
Sparse Approximate Inverse Preconditioners for IterativeSolvers on GPUs

Mykola Lukash1, Karl Rupp 1,2, Siegfried Selberherr1
1 Institute for Microelectronics, TU Wien

Gußhausstraße 27-29/E360, 1040 Wien, Austria
2 Institute for Analysis and Scientific Computing, TU Wien

Wiedner Hauptstraße 8-10/E101, 1040 Wien, Austria
nlukash@gmail.com, {rupp|selberherr}@iue.tuwien.ac.at

Abstract
For the solution of large systems of linear equations, iterative
solvers with preconditioners are typically employed. How-
ever, the design of preconditioners for the black-box case,in
which no additional information about the underlying prob-
lem is known, is very difficult. The most commonly em-
ployed method of incomplete LU factorizations is a serial al-
gorithm and thus not well suited for the massively parallel
computing architecture of GPUs. We investigate sparse ap-
proximate inverse preconditioners in this work, which show
a very high degree of parallelism. The preconditioner setup
is accomplished in a hybrid manner, where parts of the algo-
rithm which require dynamic memory allocations are carried
out on the CPU, while the GPU is used for the computation-
ally expensive factorizations. Our benchmark results demon-
strate that our implementations in ViennaCL are well suited
as a black-box preconditioner for multi- and many-core ar-
chitectures.

1. INTRODUCTION
Discretization schemes for partial differential equations

such as the Finite Difference, the Finite Element, or the Fi-
nite Volume scheme ultimately lead to the need for the solu-
tion of a large system of linear equations. Since the coupling
between the equations is usually rather weak, the system ma-
trix is very sparse, allowing for millions of unknowns on av-
erage workstations. For such huge systems, iterative solution
methods are typically employed, where the convergence rate
depends on the condition number of the iteration matrix. Con-
sequently, in practical applications it is of interest to keep the
condition number low, for which so-called preconditioners
are employed. Formally, one way of interpreting the action
of a preconditioner is to multiply the original system

Ax= b

with a matrixM to get

MAx= Mb

and to solve the modified system

Ãx= b̃ ,

whereÃ= MA andb̃= Mb. If M is in a certain sense a good
approximation to the inverse ofA, the iterative solution of the
modified system converges considerably faster.

Many different variants of preconditioners exist. Simple
preconditioners may modifyA and b directly, but typically
they act on the residualrk = Axk−b in thek-th iteratexk of
the solver. Therefore, the preconditioner matrixM is not set
up in an explicit form, but rather implicitly defined over the
action on the residual.

A lot of effort has been spent on the construction of precon-
ditioners for general linear systems. Among the most pop-
ular methods used today are incomplete LU factorizations
(ILU) [1], algebraic multigrid preconditioners (AMG) [2],
and sparse approximate inverses (SPAI) [3]. While the dif-
ferent flavors of ILU are used for many different classes of
matrices, the major downside of the method is its serial na-
ture. Block-ILU variants have been developed as a remedy,
but the price to pay is that more iterative solver iterationsare
necessary.

In recent years, graphics processing units (GPUs) are used
not only for graphics applications, but also for certain special
purpose computations, e.g. [4]. The most frequently used de-
velopment platform is CUDA [5] by NVIDIA, which is tay-
lored to products of a single vendor. In contrast, the open stan-
dard OpenCL maintained by the Khronos Group [6] provides
a unified interface to hardware from different vendors. In par-
ticular, it allows to program GPUs as well as CPUs using the
same language.

The massively parallel single-instruction-multiple-data
(SIMD) architecture of GPUs is well suited for stream pro-
cessing problems. However, the processing units must be pro-
vided with data in order to use them efficiently. This can be
achieved by loading data to on-chip memory, thus reducing
global memory accesses, and then operate on the fast on-chip
cache only. Such caching strategies have been successfully
employed for dense linear algebra operations as defined on
BLAS level 3 [7]. On the contrary, iterative solvers for sparse
systems have a higher emphasis on memory bandwidth due
to the use of operations defined on BLAS levels 1 and 2 only.

Our general purpose free open source linear algebra li-
brary ViennaCL provides high-level access to various itera-
tive solvers. In addition, it offers simple preconditioners like

a Jacobi preconditioner [1] with full GPU acceleration. The
ILU preconditioner provided with ViennaCL is due to its se-
rial nature currently always executed on the CPU, causing a
lot of data transfer overhead between CPU and GPU. To re-
move this bottleneck, this work presents the results obtained
from the implementation of two SPAI preconditioners: First,
a SPAI implementation as proposed by Grote and Huckle [3]
suitable for general matrices is considered, and second a fac-
tored SPAI (FSPAI) variant suitable for symmetric positive
definite matrices [9] is presented.

2. SPAI
First we recapitulate the most important concepts of SPAI.

In particular, the main advantages are as follows:

• SPAI is inherently parallel, because each column (or row
respectively) of the preconditioner matrixM can be pro-
cessed in parallel.

• SPAI can autonomously identify new entries for the
sparsity pattern of the preconditioner matrixM.

• The application of SPAI to the current residual in iter-
ative solvers reduces to a matrix-vector product, which
can be well parallelized [10, 11].

Therefore, both the setup of the preconditioner as well as the
application to the residual allow for a massively parallel exe-
cution model.

2.1. Static SPAI - Theoretical Background
The essence of the SPAI algorithm is to determine a sparse

matrixM which minimizes

‖AM− I‖2
F , (1)

where M has a prescribed non-zero pattern,I denotes the
identity matrix and‖ · ‖F denotes the Frobenius norm. It
should also be noted thatM recovers the inverse ofA, if no
restriction on the non-zero pattern ofM is imposed.

The parallel nature of SPAI can be readily seen when
rewriting (1) as

‖AM− I‖2
F =

n

∑
k=1

‖(AM− I)ek‖
2
2 =

n

∑
k=1

‖ Amk−ek ‖
2
2, (2)

wheremk denotes thek-th column ofM and analogouslyek

denotes thek-th column of the identity matrixI . Each sum-
mand in (2) represents an independent least-squares problem
for one columnmk of M. For the solution of each of the least-
squares problems, aQRdecomposition is employed.

Typical choices for the sparsity pattern ofM are a diagonal
pattern or the pattern ofA. Inspired by Neumann series and
similar to ILU preconditioners, the patterns ofA2 andA3 can

also be used, provided that the pattern of the matrix powers
can be computed efficiently. As outlined in the next section,
the possibility to dynamically update the non-zero patternof
M makes the choice of the initial pattern less crucial.

For a columnmk of M it is sufficient to consider the index
setJk for the non-zeros ofmk:

Jk =
{

j ∈ {1, . . . ,n} : mk(j) 6= 0
}

We denote the cardinality ofJk with q.
Similarly, for the matrix-vector productAmk only the

columns ofA with indices from the setJk may lead to non-
zero contributions. We denote withIk the set of non-zero rows
of the submatrix matrixA(.,Jk):

Ik =

{

i ∈ {1, . . . ,n} : ∑
j∈J

|ai j | 6= 0

}

.

Consequently, it is sufficient to consider the minimization
problem on the condensed sytemA(Ik,Jk). We introduce the
following abbreviations:

Âk = A(Ik,Jk) ∈ Rp×q

m̂k = mk(J) ∈ Rq×1

êk = ek(I) ∈ Rp×1

The least-squares problem can then be written in the compact
form

min
m̂k

‖Âm̂k− êk‖2, k= 1, . . . ,n

Usually, the matrixÂ is dense and in typical matrices obtained
from linear finite element discretizations the dimensions of
the blocks are in the rangep= 20, . . . ,40 andq= 10, . . . ,20,
which is small enough for GPU caches. IfA is a regular ma-
trix, Âk has full rankq, and we can useQRdecomposition for
solving the least-squares problems. The non-zero entries of
mk are then computed as

ĉ= QT êk ,

m̂k = R(Q ,Q)−1ĉ(Q) , Q = {1, . . . ,q}

The matrix-vector product withQT is carried out implicitly
using the chain multiplication of Householder reflections de-
termined by the Householder vectors stored in the lower-
triangular part of the matrixR.

2.2. Dynamic SPAI
The ability of dynamically updating the sparsity pattern of

the preconditioner matrixM adds considerably to the attrac-
tiveness of the method. For a given preconditionerM with

k-th columnmk, the contribution to the residual is found from
(2) as

rk = Amk−ek.

If r j = 0,∀ j = 1, . . . ,n, then clearlyM =A−1. However, since
the inverse of a sparse matrix is typically dense, the residual
vector is non-zero in most cases. We denote the set of indices
of non-zero entries ofrk by

Lk =
{

l : r l 6= 0
}

.

For eachl ∈ Lk the set of column-indices for the non-zero
entries in thel -th row ofA is

Nl =
{

j : al j 6= 0
}

.

Thus, only indices inNl are new candidates for the new non-
zero pattern inmk for the elimination of the respective non-
zero value inrk. The union of all setsNl for all l ∈ Lk is
the set of indices that can reduce the Euclidean norm of the
residual vector:

J̃ =
⋃

l∈L

Nl .

Since the residual norm‖rk‖2 must be reduced, we note
that new entries are obtained by a solution of the one-
dimensional minimization problem:

min
µj

‖A(mk+µjej)−ek‖= min
µj

‖rk+µjAej‖2

Denoting thej-th column ofA with a j , there holdsAej = a j

and we obtain the term

min
µj

‖rk+µja j‖
2
2 ⇔ ‖rk‖

2
2+2µj〈rk,a j〉+µ2

j‖a j‖
2
2 = 0.

The minimizer is

µj =−
〈rk,a j〉

‖a j‖2
2

.

For each of the potential new indexs fromN j to be added
to the index setJk, one consequently computes the tentative
new residuals

‖rk‖
2
2−

〈rk,a j〉
2

‖a j‖2
2

,

for which it suffices to consider

ρs =
〈rk,a j〉

2

‖a j‖2
2

as a criterion for acceptance of the new index. There are sev-
eral strategies on the selection of the new indices possible:

Either one takes only indices with the largest values ofρs,
or indices are selected based on a specified threshold. As a
consequence, the setI is enlarged byĨ , where Ĩ is set of
non-zero rows inA(.,J ∪ J̃), resulting in the extended Least
Squares problem

A= A(I ∪ Ĩ ,J ∪ J̃) ∈R(p+ p̃)×(q+q̃)

wherep̃= |Ĩ | andq̃= |J̃ |. The new matrix̃A can be factorized
as

Ã=

(

Â A(I , J̃)
0 A(Ĩ , J̃)

)

=

(

Q 0
0 I p̃

)





R Q1
TA(I , J̃)

0 Q2
TA(I , J̃)

0 A(Ĩ , J̃)





=

(

Q 0
0 I p̃

)(

R B1

0 B2

)

,

which allows for a reuse of the compuations from the previ-
ous QR factorization step. Only a QR factorization of the new
blockB2 ∈ Rp+ p̃−q×q̃ is required. In order to keep the size of
B2 and thus the computational effort under control, a practical
guideline is to limit the number of new entries by the number
of non-zero entries in the initial columnmk.

2.3. SPAI - Implementation
Since the action of the SPAI preconditioner on the residual

is a sparse matrix-vector multiplication, which has already
been studied extensively [10, 11], it is sufficient to focus the
discussion of implementation details on the preconditioner
setup phase. Due to the high degree of parallelism of SPAI,
every column ofM can be computed independently during
the setup. Therefore, purely CPU-based implementations of
SPAI are easily obtained using compiler-based approaches
such as OpenMP [12] or library-based threading-approaches
such as the Boost.thread library [13]. A direct implementation
of SPAI on GPUs, however, is hampered by the observation
that the cardinality of the index setsIk andJk cannot be ob-
tained a-priori. Since dynamic memory allocation on GPUs
using OpenCL is not possible by now, expensive scans for
the required memory would be necessary. Therefore, the in-
dex setsIk andJk are set up on the CPU and then copied to
GPU. After that, the matricesA(Ik,Jk) are set up.

The massively parallel architecture of GPUs suggests to
solve all Least Squares problems simultaneously. However,
overall memory requirements induced by the Least Squares
problems may soon exceed the limited GPU RAM, thus only
a subset can be processed at the same time. In our imple-
mentation the overall memory requirements on the GPU are
computed from the size of the index setsIk andJk. If GPU
RAM turns out to be too small, the work load is split into
two chunks of equal size, which are processed one after an-
other on the GPU. This strategy is then applied in a recursive
manner to each of the two chunks.

Due to the high degree of parallelism still present in each
of the chunks, the full Least Squares problem including the
QR factorizations of the blocksA(Ik,Jk) is carried out on the
GPU. For the better utilization of the SIMD architecture of
GPUs, one thread per column of each block is used, so that
each work group factors one SPAI block. After that, results
are copied back to CPU RAM and the residual vector is com-
puted. If the Euclidean norm of the residual is higher than a
prescribed tolerance, sparsity pattern updates are carried out
as described in the previous section.

To summarize, our implementation of SPAI for a given ini-
tial sparsity pattern is as follows:

1. Determine the index setsIk andJk for eachk= 1, . . . ,n.

2. Compute the memory consumption of then Least
Squares problems and split the work load into chunks.

3. For each chunk, assemble the matricesÂk and compute
the solution of the Least Squares problems using QR fac-
torization.

4. Copy the results back to CPU RAM and compute the
residuals.

5. If further pattern updates are required, compute the aug-
mented index sets̃I andJ̃ , otherwise go to 8.

6. Assemble the new entries in the augmented Least
Squares matrix and compute the solution reusing pre-
vious QR factorizations.

7. Go back to 4.

8. Write all entries computed in the chunk toM.

3. FSPAI
SPAI only requires regularity of the input matrixA. How-

ever, there is a price to pay for this universality: First, due
to the independent computation of the entries in the precon-
ditioner matrixM, it may happen thatM does not have full
rank. While this is unlikely to happen in practise because of
round-off errors, it may still lead to poor convergence rates
of iterative solvers. Moreover, if the system matrixA is sym-
metric,M will be non-symmetric in general, hence more ex-
pensive iterative solvers for non-symmetric matrices haveto
be employed.

In many cases the system matrixA is symmetric and posi-
tive definite, for which the conjugate gradient algorithm [14]
can be used as an iterative solver. Clearly, it is desireableto
preserve symmetry and positive definiteness of the system
when using a preconditioner. For this purpose, a variant of
SPAI based on the Cholesky factorizationA = LALT

A of the
system matrix has been developed [15], which is commonly
referred to as factored sparse approximate inverse (FSPAI)
preconditioner.

3.1. Static FSPAI
Similar to SPAI, we first consider FSPAI for a static non-

zero pattern of the preconditioner. In this section we focuson
the description of FSPAI for a given pattern. Again, typical
initial patterns forM like that of A, A2 or A3 often provide
good results even without additional pattern update step.

For a symmetric positive definite system matrixA there ex-
ists the Cholesky factorizationA= LALT

A , whereLA is the un-
known Cholesky factor. Consequently, we seek for a matrix
M such that

M = LLT ≈ A−1
! L ≈ L−1

A

L can be obtained via Frobenius norm minimization [9]

min
L

‖LAL− I‖F

and then normalized such that diag(LTAL) = I . As in SPAI,
this initially sparse problem can be reduced to multiple dense
problems. In addition, the non-zero pattern ofL is restricted
to the lower triangular part. As suggested in [16], the Frobe-
nius norm minimization is replaced by the minimization of
the Kaporin functional

min
L

1
ntrace(LTAL)

det(LTAL)
1
n

, (3)

which allows for a more compact form of the minimization
algorithm.

Let us denote thek-th column ofL by lk, and the allowed
non-zero pattern inlk by Jk, with J̃k = Jk�

{

k
}

. Then

lk(J̃k) =−lkkA(J̃k, J̃k)
−1A(J̃k,k) ,

with

l2kk =
1

A(k,k)−A(J̃k,k)TA(J̃k, J̃k)−1A(J̃k,k)
.

Consequently, the algorithm for the computation of thek-th
column ofL can be compactly written as:

yk = A(J̃k, J̃k)
−1A(J̃k,k) (4)

lkk =
1

√

A(k,k)−A(J̃k,k)Tyk

(5)

lk(J̃k) =−lkkyk (6)

As for SPAI, the columns ofL can be computed in parallel.
The linear system (4) is solved by a Cholesky factorization

of A(J̃k, J̃k). Similar to the QR-factorization for the SPAI al-
gorithm, the Cholesky decomposition is the computationally
expensive part of FSPAI, since the complexity rises with the
third power of the block matrix sizes.

3.2. Dynamic FSPAI
In analogy to SPAI, an automatic non-zero pattern update is

available for FSPAI [15]. Again, the key is a one-dimensional
minimization problem for the update of the Cholesky factor.
Minimization of the updated Kaporin functional

min
1
ntrace((LT +λ jekeT

j)A(L+λ jejeT
k))

det((LT +λ jekeT
j)A(L+λ jejeT

k))
1
n

with respect to the Cholesky factor perturbed in thek-th col-
umn with lk+λ jej leads to

λ j =−
A(j,Jk)lk(Jk)

A(j, j)
.

The difference to the original Kaporin functional (3) is

1
n

det(A)
1
n (L(1,1) · · ·L(n,n))

2
n

· τ j ,

hence the main criterion for adding new entries to the sparsity
pattern is the factor

τ j =
(A(j,Jk)lk(Jk))

2

A(j, j)
.

The larger the valueτ j is, the more the Kaporin functional is
reduced, if thej-th entry will be added to the non-zero pattern
of Jk.

Similar to pattern updates with SPAI, several update strate-
gies are possible [15]. Again, a typical choice is to restrict
the maximum number of new indices per update to the ini-
tial number of non-zero entries in the respective column of
L. Let J̃1 denote a given index set, andJ̃2 the updated index
set ordered such that the first elements inJ̃2 are given by the
entries inJ̃1. Writing A1 := A(J̃1, J̃1) andA2 := A(J̃2, J̃2), the
Cholesky factorization ofA2 can be obtained from that ofA1

as

A2 =

(

A1 B
BT C

)

=

(

L1 0
U L2

)(

LT
1 UT

0 LT
2

)

=

(

L1LT
1 L1UT

ULT
1 L2LT

2 +UUT

)

,

where the matricesB andC arise due to the augmented index
J̃2. Now, U can be obtained from the equationB = L1UT .
Then, since

C=UUT +L2LT
2

⇔ L2LT
2 =C−UUT

,

it is sufficient to compute the Cholesky factorization of the
matrixC−UUT only. Therefore, the computational effort in-
creases only moderately with the total number of entries com-
pared to computing a full Cholesky factorization at each up-
date step.

3.3. FSPAI - Implementation
The implementation of FSPAI is similar to SPAI. In par-

ticular, the computation of the index setsJk is carried out
on the CPU in parallel using OpenMP. Then the index sets
Jk are copied to GPU RAM and the blocksA(J̃k, J̃k) are set
up. A Cholesky factorization of each block on the GPU us-
ing OpenCL is computed for all blocks using one thread per
column of each block. Again, the typical sizes of the block
matrices allow to compute the factorization in GPU cache.
After that, the entries ofL are obtained according to (4)-(6).

4. BENCHMARK RESULTS
Our implementation of SPAI and FSPAI are compared

with the purely CPU-based ILU preconditioner with thresh-
old (ILUT) included in ViennaCL 1.1.2. The tests are car-
ried out on a machine equipped with an Intel Core 2 Quad
Q9550 and a NVIDIA GTX 580 GPU running a 64-bit Fun-
too Linux. For better comparison, all preconditioners are used
within a BiCGStab [17] solver, even though FSPAI would be
used with a conjugate gradient (CG) solver in practice. Solver
execution times for FSPAI within CG are typically by a factor
of roughly two smaller than for BiCGStab, while setup times
and the number of solver iterations are unchanged.

The iterative solvers as well as the preconditioners use the
same unified solver interface of ViennaCL. For example, the
pure BiCGStab for a system matrixA, a load vectorb and a
result vectorx is called by

x = solve(A, b, bicgstab_tag());

Similarly, the preconditioners with default parameters are em-
ployed using

ilut_precond<MatType> ilut(A, ilut_tag());
x = solve(A, b, bicgstab_tag(), ilut);

spai_precond<MatType> spai(A, spai_tag());
x = solve(A, b, bicgstab_tag(), spai);

fspai_precond<MatType> fspai(A, fspai_tag());
x = solve(A, b, bicgstab_tag(), fspai);

whereMatType denotes a compatible generic matrix type
(currently from ViennaCL or Boost.UBLAS). In particular,
this allows for a fair comparison of the individual benchmarks
results, since the same solver implementations for purely
CPU-based as well as GPU-based types is used.

As a test case, we consider a system matrix arising from
the discretization of a time-dependent convection-diffusion
equation in three dimensions using linear finite elements
and a backward Euler scheme. Each of the 24202 rows and
columns of the system matrix consists of 14 entries on aver-
age. No dynamic updates of the preconditioner are employed,
because the initial pattern of the system matrix provides good

Setup (sec) Solver (sec) Memory (MB)

ILUT 1.3 2.9 3.6

SPAI, CPU 5.5 1.5 175

SPAI, GPU 2.9 0.3 175

FSPAI, CPU 0.2 1.6 53

FSPAI, GPU 0.2 0.3 53
Table 1. Comparison of execution times for the precondi-
tioner setup phase, the iterative solver phase and memory
footprint of the individual preconditioners.

results. The norms of the relative residuals for a solver with-
out preconditioner, with ILUT, with SPAI and FSPAI using
the nonzero pattern of the system matrix are compared in
Fig. 1. ILUT requires only 45 iterations to reduce the initial
residual by ten orders of magnitude, SPAI and FSPAI require
about 100, and the unpreconditioned solver reduces the resid-
ual only by three orders of magnitude within the first 100 iter-
ations. Consequently, ILUT is most attractive in terms of the
reduction of the number of required solver iterations.

The picture changes completely when looking at the reduc-
tion of the residual over the solver execution time, cf. Fig.2.
The residual reduction rate of SPAI and FSPAI on CPU and
GPU are by a factor of three and ten higher than for ILUT
respectively. Interestingly, the unpreconditioned CPU solver
provides a similar residual reduction rate than SPAI and FS-
PAI for our test case. Consequently, we conclude that it may
still pay off to run a high number of iterations with an unpre-
conditioned solver rather than using a serial preconditioner
on GPUs.

Preconditioner setup times are depicted in Tab. 1. FSPAI
leads to the shortest setup times, which are by a factor of six
smaller than for ILUT. In particular, the setup time of ILUT
is larger than the setup and the solver execution time of FS-
PAI. No further performance gain for the setup of FSPAI on
the GPU rather than the CPU could be obtained, mostly be-
cause the dynamic memory allocations needed for the final
CPU-based assembly of the sparse Cholesky factor and its
transpose takes the majority of the execution time for the con-
sidered test case. The setup phases of SPAI and FSPAI suf-
fer from a rather high memory footprint, resulting in 50-fold
and 15-fold memory requirements compared to ILUT respec-
tively. Nevertheless, in this case no splitting of the overall
work load into chunks is necessary.

Comparing preconditioner setup times with solver iteration
times in Tab. 1 shows that the use of GPUs puts much more
emphasis on the preconditioner setup. Matrix-vector products
and the vector operations in the solver phase can benefit much
more from GPU acceleration than the algorithms using dy-
namic memory allocations required in the setup phase. For
SPAI, solver cycle times are one quarter of the solver cycle

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 10 20 30 40 50 60 70 80 90 100

R
el

at
iv

e
R

es
id

ua
l

Iteration

Relative Residuals over Solver Iterations

No precond.
ILUT
SPAI

FSPAI

Figure 1. Comparison of relative residual norms over the
BiCGStab solver iterations for the different preconditioners.
ILUT requires only 45 iterations to reach a relative residual
norm of 10−10, while about 100 iterations are required for
SPAI and FSPAI respectively.

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 0.5 1 1.5 2 2.5 3

R
el

at
iv

e
R

es
id

ua
l

Solver Time

Relative Residuals over Solver Execution Time

No precond. CPU
No precond. GPU

ILUT
SPAI, CPU
SPAI, GPU

FSPAI, CPU
FSPAI, GPU

Figure 2. Comparison of the relative residual norms over
the BiCGStab execution time. The SPAI and FSPAI precondi-
tioners provide the fastest reduction of the residual with time,
while ILUT is clearly a factor of two slower than the CPU-
based solvers and a factor of ten slower than the GPU-based
solver. Note that the ILUT preconditioner is applied on the
CPU even if the solver is executed on the GPU, hence the
CPU and the GPU lead to essentially identical timings.

time for the CPU case, while only one tenth of the total ex-
ecution time is contributed by the solver cycles on the GPU.
Similarly, setup times of FSPAI are one eight of the solver cy-
cle times for the CPU case, while they are almost of the same
magnitude for the GPU case. Consequently, no benchmark
including SPAI or FSPAI sparsity pattern updates is carries
out, because this would only add to the setup time, which is
already identified as the bottleneck in the GPU case.

5. CONCLUSIONS
We identified SPAI and FSPAI as attactive black-box pre-

conditioners for the use on massively parallel computing ar-
chitectures such as GPUs. Even though the number of solver
iterations required to reach a certain relative residual are typ-
ically higher than for ILUT, overall execution times are re-
duced considerably for FSPAI due to the fully parallel ap-
plication within the iterative solver. Since the preconditioner
setup phase cannot benefit from GPU acceleration to the same
extent as the solver iteration phase, it is increasingly impor-
tant to keep preconditioner setup times low, possibly at the
price of a higher number of iterative solver iterations. In par-
ticular, our benchmark results suggest that pattern updates
for SPAI and FSPAI should better be avoided unless iterative
solvers fail to converge.

We have addressed a high memory footprint for (F)SPAI
by splitting the work load into chunks of sufficiently small
size. Despite the high memory requirements of SPAI, the total
solver execution time is still comparable to ILUT for our test
case. It is expected that SPAI can consequently be a good
choice for linear systems where ILUT does not perform well.

REFERENCES
[1] Y. Saad,Iterative Methods for Sparse Linear Systems,

Second Edition. SIAM (2003).

[2] U. Trottenberget. al., Multigrid. Academic Press (2001).

[3] M. J. Grote and T. Huckle, Parallel Preconditioning
with Sparse Approximate Inverses.SIAM J. Sci. Comp.,
vol. 18, no. 3, p. 838–853 (1997).

[4] D. Göddekeet al., Accelerating Double Precision FEM
Simulations with GPUs.Proc. ASIM(2005).

[5] NVIDIA CUDA. http://www.nvidia.com/.

[6] Khronos Group. OpenCL.
http://www.khronos.org/opencl/.

[7] MAGMA library. Online:
http://icl.cs.utk.edu/magma/

[8] ViennaCL.http://viennacl.sourceforge.net/.

[9] A. Kallischko et al., Modified Sparse Approximate In-
verses (MSPAI) for Parallel Preconditioning. PhD thesis.
Technische Universität München (2008).

[10] N. Bell and M. Garland, Efficient Sparse Matrix-Vector
Multiplication on CUDA. NVIDIA Technical Report
NVR-2008-004(2008).

[11] M. M. Baskaran and R. Bordawekar, Optimizing Sparse
Matrix-Vector Multiplication on GPUs.IBM RC24704
(2008).

[12] OpenMP.http://openmp.org/.

[13] Boost C++ libraries.http://www.boost.org/.

[14] M. R. Hestenes and E. Stiefel, Methods of Con-
jugate Gradients for Solving Linear Systems.
J. Res. Nat. Bur. Stand., vol. 49, no. 6 (1952).

[15] T. Huckle, Factorized Sparse Approximate Inverses for
Preconditioning.J. Supercomput., vol. 25, p. 109–117
(2003).

[16] I. Kaporin, New Convergence Results and Precondition-
ing Strategies for the Conjugate Gradient Method.Nu-
mer. Linear Algebra Appl., vol. 1, p. 179–210 (1994).

[17] H. A. van der Vorst, Bi-CGSTAB: A Fast and Smoothly
Converging Variant of Bi-CG for the Solution of Non-
Symmetric Linear Systems.SIAM J. Sci. Stat. Comput.,
vol. 12, p. 631–644 (1992).

