A Comparison of Algebraic Multigrid Preconditioners using
Graphics Processing Units and Multi-Core Central Processig Units

Markus Wagner?, Karl Rupp 2, Josef Weinbub}
L Institute for Microelectronics, TU Wien
GuRhausstralRe 27-29/E360, 1040 Wien, Austria
2 Institute for Analysis and Scientific Computing, TU Wien
Wiedner Hauptstral3e 8-10/E101, 1040 Wien, Austria
wagner . m01@ node. at, {r upp| wei nbub}@ ue. t uwi en. ac. at

Keywords: Algebraic Multigrid, High Performance Com- eral systems of linear equations and is often the method of

puting, OpenCL, ViennaCL choice whenever unstructured grids on complicated domains
are employed [2].
Abstract Several algebraic multigrid codes are available, e.g. the

The influence of multi-core central processing units andC-based library Hypre [3] for a distributed memory envi-
graphics processing units on several algebraic multigridonment, PyAMG [4] providing a convenient Python inter-
methods is investigated in this work. Different performanc face, and the commercial SAMG [5] library. With the shift to
metrics traditionally employed for algebraic multigriceae- ~ multi-core central processing units (CPUs) and general pur
considered and reevaluated on these novel computing archpose computations on graphics processing units (GPUSs), par
tectures. Our benchmark results show that with the use ddllelization strategies developed for distributed mensys-
graphics processing units for the solver phase, it is ctuciatems [6, 7] can be supplemented with parallelization strate
to keep algebraic multigrid setup low, even if this leads to agies for shared memory systems in each node in order to
higher number of solver iterations. fully exploit the parallelism provided by modern CPUs and

GPUs. The fine-grained parallelism of GPUs is particularly

challenging and has been successfully utilized in the atnte
1. INTRODUCTION of aggregation-based AMG [8].

Many physical processes are described by partial differ- For programming GPUs, basically two approaches are
ential equations, for which many popular numerical solutio in wide-spread use in the scientific community: The Com-
approaches such as the finite element method lead to larggite Unified Device Architecture (CUDA) from NVIDIA [9],
sparse systems of linear equations. Ideally, the compui@ti which is a vendor-specific environment for NVIDIA hard-
effort for the solution of these systems depends linearthen ware, and the Open Computing Language (OpenCL) [10],
number of unknowns. While direct methods or unprecondiwhich is an open industry standard for program execution
tioned iterative solvers typically show sub-optimal coexl across heterogeneous platforms. Even though both the CUDA
ity [1], multigrid methods are able to provide such an optima and the OpenCL language are derived from the C program-
complexity for certain classes of problems [2]. ming language, they require to learn a new language and to

Multigrid methods are based on the observation that reget acquainted with the details of the underlying hardware.
laxation schemes show a fast reduction of oscillatory comThis is certainly not desirable from an abstraction point of
ponents in the algebraic error. After a few relaxation stepsview, for which high-level wrapper libraries such as MAGMA
a smooth error is obtained, for which a good correction carj11] and Cusp [12] using CUDA, and ViennaCL [13] using
be computed on a coarser grid. This idea is then applied reé@penCL are available.
cursively for the solution of the system for the coarse-grid In this work we consider the implementation of a family
correction. As soon as a reasonably small system is obtainedf AMG methods to be used both on multi-core CPUs and
it is solved exactly by direct methods. GPUs. Since many different variants of AMG have been pro-

The nested grid hierarchy used within multigrid methodsposed, the focus in this work is on a comparison of perfor-
can be set up in two ways. In geometric multigrid methods, anance and on a reevaluation of performance metrics using
nested grid hierarchy is used. Typically, structured gacs multi-core CPUs as well as GPUs. First, the basic compo-
employed for this purpose, because it simplifies the transnents of AMG are introduced and a comparison of different
fer operations between the grid levels. In algebraic muttig AMG approaches is given in Sec. 2. Performance metrics for
(AMG) methods, the coarse grid is determined in a purely alAMG are defined and discussed in Sec. 3. Selected AMG
gebraic way from the entries in the system matrix only. Con-variants are compared with respect to these metrics in Sec. 4
sequently, AMG can be applied in a black-box manner to genFinally, a conclusion is drawn in Sec. 5.

2. AMG COMPONENTS In principle, any parallel solver or preconditioner can be
Consider the linear systefx = b, whereA ¢ R™"is the used as a smoother. Good smoothing properties for sparse ap-
system matrix with entries; j. The entriesq of x are in the ~ proximate inverses were reported in [15], while incomplete
following associated with a set of poins= {1,2,...,n} of LU factorizations are discussed in [2] and recently aceeler
an algebraic grid. Central to any multigrid method is the-con ated by GPUs in [16].
cept of asmooth error ewhich is only slowly reduced by re-
laxation schemes and consequently a coarse-grid comdstio 2.2. Coarsening
employed. This is achieved by solving the residual equation hile the notion of a coarse grid is inherently figurative for
Ae=r on a coarser grid, where the residual vector is giveryeometric multigrid, different approaches for the cortian
by r = Ax—b. The computed correction is then transferredof a coarse grid2**+! from the fine gridQy in the context of
back to the fine grid to correct the fine-grid approximationaigebraic multigrid exist. An overview of different coargéd
X< X+e€ generation strategies is given in the following, where tine e
In the following a brief discussion of the basic componentsphasis is on the coarsening methods used for the benchmarks
of an AMG method are given. First, algorithms for smoothingin Sec. 4. Common to all approaches is the notion of coarse
the error (so-calleémootherpare discussed, then different points C-points), which are included iR as well asQk+1,
coarsening strategies are presented, and finally tranpfer oand fine pointsg-points), which are ifQ¥, but not inQ**1.
erators between grids are considered. For additionalldetai

about AMG methods we refer to the literature [2, 14]. 22.1. Classical Coarsening

The traditional coarsening algorithm is usually called RS

2.1. Smoother (Ruge-Stiiben) approach [17]. This approach relies on the

The efficiency of multigrid methods strongly depends onconcept ofstrong influenceof a point j (with unknownx;)
the smoother. A good smoother strongly reduces the oscilen a point (with unknownx;) by means of the system matrix
latory error components, such that the remaining smooth ecoupling coefficiens; ;. A pointi is strongly influenced by a
ror can be well approximated by coarser grids and correctegoint j if
there. First AMG methods relied on the Gauss-Seidel method
due to its good smoothing properties. However, the main —aj = enijg)(*ai,k) 1)
drawback of the Gauss-Seidel method is its sequential@atur
which is particularly a concern on GPUs. Related to Gausswith a strength threshold parametex:® < 1. Note that this
Seidel is the Jacobi algorithm, possibly equipped with an addefinition was originally motivated by the assumption tAat
ditional relaxation factow. Good values for the relaxation is a symmetriéV-matrix [1], yet it can be formally applied to
parametew are problem-specific and may even depend ommore general matrices. The classical RS-approach attémpts
the respective level in the multigrid hierarchy. Neveréiss| fulfill the following two conditions:
a value ofw = 2/3 is often used in practice and can even be o) S
shown to be optimal for the Poisson equation [2]. » (C1)Each poinyj influencing arF-pointi is either &C-

For the remainder of this work, the damped Jacobi algo- ~ Pint or strongly depends onGpoint which strongly
rithm will be used. Nevertheless, other parallel smootbgrs influences.
ist, of which the most popular are as follows: Block-based
smoothers such as block-Gauss-Seidel can be used in a dis-
tributed memory environment [1], yet they show scaling is-
sues [6]. Similarly, multicoloring approaches can be ubet,
have been reported to be inefficient, since often too many col
ors are generated particularly on coarser levels. Thisrim tu The first condition aims at ensuring interpolation quality,
results in too many idle processors, since not enough worlghile the second condition aims at restricting the size ef th
load is available for all processors then [6]. coarse grid. Since it is in general impossible to fulfill both

A scalable approach is the use of polynomial smoothers;onditions, the second condition is only used as a guideline
where motivated by Neumann series a polynomial of the syswhile the first condition is enforced in order to ensure derta
tem matrix is used as an approximation of its inverse. For thénterpolation properties.
application in a multigrid context, error reduction proipes RS coarsening is achieved in a two-pass algorithm and
need to be complementary to the coarse grid correction. Farorks very well for many applications, yet the main draw-
this purpose, certain information about the eigenvalugsef back of the algorithm is its sequential nature of the second
system matrix needs to be available, which can be an expemass. A parallel variant of RS thus is to carry out only thé firs
sive task. pass. By replacin¢C1)with

e (C2) The C-points should be a maximal independent
subset of all points, i.e. no tw@-points are connected
to each other, and if anoth€point is added, indepen-
dence is lost.

e (CY) EachF-pointi needs to strongly depend on atleast An interpolation of theF-pointi is given by
oneC-point,
8=y Wje, (3)
the computational effort can be reduced, since @g®ints i€Ci
are generated, .Wh'le typically a smaller convergence sate IWhereCi denotes the set of coarse points influengirfgince
obtained. Allowing for even less coarse points leads to ag- . .
. . . . classical AMG assumes an algebraically smooth eAer
gressive coarsening, for which we refer to [2] for detalils. - . . : :
. T) = Au— f =~ 0 is required. Thus, thieth equation becomes
A parallel variant of RS coarsening initially designed for
distributed memory architectures is RS0-coarsening, lwhic a6+ % a6 =0, (4)
relies on a block decompoasition of the system ma#risuch ' N
that e_ach processor works on one diagonal block only. Slnc\?vhereNi denotes the neighborhood of the pdirite. the col-
RSO ignores off-diagonal entries completely, worse conver oo R .
) . C umn indices of all nonzero entries in rawn the following,
gence is to be expected. This drawback is mitigated by RS3-ifferent choices for the weights ; are discussed, leading to
coarsening, which adds a third pass to RSO in order to adg 9Nt j : 9

. . . ifferent interpolation operators. Since proper integtioh
additional coarse points from the set of points at processor : L
i . operators also depend on the underlying coarse grid, inter-
boundaries to improve convergence.

Other strategies for distributed memory environments angolanon strategies for RS-type coarsenings and aggeegati

; : ased coarsenings are discussed separately.
CLJP coarsening, PMIS and HMIS’ which are all basgd °" In order to keep computational effort low, interpolation
parallel independent set algorithms [6]. These strategies truncation can be employed. All interpolation weights be-
not considered in our comparison, since they are mostly dq— i

signed to resolve problems of RSO and RS3 coarsening i & relative threshold o are replaced by zero, and other

distributed memory settings, while the focus of this work i onzero weights are modified such that consistency of the in-

. . terpolation is preserved. This results in a sparser matttixea
on a comparison on a single shared memory system. . .
coarser level, reducing the subsequent computationateffo

2'2'.2' Aggregation Coarsening N . 2.3.1. RS-type Interpolation
A different approach to coarsening is aggregation-based L
; ; . . The interpolation described in [17], termeléssical inter-
coarsening, which uses a different concept of influence

. . . : polationin the following, is based on dividing the neighbor-
;}[lrength. Here, matrix entries are only considered if thuby f hoodN; of a pointi into the set of coarse poir s, strongly in-

fluencing neighborB® and weakly influencing neighbofs".

EYEX: /|ai’iaj’j| .) With condition (C1) one obtains for the interpolation wetgh
A single aggregate consists of a root paiand all pointg for Wi = a+ kK j . (5)

which g j fulfills (2). Similar to RS-type coarsening, this ap-

proach consists of two phases: In a first pass, new root points

are picked if they are not adjacent to any existing aggregatéNote that this formula fails whenever condition (C1) is vio-

Remaining unaggregated points are either integrated Into alated.

ready existing aggregates or used to form new aggregates. A simpler expression for the weights j is direct interpo-
Coarsening by aggregation is typically faster than RS-typédation, which can also be used if (C1) is violated:

coarsening. Overall computational effort, however, alse d

B aii+ ZkeFiW a k ' KEFS 2 meC; Sm

pends on the interpolation used, which will be described.nex Wij=— <M) & (6)
' Ylec @il / @i
2.3. Interpolation In general, direct interpolation leads to worse convergenc

Given a fine gridQX and a coarse gri@kt?, transfer oper- rates than classical interpolation.
ators between the two grids need to be defined. The transfer More information than for classical and direct interpola-
from the fine grid to the coarse grid is commonly calfed tion is used forstandard interpolationwhich uses an ex-
striction, while the transfer from the coarse grid to the fine tended neighborhood, but is otherwise similar to direatrint
grid is referred to amterpolationor prolongation In order polation. Multipass interpolation is used for coarsening-p
to preserve an eventual symmetry of the initial system maeedures such as aggressive coarsening, where condition (C1
trix also on coarser levels, the restriction matrix is comiyio is not fulfilled, thus leading t& -points without neighboring
chosen to be the transpose of the interpolation matrix.lHisrt C-point. It uses direct interpolation for alf-points with a
reason, it is sufficient to deal with interpolation in thelé@l- neighboringC-point, otherwise standard interpolation is em-
ing. ployed.

2.3.2. Interpolation for Aggregation levels small and thus reduce the overall computational

In an aggregation-based AMG method, all points in an ag- effort.
gregate are identified with the same value. Consequentjy,
is equal to one ifj is the root node of the aggregate, and
zero otherwise. The advantage of this interpolation is ithat
is simple to implement and very fast. However, as only one
C-point is used for the interpolation, the approximationfis o
ten worse compared to other approaches, leading to smaller
convergence rates.

Smoothed aggregation employs an additional smoothing
step such that a broader interpolation base consistinglof va
ues also from other aggregates is used. This leads to ad—.
ditional computational effort than for standard aggreyati
based AMG, but typically results in better convergencestate
For further details we refer to [18].

e Number of Solver Iterations. The required number of
iterations is a common figure of merit for AMG, either
used as preconditioner or as standalone solver. As of-
ten reported in the literature and also confirmed by the
benchmark results in Sec. 4., only a low number of iter-
ations are commonly required for AMG. Thus, a single
additional iteration leads to an increased execution time
of about 10 percent for the solver phase.

Operator Complexity. Operator complexity is defined
as the ratio of the sum of all entries on all levklsom-
pared to the number of entries of the initial system ma-
trix A on the finest level. In addition to the stencil size,
this measure also takes the number of points at each level
3. AMG METRICS into account.

The execution time of an AMG solver depends to a cer-
tain extent on the implementation and the underlying hard- ® Maximum Stencil Size.While geometric multigrid pre-
ware. In order to compare different AMG methods not only serves the average stencil size of the system matrix on all
with respect to execution time, but also independent of the ~ coarse levels, this is not necessarily the case for AMG.
implementation and hardware, several metrics employed in ~ Therefore, matriced® on coarser levels become denser,

the AMG literature are introduced in this section. However, leading to larger sets of neighboring nodes on average
before introducing the individual metrics, the computaib and thus increasing computational effort. Therefore, a
effort of the AMG setup phase is analyzed. This effort is ~ Smaller maximum stencil size leads to less computa-
typically dominant when compared to the application of re- tional effortin each solver cycle.

striction and interpolation operators during the actuhltion

process. 4. BENCHMARK RESULTS

After the selection of a coarsening procedure, for which the The following AMG methods are compared in the fol-
computational effort was already |nd|cate(|:(1 in Sec. 2., € I 5 ying: Classical interpolation used with RS coarsening
striction and_prolongatlonloperatd.% andP need to be set (5 (|assig, direct interpolation used with RS coarsen-
up. Qn the finest Ieve_l this effort is typically c_:omparable toing (rs_direct), RS one-pass coarseningdp direc), RSO
the time spent on setting up the system matriand mostly .qarsening rs0.direct) and RS3 coarseningrs@.direc).
depends on the number of coarse points considered for the iy g regation-based coarsening is employed with basic-inter
terpolation of each point. This is particularly trueAfstems ,qjation @g) and with smoothed aggregation interpolation
from a low-order finite element or finite volume discretiza- (sd). While many more variations of AMG are available

tion. « K K i1 our selection is such that the main flavors of AMG meth-
G|venR_ andP* for the transfer b(_atweeﬁ an?Q " ,kthle ods are included. Coarse levels are constructed until a max-

next step is to compute the Galerkin opekraﬁkbf onQ ™, imum of 50 points are obtained on the coarsest level. Three

which is obtained from the operataf on Q" by pre- and postsmooth Jacobi iterations with a relaxation fac

tor w = 0.67 are employed. The threshold parameters are
8 = 0.25 for RS-based coarsening afié= 0.08/2¢~1 at the

Extra care needs to be taken during the implementation of thth 1evel of aggregation-based coarsening. An interpofati
matrix products, since naive implementations may lead to affuncation weight ot = 0.2 is used for direct and classical
accidental higher complexity [8]. truncation. The weight for smoothed aggregation interpola
We now turn to a discussion of AMG metrics used for thet©n 1S cho_s_en tad = 0'67'_A" AMG methods are used_ as
benchmarks in Sec. 4. a preconditioner for a conjugate gradient (CG) solver in the
case of symmetric matrices, and for a stabilized bi-cortpiga
e Number of Coarse LevelsWith every additional coarse gradient (BiCGStab) solver for the nonsymmetric case [1].
level, additional transfer operatoR andP* as well as Benchmarks are carried out on a workstation equipped
the coarse system matri needs to be set up. Con- with an INTEL Core i7-960, 12 GB of main memory and
sequently, it is desirable to keep the number of coarsa NVIDIA Geforce GTX 470 with driver version 270.41.19.

AL — REAKPK @)

Comparison of Execution Times on CPU

Comparison of Execution Times on GPU

100 F————— T 100 F———— T
[CG+RS =—3¢— [CG+RS =)=
[CG+RS3 =——l— [CG+RS3 =——l—
I CG+SA —@— I CG+SA —@—
10 | CG . 10 CG .
o g 5 g
@ F @
b, r b,
© L _ © L _
£ Le E E 1t E
F ; F
01 F E 0.1 F
P | Ll P | Ll
10000 100000 10000 100000

Number of points Number of points
Figure 1. Comparison of execution times for three AMG variants on CRift)(and GPU (right) using a conjugate gradient
(CG) solver. For comparison, execution times for an unprditmned CG solver are given. Except for very small protdem
RS3 leads to shortest execution times on the CPU, while tipeegonditioned CG solver still provides best results fa th
considered problem sizes on the GPU.
Method \ Unknowns 65025 261121

3969 16129

rs_classic (CPU)
rs_classic (GPU)

0.052 (0.031;6)
0.060(0.037;6)

0.233(0.141,6)
0.204 (0.171;6)

1.011 (0.604;6)
0.785 (0.716:6)

4.069 (2.219;6)
2.890 (2.704:6)

rs3_direct (CPU)
rs3_direct (GPU)

0.061 (0.031;8)
0.070 (0.032;8)

0.234 (0.124;7)
0.180 (0.130;7)

0.969(0.459;8)
0.600 (0.494:8)

3.705(1.756,8)
2.119 (1.870;8)

sa (CPU) 0.155 (0.092;8) 0.761 (0.355;9) 3.675 (1.432;12) 18.975 (5.677,16)
sa (GPU) 0.138 (0.084;8) 0.531 (0.419;9) 2.192 (1.795;12) 8.388 (6.481;16)
cg (CPU) 0.037(-192) | 0.286 (355) | 2.265(-,672) | 17.564 (-,1262)
cg (GPU) 0.063 (-;192) | 0.131(-;355) | 0.380(-;672) 1.695(-;1262)

Table 1. Total execution time for a two-dimensional finite elemeistdétization of the Poisson equation. Total executiongime
in seconds are given. Setup times and the number of solvatides are given in parentheses. For the CPU-based earculti
the unpreconditioned CG is fastest for the smallest matitile classic RS coarsening and RS3 coarsening are fastdatder
matrices. The unpreconditioned CG solver is essentiafyffdbtest if GPU acceleration is employed.

The operating system is a 64-bit Funtoo Linux with kerneltioned CG solver. Even though asymptotics on the GPU are
version 2.6.38. The AMG setup phase is accelerated on thithe same, interesting differences to the CPU case are @userv
CPU using OpenMP, while the GPU is employed in the solvefor small to medium sized problems. OpenCL kernel launch
cycle phase. Due to the need for frequent dynamic memorgverhead dominates the CG solver for small problems be-
allocations, no GPU support is used during the setup phastow about 16 unknowns. Between ftand 1@ unknowns,
In addition, data transfer and compute kernel launch oxsethe OpenCL kernel launch overheads become less dominant and
soon becomes too large for achieving significant perforrmancthus improve performance, while at the same time a higher
gains especially at coarser levels. Even in the highly opti-number of iterations are required. This leads to a neargalin
mized setting of an aggregation-based AMG method [8], thelependence of the execution times on the problem size in this
setup phase could only be accelerated by a GPU by a facteegime. Above 18 unknowns, OpenCL kernel launch over-
of two compared to a multi-core CPU, while an acceleratiorheads do not play a role any longer and@*°) dependence
by a factor of six was obtained for the solver cycling phase. of the unpreconditioned CG solver is retained. Nevertlseles
Total execution times for a two-dimensional finite elementdue 0 the high performance of GPUs, the unpreconditioned
CG solver is fastest up to problem sizes of abouf, #hile

discretization of the Poisson equation using differerdgare H ; hods alread oy |
depicted in Fig. 1. While the case of a purely CPU-based exthe use o AMG _met ods already start_s to pay offin a purely
CPU-based environment at problem sizes df. 10

ecution shows the optimal linear scaling of AMG with the
problem size, a higher asymptotic complexity@iN*-°) with The benchmark results in Tab. 1 further show that the use
the number of unknownhl is obtained for an unprecondi- of GPU acceleration reduces the solver cycle time by up to

Method

poisson2d

poisson3d

navier-stokes

rs_direct (CPU)
rs_direct (CPU)

1.064 (0.609;6)
0.794 (0.724:6)

5.161 (1.777;10
1.940 (2.587;10

5.476 (1.501,13)
1.640 (2.393;13)

rsop_direct (CPU)
rsop_direct (GPU)

1.123 (0.632;6)
0.772 (0.702;6)

1.947(0.806,12)
1.090(0.854;12)

1.631(0.480;21)
0.789(0.508;21)

rsO_direct (CPU)
rsO_direct (GPU)

1.192 (0.434;13
0.586(0.452;13)

4.460 (1.540;10
2.354 (1.730;10

4777 (1.154;17)
2.166 (1.319;17)

rs3_direct (CPU)
rs3_direct (GPU)

0.988(0.470;8)
0.591 (0.486:8)

6.215 (2.132;10
3.298 (2.427;10

6.395 (1.555,16)
2.922 (1.801;16)

Table 2. Total execution time for three different linear systemgalexecution times in seconds are given. Setup times and the
number of solver iterations are given in parentheses. Dtleetehort setup times, one-pass RS coarsening is the fas#snd
using CPU and GPU for the three-dimensional problems despé additional solver iterations. For the two-dimensiona
Poisson equation, RS3 and RSO are fastest on the CPU and Gpéttigely.

Method poisson2d | poisson3d navier-stokes " Points (RS) —#—]
rsdirect | (6;2.2; 10)| (8, 7.2;327) | (8; 7.2, 297) 10000 | A o) e
rsopdirect | (6;2.2;9) | (5;2.4;64) | (4,1.7,47) Avg. Stencl Size (One-Pass) ——
rsQdirect | (6;2.2;14)| (8;7.3;300) | (8; 6.3; 260) I

rsadirect | (7; 2.3;25)| (9; 10.2; 377)| (9; 8.7; 326) 1000 & 1

Table 3. Number of coarse levels, operator complexity and
maximum stencil size for the three different linear systems
considered for the benchmark in Tab. 2.

100 B

Points, Stencil Size

10 | B

one order of magnitude. Consequently, total executiontime
AMG methods is mostly given by the setup time when GPUs 1
are used. In a pure CPU setting, solver cycle times still con- 0 1 2 3 4 5 6 7 8
tribute more than half of the total execution time on average Level
Therefore, we conclude that GPUs lead to a shift of emphasiBigure 2. Comparison of RS and one-pass coarsening for
towards the AMG setup phase, hence additional solver iterathe three-dimensional Poisson equation benchmark problem
tions are much less a concern than in a pure CPU setting. The number of points and the average stencil size are plotted
With the AMG setup time identified as the main bottle- for each coarse level. It can be seen that less coarse levels
neck in a GPU environment, we now turn to a more detailecconsiderably reduce the maximum stencil size.
comparison of setup times for different coarsening stiateg
Three different matrices are compared: The two-dimensiona
finite element discretization with 65025 unknowns from theexecution for the solution of the three-dimensional Paisso
previous benchmarkppisson2y, a three-dimensional finite equation and the Navier-Stokes equations both for CPUs and
element discretization of the Poisson equation with 3171%PUs, even though the highest number of solver iterations
unknowns poisson3y, and a system of 24 202 unknowns ob- are required. Thus, for all three systems shortest setugstim
tained from the three-dimensional discretization of theeti lead to shortest overall execution times if GPU accelenatio
dependent Navier-Stokes equations using a Backward Eulé$ used. Moreover, our benchmark results show that a large
scheme favier-stokel The results in Tab. 2 again confirm difference in total execution times is obtained for the vasi
that shortest setup times finally yield smallest total execuAMG methods, hence we expect that it is insufficient to tune
tion times. For the two-dimensional Poisson equation, RS®@nly a single AMG method for GPUs when aiming at good
leads to shortest setup times and shortest execution times @erformance for a large class of problems.
GPUs, because the additional solver iterations requirettco A comparison of the metrics defined in Sec. 3. for the three
pared to other AMG methods do not significantly contributelinear systems is given in Tab. 3. The number of solver it-
to the overall time budget. On CPUs, however, the additionaérations given in Tab. 1 and Tab. 2 is clearly not suitable as
effort spent on the introduction of additional coarse poatt a metric for performance of AMG methods when GPU ac-
block boundaries pays off due to the smaller number of solveceleration is employed, because fastest total executioesti
iterations required. One-pass RS coarsening leads toesthort are obtained for methods with highest iteration count. The

three-dimensional benchmarksisson3dand navier-stokes [4] Algebraic Multigrid Solvers in Python (PyAMG).
suggest that the number of coarse levels, operator complex- htt p://ww. pyang. or g/

ity, and average stencil size are related metrics. Paatilgyib) o

low operator complexity for fast setup times requires a small®] Algebraic Multigrid Methods for Systems (SAMG).
number of coarse levels, which in turn keeps the average sten Nt 1 P://ww scai . fraunhof er. de/ samg/

cil size small. _ . [6] U.M. Yang, Parallel Algebraic Multigrid Methods - High
The number of points as well as the average stencil size at” pgrformance Preconditioners. INumerical Solution of

each level are plotted in Fig. 2. While the average stermd si Partial Differential Equations on Parallel Computers
initially increases at the same rate, the fa}ster coar;ecnﬁng p. 209-236, Springer (2006).

one-pass RS coarsening leads to an earlier saturation of the

average stencil size, which in turn reduces the computaltion [7] A. J. Clearyet al, Robustness and Scalability of Alge-
effort considerably. In contrast, RS coarsening leads {0 es braic Multigrid. SIAM Journal on Scientific Computing
sentially dense matrices at the coarsest levels, thusdsicrg vol. 21, p. 1886—1908 (2000).

the overall computational effort substantially even thoag))) S
much smaller number of unknowns than for the initial systerd8] N- Bell et al, Exposing Fine-Grained Parallelism in Al-

is encountered. gebraic Multigrid Methods. NVIDIA Technical Report
NVR-2011-002 (2011).
5. OUTLOOK AND CONCLUSION [9] NVIDIA CUDA.

With the broad availability of GPUs with high computa- htt p: // www. nvi di a. cont .

tional power on average workstations, a reevaluation ad-alg
braic multigrid methods is required. While execution times
for setup and solver phase need to be somewhat balanced in
a purely CPU-based setting, execution times for the solvef 1] MAGMA Library.
phase become much less pronounced if GPU accelerationis ‘wttp: //j ¢l . cs. ut k. edu/ magma/
used. Even though GPU acceleration could also be employed
for the setup phase, results by Bedlal.[8] suggest that only [12] Cusp Library.
mild performance improvements can be obtained there. Con- http://code. googl e. conf p/ cusp-1ibrary/
sequently, research efforts need to be focused on the AM
setup phase in order to reduce setup times, possibly at t
cost of higher solver iterations. Clearly, linear scalifigxe-

cution times with respect to the number of unknowns should1 4] p, s, vassilevskiMultilevel Block Factorization Precon-

still be preserved. ditioners Springer (2008).
Our benchmark results show that smallest overall execu-

tion times with GPU acceleration is obtained for AMG meth-[15] M. J. Grote and T. Huckle, Parallel Preconditioning
ods with smallest setup time. Moreover, for small to medium with Sparse Approximate InverseSIAM J. Sci. Comp.
sized problems, unpreconditioned iterative solvers on §PU vol. 18, no. 3, p. 838-853 (1997).

are considerably more attractive than in a purely CPU-base
environment despite of a high number of solver iterations re

[10] OpenCL.
htt p: // www. khr onos. or g/ opencl /.

Iﬁs?’] Vienna Computing Library (ViennaCL).
http://viennacl . sourceforge. net/.

fj16] V. Heuvelineet al., Parallel Smoothers for Matrix-based
Multigrid Methods on Unstructured Meshes Using Mul-

ired.
quire ticore CPUs and GPU£EMCL Preprint Seriesno. 9
(2011)
REFERENCES
[1] VY. Saad,lterative Methods for Sparse Linear Systems,[17] J. W. Ruge and K. Stiiben, Algebraic Multigrid (AMG).
Second EditionSIAM (2003). In S. F. McCormick (editor)Multigrid Methods SIAM,

p. 73-130 (1987).
[2] U. Trottenberget. al, Multigrid. Academic Press (2001).
[18] P. Vaneket al., Algebraic Multigrid By Smoothed Ag-
[3] Hypre. gregation For Second And Fourth Order Elliptic Prob-
http://acts. nersc. gov/ hypre/ lems.Computingvol. 56, no. 3, p. 179-196 (1996).

