPUs are lim-
ited by kernel launch overheads up to vector sizes of about
100000, hence BLAS Level 1 operations should be fused
with other kernels in order to reduce this overhead. The only
drawback is the increased compilation time if the generator
is used excessively. However, in most application scenarios it
is reasonable to expect that only a few custom kernels are in
use, thus compilation times are not a concern.

REFERENCES
[1] NVIDIA CUDA.

http://www.nvidia.com/.

[2] OpenCL.
http://www.khronos.org/opencl/.

[3] Vienna Computing Library (ViennaCL).
http://viennacl.sourceforge.net/.

[4] K. Rupp et al., ViennaCL - A High Level Linear Algebra
Library for GPUs and Multi-Core CPUs. Proceedings of
GPUScA, p. 51-56, (2010).

[5] Boost C++ Libraries.
http://www.boost.org/.

[6] Cusp Library.
http://code.google.com/p/cusp-library/

[7] MAGMA Library.
http://icl.cs.utk.edu/magma/

[8] R. Nath et al., An Improved Magma Gemm For Fermi
Graphics Processing Units. Intl. J. HPC Appl., vol. 24
no. 4, p. 511-515, (2010).

[9] T. Veldhuizen. “Expression Templates”. C++ Report,
vol. 7, p.26-31 (1995).

[10] A. Alexandrescu, Modern C++ Design: Generic Pro-
gramming and Design Patterns Applied, Addison-Wesley
Longman Publishing Co., Inc. (2001)

[11] H. A. van der Vorst, Bi-CGSTAB: A Fast and Smoothly
Converging Variant of Bi-CG for the Solution of Non-
Symmetric Linear Systems. SIAM J. Sci. Stat. Comput.,
vol. 12, p. 631–644 (1992).

[12] Y. Saad, Iterative Methods for Sparse Linear Systems,
Second Edition, SIAM (2003).

[13] R. Bordawekar et. al., Can CPUs Match GPUs on Per-
formance with Productivity? Experiences with Optimiz-
ing a FLOP-intensive Application on CPUs and GPU.
Technical Report, IBM T. J. Watson Research Center,
(2010).

