Sparse Approximate Inverse Preconditioners for IterativeSolvers on GPUs

Mykola Lukash?, Karl Rupp +?, Siegfried Selberhert
L Institute for Microelectronics, TU Wien
GulRhausstral3e 27-29/E360, 1040 Wien, Austria
2 |nstitute for Analysis and Scientific Computing, TU Wien
Wiedner Hauptstrafl3e 8-10/E101, 1040 Wien, Austria
nl ukash@nzi | . com {rupp| sel berherr }@ ue. t uwi en. ac. at

Abstract whereA = MA andb = Mb. If M is in a certain sense a good
For the solution of large systems of linear equations,fi@a approximation to the inverse &f the iterative solution of the
solvers with preconditioners are typically employed. How-modified system converges considerably faster.

ever, the design of preconditioners for the black-box caise, Many different variants of preconditioners exist. Simple
which no additional information about the underlying prob- preconditioners may modifjA andb directly, but typically
lem is known, is very difficult. The most commonly em- they act on the residuak = Ax — b in the k-th iteratex, of
ployed method of incomplete LU factorizations is a serial al the solver. Therefore, the preconditioner maiixs not set
gorithm and thus not well suited for the massively parallelup in an explicit form, but rather implicitly defined over the
computing architecture of GPUs. We investigate sparse apction on the residual.

proximate inverse preconditioners in this work, which show A |0t of effort has been spent on the construction of precon-
a very high degree of parallelism. The preconditioner setugjitioners for general linear systems. Among the most pop-
is accomplished in a hybrid manner, where parts of the algogjar methods used today are incomplete LU factorizations
rithm which require dynamic memory allocations are carried(|_y) [1], algebraic multigrid preconditioners (AMG) [2],
out on the CPU, while the GPU is used for the computationyng sparse approximate inverses (SPAI) [3]. While the dif-
ally expensive factorizations. Our benchmark results dmo ferent flavors of ILU are used for many different classes of
strate that our implementations in ViennaCL are well suiteqnatrices, the major downside of the method is its serial na-
as a black-box preconditioner for multi- and many-core aryyre, Block-ILU variants have been developed as a remedy,

chitectures. but the price to pay is that more iterative solver iteratiares
necessary.
1. INTRODUCTION In recent years, graphics processing units (GPUs) are used

Discretization schemes for partial differential equasion not only for graphics applications, but also for certaincigle
such as the Finite Difference, the Finite Element, or the Fipurpose computations, e.g. [4]. The most frequently used de
nite Volume scheme ultimately lead to the need for the soluvelopment platform is CUDA [5] by NVIDIA, which is tay-
tion of a large system of linear equations. Since the cogplin lored to products of a single vendor. In contrast, the opam-st
between the equations is usually rather weak, the system mdard OpenCL maintained by the Khronos Group [6] provides
trix is very sparse, allowing for millions of unknowns on av- a unified interface to hardware from different vendors. Ir pa
erage workstations. For such huge systems, iterativeigolut ticular, it allows to program GPUs as well as CPUs using the
methods are typically employed, where the convergence rateame language.
depends on the condition number of the iteration matrix.-Con The massively parallel single-instruction-multiple-alat
sequently, in practical applications it is of interest teg¢he (SIMD) architecture of GPUs is well suited for stream pro-
condition number low, for which so-called preconditionerscessing prob|ems_ However, the processing units must be pro
are employed. Formally, one way of interpreting the actionvided with data in order to use them efficiently. This can be
of a preconditioner is to multiply the original system achieved by loading data to on-chip memory, thus reducing

global memory accesses, and then operate on the fast on-chip

Ax=b cache only. Such caching strategies have been successfully
. : employed for dense linear algebra operations as defined on
h M . .
with a matrixM to get BLAS level 3 [7]. On the contrary, iterative solvers for spar
MAX = Mb systems have a higher emphasis on memory bandwidth due
to the use of operations defined on BLAS levels 1 and 2 only.
and to solve the modified system Our general purpose free open source linear algebra li-

U brary ViennaCL provides high-level access to various itera
Ax=D, tive solvers. In addition, it offers simple preconditiosdike

a Jacobi preconditioner [1] with full GPU acceleration. Thealso be used, provided that the pattern of the matrix powers
ILU preconditioner provided with ViennaCL is due to its se- can be computed efficiently. As outlined in the next section,
rial nature currently always executed on the CPU, causing the possibility to dynamically update the non-zero pattdrn
lot of data transfer overhead between CPU and GPU. To reM makes the choice of the initial pattern less crucial.
move this bottleneck, this work presents the results obthin For a colummmy of M it is sufficient to consider the index
from the implementation of two SPAI preconditioners: First set 4 for the non-zeros afn:
a SPAI implementation as proposed by Grote and Huckle [3]
suitable for general matrices is considered, and seconcta fa J= {j e{l,...,n} :m(j) # 0}
tored SPAI (FSPAI) variant suitable for symmetric positive
definite matrices [9] is presented. We denote the cardinality of, with q.

Similarly, for the matrix-vector producAmy only the
2. SPAI columns ofA with indices from the sefiy may lead to non-

First we recapitulate the most important concepts of SPAIZ€ro contributions. We denote withthe set of non-zero rows
In particular, the main advantages are as follows: of the submatrix matri’d(., %):

e SPAlis inherently parallel, because each column (or row K=liet n: S Ja] £0
respectively) of the preconditioner matik can be pro- k= e ; aij :
cessed in parallel. .
Consequently, it is sufficient to consider the minimization
problem on the condensed sytéxl, %). We introduce the

following abbreviations:

e SPAI can autonomously identify new entries for the
sparsity pattern of the preconditioner matkix

e The application of SPAI to the current residual in iter- A pxq
ative solvers reduces to a matrix-vector product, which A=Al J) € R
My =

can be well parallelized [10, 11]. me(J) € R9*1
Therefore, both the setup of the preconditioner as well as th &=e&(l)€ RP*:
application to the residual allow for a massively paralia-e , .
cution model. The least-squares problem can then be written in the compact
form
2.1. Static SPAI - Theoretical Background min|[Afy—&dl2, k=1,....n
The essence of the SPAI algorithm is to determine a sparse Mk

matrix M which minimizes .)) _)
Usually, the matriXA is dense and in typical matrices obtained

|AM —1 ||,2: , (1) from linear finite element discretizations the dimensiohs o
the blocks are in the range= 20,...,40 andq = 10,...,20,
whereM has a prescribed non-zero pattefngenotes the which is small enough for GPU cachesAlfs a regular ma-
identity matrix and|| - | denotes the Frobenius norm. It trix, A, has full rankg, and we can us@R decomposition for
should also be noted thit recovers the inverse &, if no solving the least-squares problems. The non-zero entfies o

restriction on the non-zero patternidfis imposed. my are then computed as
The parallel nature of SPAI can be readily seen when
rewriting (1) as c=Q'&,

n n ﬁk:R(Q?Q)ilé(Q)) Q:{laaq}
IAM—1[2= 5 [[(AM-DadZ=S | Am—ec]3, (2

k=1 k=1 The matrix-vector product witlQ" is carried out implicitly
using the chain multiplication of Householder reflectioes d
termined by the Householder vectors stored in the lower-
é[riangular part of the matriR.

wheremy denotes thé-th column ofM and analogouslg
denotes thé&-th column of the identity matrix. Each sum-
mand in (2) represents an independent least-squares probl
for one colummmy of M. For the solution of each of the least-
squares problems,@R decomposition is employed. 2.2. Dynamic SPAI

Typical choices for the sparsity patternifare a diagonal The ability of dynamically updating the sparsity pattern of
pattern or the pattern @&. Inspired by Neumann series and the preconditioner matrid adds considerably to the attrac-
similar to ILU preconditioners, the patternsaft andA® can tiveness of the method. For a given preconditioewith

k-th columnmy, the contribution to the residual is found from Either one takes only indices with the largest valuep&Hf
(2) as or indices are selected based on a specified threshold. As a
consequence, the sétis enlarged byl, whereT is set of
M =AM — & non-zero rows imA(., 7 U 7), resulting in the extended Least

. 1) Squares problem
Ifrj=0,vj=1,...,n,then clearlyM = A~*. However, since

the inverse of a sparse matrix is typically dense, the residu A=A(IUT,7U7) e RPHP*(@+d
vector is non-zero in most cases. We denote the set of indices
of non-zero entries afi by whereg’=|T| andq’=|7|. The new matri»A can be factorized
as
L= {I £ 0}. T -
., i (A ALY Q o\ (R &ALD
For eachl € £, the set of column-indices for the non-zero A= < 0 A17)) = (0 s > 0 Q A(LJ)
entries in thd-th row of A is ’ . 0 A(LJ)
R B
0 B) ’

A ={ia; #0}. :<(§ |(:3)(

Thus, only indices irf\{ are new candidates for the new non- which allows for a reuse of the compuations from the previ-

zero pattern inm for the elimination of the respective non- ous QR factorization step. Only a QR factorization of the new

zero value inrg. The union of all sets\{ for all | € £ is block B, € RPt+P-9%G s required. In order to keep the size of

the set of indices that can reduce the Euclidean norm of thg, and thus the computational effort under control, a praktica

residual vector: guideline is to limit the number of new entries by the number
- U AL of non-zero entries in the initial colurmm.

leL

2.3. SPAI - Implementation

Since the residual norrir|[> must be reduced, we note sjnce the action of the SPAI preconditioner on the residual
that new entries are obtained by a solution of the onejs a sparse matrix-vector multiplication, which has algead
dimensional minimization problem: been studied extensively [10, 11], it is sufficient to focues t
discussion of implementation details on the preconditione
setup phase. Due to the high degree of parallelism of SPAI,
every column ofM can be computed independently during
Denoting thej-th column ofA with a;, there hold\ej =a; the setup. Therefore, purely CPU-based implementations of
and we obtain the term SPAI are easily obtained using compiler-based approaches
such as OpenMP [12] or library-based threading-approaches
such as the Boost.thread library [13]. A directimplemeéatat
of SPAI on GPUs, however, is hampered by the observation

min{|A(Mc+pje)) —adl = min|iric+ piAe 2
]]

; 2 2 2014112
minjiric+hiaj iz < lindiz+2u5ne 3j) + 1532 =0

The minimizer is that the cardinality of the index sefg and_j cannot be ob-
(re,a;) tained a-priori. Since dynamic memory allocation on GPUs
= ETE using OpenCL is not possible by now, expensive scans for
jll2

the required memory would be necessary. Therefore, the in-
For each of the potential new inderom 4 to be added ~dex setsl and J are set up on the CPU and then copied to
to the index setl, one consequently computes the tentativeGPU. After that, the matrice&(, %) are set up.

new residuals The massively parallel architecture of GPUs suggests to
5 solve all Least Squares problems simultaneously. However,
rll3 — (k@) 7 overall memory requirements |n<_juped by the Least Squares

llajl|5 problems may soon exceed the limited GPU RAM, thus only

a subset can be processed at the same time. In our imple-
mentation the overall memory requirements on the GPU are
<rk,aj>2 computed from the size of the index sdgsand %. If GPU

RAM turns out to be too small, the work load is split into
two chunks of equal size, which are processed one after an-
as a criterion for acceptance of the new index. There are sewther on the GPU. This strategy is then applied in a recursive
eral strategies on the selection of the new indices possiblenanner to each of the two chunks.

for which it suffices to consider

2313

S

Due to the high degree of parallelism still present in eachi3.1. Static FSPAI
of the chunks, the full Least Squares problem including the Similar to SPAI, we first consider FSPAI for a static non-
QR factorizations of the block&(, %) is carried out on the zero pattern of the preconditioner. In this section we famus
GPU. For the better utilization of the SIMD architecture of the description of FSPAI for a given pattern. Again, typical
GPUs, one thread per column of each block is used, so thétitial patterns forM like that of A, A% or A® often provide
each work group factors one SPAI block. After that, resultsgood results even without additional pattern update step.
are copied back to CPU RAM and the residual vector is com- For a symmetric positive definite system matithere ex-
puted. If the Euclidean norm of the residual is higher than asts the Cholesky factorizatioh= LALX, wherel, is the un-
prescribed tolerance, sparsity pattern updates are daie known Cholesky factor. Consequently, we seek for a matrix
as described in the previous section. M such that

To summarize, our implementation of SPAI for a given ini-
tial sparsity pattern is as follows: M=LLT ~A s Lt

1. Determine the index sefg and for eachk =1,...,n. L can be obtained via Frobenius norm minimization [9]

2. Compute the memory consumption of timeLeast

Squares problems and split the work load into chunks. mLin lLal —r

3. For each chunk, assemble the matridg&nd compute o then normalized such that dig§AL) = I. As in SPAI,

the_ sol_utlon ofthe Least Squares problems using QR facthis initially sparse problem can be reduced to multiplesgen
torization. problems. In addition, the non-zero patternLof restricted

4. Copy the results back to CPU RAM and compute thelo the lower triangular part. As suggested in [16], the Frobe
residuals. nius norm minimization is replaced by the minimization of

) the Kaporin functional
5. If further pattern updates are required, compute the aug-

mented index set§ and 7, otherwise go to 8. . LtracdLTAL) @)
I _—

6. Assemble the new entries in the augmented Least L del(LTAL)% ’

Squares matrix and compute the solution reusing pre- = L
vious QR factorizations. which allows for a more compact form of the minimization

algorithm.
7. Go back to 4. Let us denote th&-th column ofL by Iy, and the allowed
8. Write all entries computed in the chunkih non-zero pattern ifk by J, with % = %\ {k}. Then

() = =AUk,) Ak, k
3 ESPAI k(%) kAT, J) Ak K)

SPAI only requires regularity of the input matiéx How- with
ever, there is a price to pay for this universality: Firstedu
to the independent computation of the entries in the precon- |Ek - - 1 — —
ditioner matrixM, it may happen thal does not have full Ak, K) — AU KT A J) A K)
rank. While this is unllkely_ to happen in practise because OfConsequentIy, the algorithm for the computation of ki
round-off errors, it may still lead to poor convergence sate

of iterative solvers. Moreover, if the system mathixs sym- column ofl. can be compactly written as:

metric,M will pe non-symmetric in generall, hencg more ex- vic = AU, i)~ TAGk. K) (4)

pensive iterative solvers for non-symmetric matrices have 1

be employed. Ik = (5)
In many cases the system matfis symmetric and posi- VAWK K) — A, K) Tyi

tive definite, for which the conjugate gradient algorithm][1 () = —liiyk (6)

can be used as an iterative solver. Clearly, it is desireable

preserve symmetry and positive definiteness of the systers for SPAI, the columns df can be computed in parallel.
when using a preconditioner. For this purpose, a variant of The linear system (4) is solved by a Cholesky factorization
SPAI based on the Cholesky factorizatidn= LALX of the of A(ik,ik). Similar to the QR-factorization for the SPAI al-
system matrix has been developed [15], which is commonlygorithm, the Cholesky decomposition is the computatignall
referred to as factored sparse approximate inverse (FSPABxpensive part of FSPAI, since the complexity rises with the
preconditioner. third power of the block matrix sizes.

3.2. Dynamic FSPAI 3.3. FSPAI - Implementation
In analogy to SPAI, an automatic non-zero pattern update is The implementation of FSPAI is similar to SPAI. In par-

available for FSPAI [15]. Again, the key is a one-dimensionaticular, the computation of the index sefg is carried out

minimization problem for the update of the Cholesky factor.on the CPU in parallel using OpenMP. Then the index sets

Minimization of the updated Kaporin functional J are copied to GPU RAM and the blockg %, %) are set

1 T\ el N up. A Cholesky factorization of each block on the GPU us-

atrace(L” + i€)AL +Ajei8)) ing OpenCL is computed for all blocks using one thread per

det(LT +)\jexe-jr)A(L+}\jeje-I[))% column of each block. Again, the typical sizes of the block
matrices allow to compute the factorization in GPU cache.

with respect to the Cholesky factor perturbed inkkil col- After that, the entries df are obtained according to (4)-(6).
umn withlx +Aje;j leads to

AU 4. BENCHMARK RESULTS

= AGL) Our implementation of SPAI and FSPAI are compared

with the purely CPU-based ILU preconditioner with thresh-

old (ILUT) included in ViennaCL 1.1.2. The tests are car-

% . ried out on a machine equipped with an Intel Core 2 Quad
1 2t Q9550 and a NVIDIA GTX 580 GPU running a 64-bit Fun-

det(A)n (L(L,1)---L(n,n))" too Linux. For better comparison, all preconditioners aec
hence the main criterion for adding new entries to the spyarsi within a BiCGStab [17] solver, even though FSPAI would be

min

The difference to the original Kaporin functional (3) is

pattern is the factor used with a conjugate gradient (CG) solver in practice. &olv
g 2 execution times for FSPAI within CG are typically by a factor
= w) of roughly two smaller than for BICGStab, while setup times
A(lL 1) and the number of solver iterations are unchanged.

reduced, if thg-th entry W||| be added to the non-zero pattern Same unified solver interface of ViennaCL. For example, the
of %. pure BICGStab for a system matr a load vectob and a
Similar to pattern updates with SPAI, several update strateesult vectox is called by

gies are possible [15]. Again, a typical choice is to restri
the maximum number of new indices per update to the in
tial number of non-zero entries in the respec’[lve column OfS|m||ar|y, the precond|t|0nersw|th default parametesseam-
L. Let 9 denote a given index set, aUQi the updated index ployed using

set ordered such that the first eIementszqrare given by the

x = solve(A, b, bicgstab_tag());

entnes |n]l Wr|t|ng Al = (]l;]l) andAz = (]2,]2) the il Et _pr econd<Mat Type> ilut (A, il Ut _t ag()))
Cholesky factorization oAy can be obtained from that @~ |* = Solve(A b, bicgstab_tag(), ilut);
as spai _precond<Mat Type> spai (A, spai_tag());
A — AL B (L1 O L] uf x = solve(A, b, bicgstab_tag(), spai);
2=\Br ¢) \U L 0 L]

f spai _precond<Mat Type> fspai (A, fspai _tag());

LaL] LuT - . iy
x = solve(A, b, bicgstab_tag(), fspai);
< ULT LoLy +UUT)

where Mat Type denotes a compatible generic matrix type
(currently from ViennaCL or Boost.UBLAS). In particular,
this allows for a fair comparison of the individual benchksar

where the matriceB andC arise due to the augmented index
4. Now, U can be obtained from the equati@= L;UT.

Then, since i . .
results, since the same solver implementations for purely
C=UUT +LoL] CPU-based as well as GPU-based types is used.
& LlU=c-uuT As a test case, we consider a system matrix arising from

the discretization of a time-dependent convection-diffns
it is sufficient to compute the Cholesky factorization of theequation in three dimensions using linear finite elements
matrixC—UUT only. Therefore, the computational effortin- and a backward Euler scheme. Each of the 24202 rows and
creases only moderately with the total number of entries-comcolumns of the system matrix consists of 14 entries on aver-
pared to computing a full Cholesky factorization at each up-age. No dynamic updates of the preconditioner are employed,
date step. because the initial pattern of the system matrix provideslgo

Table 1. Comparison of execution times for the precondi-
tioner setup phase, the iterative solver phase and memo
footprint of the individual preconditioners.

le-06

Setup (sec) Solver (sec) Memory (M B) Relative Residuals over Solver Iterations
ILUT 1.3 2.9 3.6 100 | ' ' ' ' 'm™Ro prelcond.I ——
| TV

SPAI, CPU 55 15 175 1 | By B
SPAI, GPU 2.9 0.3 175 = | e ™

< 0.01 N R S 1
FSPAI, CPU 0.2 1.6 53 § o P
FSPAI,GPU| 0.2 0.3 53 g 00001 R 1

: | %%g

¥ g 1

le-08

i i i X i i i i
results. The norms of the relative residuals for a solven-wit tedo 0 10 20 30 40 50 60 70 80 90 100
out preconditioner, with ILUT, with SPAI and FSPAI using Iteration
the nonzero pattern of the system matrix are compared ifrigure 1. Comparison of relative residual norms over the
Fig. 1. ILUT requires only 45 iterations to reduce the iditia BICGStab solver iterations for the different preconditgos
residual by ten orders of magnitude, SPAI and FSPAI requiré'—UT requires only 45 iterations to reach a relative resldua
about 100, and the unpreconditioned solver reduces this resinorm of 10°*°, while about 100 iterations are required for
ual only by three orders of magnitude within the first 100-iter SPAI and FSPAI respectively.
ations. Consequently, ILUT is most attractive in terms &f th
reduction of the number of required solver iterations.

Relative Residuals over Solver Execution Time
100

The picture changes completely when looking at the reduc-

tion of the residual over the solver execution time, cf. Rig.

Nlo preconld.
No precond.

TP ——
GPU ——
ILUT ----

The residual reduction rate of SPAI and FSPAI on CPU and SPAI, CPU -+
GPU are by a factor of three and ten higher than for ILUT FEEAA'.; 358 |

0.01

respectively. Interestingly, the unpreconditioned CPWeso
provides a similar residual reduction rate than SPAI and FS«

)

PAI for our test case. Consequently, we conclude that it mayz

sidu

FSPAI. GPU @

0.0001

still pay off to run a high number of iterations with an unpre- § 1e-06 , *?**ﬁﬁ : i

conditioned solver rather than using a serial precondition “‘** *

on GPUs. 1e-08 et S
Preconditioner setup times are depicted in Tab. 1. FSPAI ‘ ‘ ‘ e

leads to the shortest setup times, which are by a factor of six 1le-10 ' ' ' ' ' X

smaller than for ILUT. In particular, the setup time of ILUT 0 0> ! Solvelrf')l'ime 2 23 3

is larger than the setup and the solver execution time of FSgiqre 2. Comparison of the relative residual norms over
PAI. No further performance gain for the setup of FSPAI 0ny,e gicGstab execution time. The SPAI and FSPAI precondi-
the GPU rather than the CPU could be obtained, mostly begoners provide the fastest reduction of the residual viittet
cause the dynamic memory allocations needed for the fing| e 1LUT is clearly a factor of two slower than the CPU-

CPU-based assembly of the sparse Cholesky factor and ifs;seq solvers and a factor of ten slower than the GPU-based
transpose takes the majority of the execution time for e co ¢y er. Note that the ILUT preconditioner is applied on the

sidered test case. The setup phases of SPAI and FSPAI sipyy even if the solver is executed on the GPU, hence the
fer from a rather high memory footprint, resulting in 50€fol ~p(and the GPU lead to essentially identical timings.
and 15-fold memory requirements compared to ILUT respec-

tively. Nevertheless, in this case no splitting of the oltera
work load into chunks is necessary. time for the CPU case, while only one tenth of the total ex-
Comparing preconditioner setup times with solver iteratio ecution time is contributed by the solver cycles on the GPU.
times in Tab. 1 shows that the use of GPUs puts much mor&imilarly, setup times of FSPAI are one eight of the solver cy
emphasis on the preconditioner setup. Matrix-vector pctslu cle times for the CPU case, while they are almost of the same
and the vector operations in the solver phase can benefit muechagnitude for the GPU case. Consequently, no benchmark
more from GPU acceleration than the algorithms using dyincluding SPAI or FSPAI sparsity pattern updates is carries
namic memory allocations required in the setup phase. Faout, because this would only add to the setup time, which is
SPAI, solver cycle times are one quarter of the solver cyclalready identified as the bottleneck in the GPU case.

5. CONCLUSIONS [6] Khronos Group. OpenCL.
We identified SPAI and FSPAI as attactive black-box pre- http://ww. khr onos. or g/ opencl /.
conditioners for the use on massively parallel computing ar . .
chitectures such as GPUs. Even though the number of solvéf! MAGMA . library. Online:
iterations required to reach a certain relative residuatyp- http://icl.cs. utk. edu/ magma/
ically higher than for ILUT, overall execution times are re- [g] ViennaCL.ht t p: / / vi ennacl . sour cef or ge. net/ .
duced considerably for FSPAI due to the fully parallel ap-
plication within the iterative solver. Since the precormatier [9] A. Kallischko et al, Modified Sparse Approximate In-
setup phase cannot benefit from GPU acceleration to the same verses (MSPAI) for Parallel Preconditioning. PhD thesis.
extent as the solver iteration phase, it is increasinglyamp Technische Universitat Miinchen (2008).
tant to keep preconditioner setup times low, possibly at th
price of a higher number of iterative solver iterations. &r-p
ticular, our benchmark results suggest that pattern update
for SPAIl and FSPAI should better be avoided unless iterative

solvers fail to converge. . [11] M. M. Baskaran and R. Bordawekar, Optimizing Sparse
We have addressed a high memory footprint for (F)SPAI" “matrix-Vector Multiplication on GPUsIBM RC24704
by splitting the work load into chunks of sufficiently small (2008).

size. Despite the high memory requirements of SPAI, thé tota
solver execution time is still comparable to ILUT for ourttes [12] OpenMPht t p: // opennp. or g/ .

case. It is expected that SPAI can consequently be a go . .)
choice for linear systems where ILUT does not perform wellc.)[%] Boost C++ librariesht t p: // www. boost . or g/ .

TlO] N. Bell and M. Garland, Efficient Sparse Matrix-Vector
Multiplication on CUDA. NVIDIA Technical Report
NVR-2008-0042008).

[14] M. R. Hestenes and E. Stiefel, Methods of Con-
REFERENCES jugate Gradients for Solving Linear Systems.
[1] V. Saad,lterative Methods for Sparse Linear Systems, J. Res. Nat. Bur. Standzol. 49, no. 6 (1952).

Second EditionSIAM (2003). [15] T. Huckle, Factorized Sparse Approximate Inverses for

[2] U. Trottenbercet. al, Multigrid. Academic Press (2001). PreconditioningJ. Supercomputvol. 25, p. 109-117
2003).
[3] M. J. Grote and T. Huckle, Parallel Preconditioning ()
with Sparse Approximate InverseSIAM J. Sci. Comp. [16] I. Kaporin, New Convergence Results and Precondition-
vol. 18, no. 3, p. 838-853 (1997). ing Strategies for the Conjugate Gradient MethNd-
mer. Linear Algebra Applvol. 1, p. 179-210 (1994).
[4] D. Goddekeet al., Accelerating Double Precision FEM

Simulations with GPUsProc. ASIM(2005). [17] H. A.van der Vorst, Bi-CGSTAB: A Fast and Smoothly
o Converging Variant of Bi-CG for the Solution of Non-
[5] NVIDIA CUDA. http://ww. nvidi a. con . Symmetric Linear SystemS&IAM J. Sci. Stat. Compuit.

vol. 12, p. 631-644 (1992).

