
A Comparison of Algebraic Multigrid Preconditioners using
Graphics Processing Units and Multi-Core Central Processing Units

Markus Wagner1, Karl Rupp 1,2, Josef Weinbub1
1 Institute for Microelectronics, TU Wien

Gußhausstraße 27-29/E360, 1040 Wien, Austria
2 Institute for Analysis and Scientific Computing, TU Wien

Wiedner Hauptstraße 8-10/E101, 1040 Wien, Austria
wagner.m01@inode.at, {rupp|weinbub}@iue.tuwien.ac.at

Keywords: Algebraic Multigrid, High Performance Com-
puting, OpenCL, ViennaCL

Abstract
The influence of multi-core central processing units and
graphics processing units on several algebraic multigrid
methods is investigated in this work. Different performance
metrics traditionally employed for algebraic multigrid are re-
considered and reevaluated on these novel computing archi-
tectures. Our benchmark results show that with the use of
graphics processing units for the solver phase, it is crucial
to keep algebraic multigrid setup low, even if this leads to a
higher number of solver iterations.

1. INTRODUCTION
Many physical processes are described by partial differ-

ential equations, for which many popular numerical solution
approaches such as the finite element method lead to large
sparse systems of linear equations. Ideally, the computational
effort for the solution of these systems depends linearly onthe
number of unknowns. While direct methods or unprecondi-
tioned iterative solvers typically show sub-optimal complex-
ity [1], multigrid methods are able to provide such an optimal
complexity for certain classes of problems [2].

Multigrid methods are based on the observation that re-
laxation schemes show a fast reduction of oscillatory com-
ponents in the algebraic error. After a few relaxation steps,
a smooth error is obtained, for which a good correction can
be computed on a coarser grid. This idea is then applied re-
cursively for the solution of the system for the coarse-grid
correction. As soon as a reasonably small system is obtained,
it is solved exactly by direct methods.

The nested grid hierarchy used within multigrid methods
can be set up in two ways. In geometric multigrid methods, a
nested grid hierarchy is used. Typically, structured gridsare
employed for this purpose, because it simplifies the trans-
fer operations between the grid levels. In algebraic multigrid
(AMG) methods, the coarse grid is determined in a purely al-
gebraic way from the entries in the system matrix only. Con-
sequently, AMG can be applied in a black-box manner to gen-

eral systems of linear equations and is often the method of
choice whenever unstructured grids on complicated domains
are employed [2].

Several algebraic multigrid codes are available, e.g. the
C-based library Hypre [3] for a distributed memory envi-
ronment, PyAMG [4] providing a convenient Python inter-
face, and the commercial SAMG [5] library. With the shift to
multi-core central processing units (CPUs) and general pur-
pose computations on graphics processing units (GPUs), par-
allelization strategies developed for distributed memorysys-
tems [6, 7] can be supplemented with parallelization strate-
gies for shared memory systems in each node in order to
fully exploit the parallelism provided by modern CPUs and
GPUs. The fine-grained parallelism of GPUs is particularly
challenging and has been successfully utilized in the context
of aggregation-based AMG [8].

For programming GPUs, basically two approaches are
in wide-spread use in the scientific community: The Com-
pute Unified Device Architecture (CUDA) from NVIDIA [9],
which is a vendor-specific environment for NVIDIA hard-
ware, and the Open Computing Language (OpenCL) [10],
which is an open industry standard for program execution
across heterogeneous platforms. Even though both the CUDA
and the OpenCL language are derived from the C program-
ming language, they require to learn a new language and to
get acquainted with the details of the underlying hardware.
This is certainly not desirable from an abstraction point of
view, for which high-level wrapper libraries such as MAGMA
[11] and Cusp [12] using CUDA, and ViennaCL [13] using
OpenCL are available.

In this work we consider the implementation of a family
of AMG methods to be used both on multi-core CPUs and
GPUs. Since many different variants of AMG have been pro-
posed, the focus in this work is on a comparison of perfor-
mance and on a reevaluation of performance metrics using
multi-core CPUs as well as GPUs. First, the basic compo-
nents of AMG are introduced and a comparison of different
AMG approaches is given in Sec. 2. Performance metrics for
AMG are defined and discussed in Sec. 3. Selected AMG
variants are compared with respect to these metrics in Sec. 4.
Finally, a conclusion is drawn in Sec. 5.

2. AMG COMPONENTS
Consider the linear systemAx= b, whereA∈ R

n×n is the
system matrix with entriesai, j . The entriesxi of x are in the
following associated with a set of pointsΩ = {1,2, . . . ,n} of
an algebraic grid. Central to any multigrid method is the con-
cept of asmooth error e, which is only slowly reduced by re-
laxation schemes and consequently a coarse-grid correction is
employed. This is achieved by solving the residual equation
Ae= r on a coarser grid, where the residual vector is given
by r = Ax− b. The computed correction is then transferred
back to the fine grid to correct the fine-grid approximation
x← x+e.

In the following a brief discussion of the basic components
of an AMG method are given. First, algorithms for smoothing
the error (so-calledsmoothers) are discussed, then different
coarsening strategies are presented, and finally transfer op-
erators between grids are considered. For additional details
about AMG methods we refer to the literature [2,14].

2.1. Smoother
The efficiency of multigrid methods strongly depends on

the smoother. A good smoother strongly reduces the oscil-
latory error components, such that the remaining smooth er-
ror can be well approximated by coarser grids and corrected
there. First AMG methods relied on the Gauss-Seidel method
due to its good smoothing properties. However, the main
drawback of the Gauss-Seidel method is its sequential nature,
which is particularly a concern on GPUs. Related to Gauss-
Seidel is the Jacobi algorithm, possibly equipped with an ad-
ditional relaxation factorω. Good values for the relaxation
parameterω are problem-specific and may even depend on
the respective level in the multigrid hierarchy. Nevertheless,
a value ofω ≈ 2/3 is often used in practice and can even be
shown to be optimal for the Poisson equation [2].

For the remainder of this work, the damped Jacobi algo-
rithm will be used. Nevertheless, other parallel smoothersex-
ist, of which the most popular are as follows: Block-based
smoothers such as block-Gauss-Seidel can be used in a dis-
tributed memory environment [1], yet they show scaling is-
sues [6]. Similarly, multicoloring approaches can be used,but
have been reported to be inefficient, since often too many col-
ors are generated particularly on coarser levels. This in turn
results in too many idle processors, since not enough work
load is available for all processors then [6].

A scalable approach is the use of polynomial smoothers,
where motivated by Neumann series a polynomial of the sys-
tem matrix is used as an approximation of its inverse. For the
application in a multigrid context, error reduction properties
need to be complementary to the coarse grid correction. For
this purpose, certain information about the eigenvalues ofthe
system matrix needs to be available, which can be an expen-
sive task.

In principle, any parallel solver or preconditioner can be
used as a smoother. Good smoothing properties for sparse ap-
proximate inverses were reported in [15], while incomplete
LU factorizations are discussed in [2] and recently acceler-
ated by GPUs in [16].

2.2. Coarsening
While the notion of a coarse grid is inherently figurative for

geometric multigrid, different approaches for the construction
of a coarse gridΩk+1 from the fine gridΩk in the context of
algebraic multigrid exist. An overview of different coarsegrid
generation strategies is given in the following, where the em-
phasis is on the coarsening methods used for the benchmarks
in Sec. 4. Common to all approaches is the notion of coarse
points (C-points), which are included inΩk as well asΩk+1,
and fine points (F-points), which are inΩk, but not inΩk+1.

2.2.1. Classical Coarsening
The traditional coarsening algorithm is usually called RS

(Ruge-Stüben) approach [17]. This approach relies on the
concept ofstrong influenceof a point j (with unknownx j)
on a pointi (with unknownxi) by means of the system matrix
coupling coefficientai, j . A point i is strongly influenced by a
point j if

−ai, j ≥ θmax
k6=i

(−ai,k) (1)

with a strength threshold parameter 0< θ < 1. Note that this
definition was originally motivated by the assumption thatA
is a symmetricM-matrix [1], yet it can be formally applied to
more general matrices. The classical RS-approach attemptsto
fulfill the following two conditions:

• (C1) Each pointj influencing anF-point i is either aC-
point or strongly depends on aC-point which strongly
influencesi.

• (C2) The C-points should be a maximal independent
subset of all points, i.e. no twoC-points are connected
to each other, and if anotherC-point is added, indepen-
dence is lost.

The first condition aims at ensuring interpolation quality,
while the second condition aims at restricting the size of the
coarse grid. Since it is in general impossible to fulfill both
conditions, the second condition is only used as a guideline,
while the first condition is enforced in order to ensure certain
interpolation properties.

RS coarsening is achieved in a two-pass algorithm and
works very well for many applications, yet the main draw-
back of the algorithm is its sequential nature of the second
pass. A parallel variant of RS thus is to carry out only the first
pass. By replacing(C1)with

• (C1′) EachF-point i needs to strongly depend on at least
oneC-point,

the computational effort can be reduced, since lessC-points
are generated, while typically a smaller convergence rate is
obtained. Allowing for even less coarse points leads to ag-
gressive coarsening, for which we refer to [2] for details.

A parallel variant of RS coarsening initially designed for
distributed memory architectures is RS0-coarsening, which
relies on a block decomposition of the system matrixA such
that each processor works on one diagonal block only. Since
RS0 ignores off-diagonal entries completely, worse conver-
gence is to be expected. This drawback is mitigated by RS3-
coarsening, which adds a third pass to RS0 in order to add
additional coarse points from the set of points at processor
boundaries to improve convergence.

Other strategies for distributed memory environments are
CLJP coarsening, PMIS and HMIS, which are all based on
parallel independent set algorithms [6]. These strategiesare
not considered in our comparison, since they are mostly de-
signed to resolve problems of RS0 and RS3 coarsening in
distributed memory settings, while the focus of this work is
on a comparison on a single shared memory system.

2.2.2. Aggregation Coarsening
A different approach to coarsening is aggregation-based

coarsening, which uses a different concept of influence
strength. Here, matrix entries are only considered if they ful-
fill

|ai, j |> θ
√

|ai,ia j , j | . (2)

A single aggregate consists of a root pointi and all pointsj for
whichai, j fulfills (2). Similar to RS-type coarsening, this ap-
proach consists of two phases: In a first pass, new root points
are picked if they are not adjacent to any existing aggregate.
Remaining unaggregated points are either integrated into al-
ready existing aggregates or used to form new aggregates.

Coarsening by aggregation is typically faster than RS-type
coarsening. Overall computational effort, however, also de-
pends on the interpolation used, which will be described next.

2.3. Interpolation
Given a fine gridΩk and a coarse gridΩk+1, transfer oper-

ators between the two grids need to be defined. The transfer
from the fine grid to the coarse grid is commonly calledre-
striction, while the transfer from the coarse grid to the fine
grid is referred to asinterpolationor prolongation. In order
to preserve an eventual symmetry of the initial system ma-
trix also on coarser levels, the restriction matrix is commonly
chosen to be the transpose of the interpolation matrix. For this
reason, it is sufficient to deal with interpolation in the follow-
ing.

An interpolation of theF-point i is given by

ei = ∑
j∈Ci

wi, j ej , (3)

whereCi denotes the set of coarse points influencingi. Since
classical AMG assumes an algebraically smooth error,Ae=
r = Au− f ≈ 0 is required. Thus, thei-th equation becomes

ai,iei + ∑
j∈Ni

ai, jej = 0 , (4)

whereNi denotes the neighborhood of the pointi, i.e. the col-
umn indices of all nonzero entries in rowi. In the following,
different choices for the weightswi, j are discussed, leading to
different interpolation operators. Since proper interpolation
operators also depend on the underlying coarse grid, inter-
polation strategies for RS-type coarsenings and aggregation-
based coarsenings are discussed separately.

In order to keep computational effort low, interpolation
truncation can be employed. All interpolation weights be-
low a relative threshold ofε are replaced by zero, and other
nonzero weights are modified such that consistency of the in-
terpolation is preserved. This results in a sparser matrix at the
coarser level, reducing the subsequent computational effort.

2.3.1. RS-type Interpolation
The interpolation described in [17], termedclassical inter-

polation in the following, is based on dividing the neighbor-
hoodNi of a pointi into the set of coarse pointsCi , strongly in-
fluencing neighborsFs

i and weakly influencing neighborsFw
i .

With condition (C1) one obtains for the interpolation weights

wi, j =−
1

ai,i +∑k∈Fw
i

ai,k



ai, j + ∑
k∈Fs

i

ai,kak, j

∑m∈Ci
ak,m



 . (5)

Note that this formula fails whenever condition (C1) is vio-
lated.

A simpler expression for the weightswi, j is direct interpo-
lation, which can also be used if (C1) is violated:

wi, j =−

(

∑k∈Ni
ai,k

∑l∈Ci
ai,l

)

ai, j

ai,i
. (6)

In general, direct interpolation leads to worse convergence
rates than classical interpolation.

More information than for classical and direct interpola-
tion is used forstandard interpolation, which uses an ex-
tended neighborhood, but is otherwise similar to direct inter-
polation. Multipass interpolation is used for coarsening pro-
cedures such as aggressive coarsening, where condition (C1)
is not fulfilled, thus leading toF-points without neighboring
C-point. It uses direct interpolation for allF-points with a
neighboringC-point, otherwise standard interpolation is em-
ployed.

2.3.2. Interpolation for Aggregation
In an aggregation-based AMG method, all points in an ag-

gregate are identified with the same value. Consequently,wi, j

is equal to one ifj is the root node of the aggregate, and
zero otherwise. The advantage of this interpolation is thatit
is simple to implement and very fast. However, as only one
C-point is used for the interpolation, the approximation is of-
ten worse compared to other approaches, leading to smaller
convergence rates.

Smoothed aggregation employs an additional smoothing
step such that a broader interpolation base consisting of val-
ues also from other aggregates is used. This leads to ad-
ditional computational effort than for standard aggregation-
based AMG, but typically results in better convergence rates.
For further details we refer to [18].

3. AMG METRICS
The execution time of an AMG solver depends to a cer-

tain extent on the implementation and the underlying hard-
ware. In order to compare different AMG methods not only
with respect to execution time, but also independent of the
implementation and hardware, several metrics employed in
the AMG literature are introduced in this section. However,
before introducing the individual metrics, the computational
effort of the AMG setup phase is analyzed. This effort is
typically dominant when compared to the application of re-
striction and interpolation operators during the actual solution
process.

After the selection of a coarsening procedure, for which the
computational effort was already indicated in Sec. 2., the re-
striction and prolongation operatorsRk andPk need to be set
up. On the finest level this effort is typically comparable to
the time spent on setting up the system matrixA and mostly
depends on the number of coarse points considered for the in-
terpolation of each point. This is particularly true ifA stems
from a low-order finite element or finite volume discretiza-
tion.

GivenRk andPk for the transfer betweenΩk andΩk+1, the
next step is to compute the Galerkin operatorAk+1 on Ωk+1,
which is obtained from the operatorAk on Ωk by

Ak+1 = RkAkPk . (7)

Extra care needs to be taken during the implementation of the
matrix products, since naive implementations may lead to an
accidental higher complexity [8].

We now turn to a discussion of AMG metrics used for the
benchmarks in Sec. 4.

• Number of Coarse Levels.With every additional coarse
level, additional transfer operatorsRk andPk as well as
the coarse system matrixAk needs to be set up. Con-
sequently, it is desirable to keep the number of coarse

levels small and thus reduce the overall computational
effort.

• Number of Solver Iterations. The required number of
iterations is a common figure of merit for AMG, either
used as preconditioner or as standalone solver. As of-
ten reported in the literature and also confirmed by the
benchmark results in Sec. 4., only a low number of iter-
ations are commonly required for AMG. Thus, a single
additional iteration leads to an increased execution time
of about 10 percent for the solver phase.

• Operator Complexity. Operator complexity is defined
as the ratio of the sum of all entries on all levelsk com-
pared to the number of entries of the initial system ma-
trix A on the finest level. In addition to the stencil size,
this measure also takes the number of points at each level
into account.

• Maximum Stencil Size.While geometric multigrid pre-
serves the average stencil size of the system matrix on all
coarse levels, this is not necessarily the case for AMG.
Therefore, matricesAk on coarser levels become denser,
leading to larger sets of neighboring nodes on average
and thus increasing computational effort. Therefore, a
smaller maximum stencil size leads to less computa-
tional effort in each solver cycle.

4. BENCHMARK RESULTS
The following AMG methods are compared in the fol-

lowing: Classical interpolation used with RS coarsening
(rs classic), direct interpolation used with RS coarsen-
ing (rs direct), RS one-pass coarsening (rsop direct), RS0
coarsening (rs0 direct) and RS3 coarsening (rs3 direct).
Aggregation-based coarsening is employed with basic inter-
polation (ag) and with smoothed aggregation interpolation
(sa). While many more variations of AMG are available,
our selection is such that the main flavors of AMG meth-
ods are included. Coarse levels are constructed until a max-
imum of 50 points are obtained on the coarsest level. Three
pre- and postsmooth Jacobi iterations with a relaxation fac-
tor ω = 0.67 are employed. The threshold parameters are
θ = 0.25 for RS-based coarsening andθ = 0.08/2k−1 at the
k-th level of aggregation-based coarsening. An interpolation
truncation weight ofε = 0.2 is used for direct and classical
truncation. The weight for smoothed aggregation interpola-
tion is chosen toω = 0.67. All AMG methods are used as
a preconditioner for a conjugate gradient (CG) solver in the
case of symmetric matrices, and for a stabilized bi-conjugate
gradient (BiCGStab) solver for the nonsymmetric case [1].

Benchmarks are carried out on a workstation equipped
with an INTEL Core i7-960, 12 GB of main memory and
a NVIDIA Geforce GTX 470 with driver version 270.41.19.

 0.1

 1

 10

 100

 10000 100000

T
im

e
(s

ec
)

Number of points

Comparison of Execution Times on CPU

CG+RS
CG+RS3

CG+SA
CG

 0.1

 1

 10

 100

 10000 100000

T
im

e
(s

ec
)

Number of points

Comparison of Execution Times on GPU

CG+RS
CG+RS3

CG+SA
CG

Figure 1. Comparison of execution times for three AMG variants on CPU (left) and GPU (right) using a conjugate gradient
(CG) solver. For comparison, execution times for an unpreconditioned CG solver are given. Except for very small problems,
RS3 leads to shortest execution times on the CPU, while the unpreconditioned CG solver still provides best results for the
considered problem sizes on the GPU.

Method \ Unknowns 3 969 16 129 65 025 261 121
rs classic (CPU) 0.052 (0.031;6) 0.233(0.141;6) 1.011 (0.604;6) 4.069 (2.219;6)
rs classic (GPU) 0.060(0.037;6) 0.204 (0.171;6) 0.785 (0.716;6) 2.890 (2.704;6)
rs3 direct (CPU) 0.061 (0.031;8) 0.234 (0.124;7) 0.969(0.459;8) 3.705(1.756;8)
rs3 direct (GPU) 0.070 (0.032;8) 0.180 (0.130;7) 0.600 (0.494;8) 2.119 (1.870;8)
sa (CPU) 0.155 (0.092;8) 0.761 (0.355;9) 3.675 (1.432;12) 18.975 (5.677;16)
sa (GPU) 0.138 (0.084;8) 0.531 (0.419;9) 2.192 (1.795;12) 8.388 (6.481;16)
cg (CPU) 0.037(-;192) 0.286 (-;355) 2.265 (-;672) 17.564 (-;1262)
cg (GPU) 0.063 (-;192) 0.131(-;355) 0.380(-;672) 1.695(-;1262)

Table 1. Total execution time for a two-dimensional finite element discretization of the Poisson equation. Total execution times
in seconds are given. Setup times and the number of solver iterations are given in parentheses. For the CPU-based execution,
the unpreconditioned CG is fastest for the smallest matrix,while classic RS coarsening and RS3 coarsening are fastest for larger
matrices. The unpreconditioned CG solver is essentially the fastest if GPU acceleration is employed.

The operating system is a 64-bit Funtoo Linux with kernel
version 2.6.38. The AMG setup phase is accelerated on the
CPU using OpenMP, while the GPU is employed in the solver
cycle phase. Due to the need for frequent dynamic memory
allocations, no GPU support is used during the setup phase.
In addition, data transfer and compute kernel launch overhead
soon becomes too large for achieving significant performance
gains especially at coarser levels. Even in the highly opti-
mized setting of an aggregation-based AMG method [8], the
setup phase could only be accelerated by a GPU by a factor
of two compared to a multi-core CPU, while an acceleration
by a factor of six was obtained for the solver cycling phase.

Total execution times for a two-dimensional finite element
discretization of the Poisson equation using different grids are
depicted in Fig. 1. While the case of a purely CPU-based ex-
ecution shows the optimal linear scaling of AMG with the
problem size, a higher asymptotic complexity ofO(N1.5)with
the number of unknownsN is obtained for an unprecondi-

tioned CG solver. Even though asymptotics on the GPU are
the same, interesting differences to the CPU case are observed
for small to medium sized problems. OpenCL kernel launch
overhead dominates the CG solver for small problems be-
low about 104 unknowns. Between 104 and 105 unknowns,
OpenCL kernel launch overheads become less dominant and
thus improve performance, while at the same time a higher
number of iterations are required. This leads to a nearly linear
dependence of the execution times on the problem size in this
regime. Above 105 unknowns, OpenCL kernel launch over-
heads do not play a role any longer and aO(N1.5) dependence
of the unpreconditioned CG solver is retained. Nevertheless,
due to the high performance of GPUs, the unpreconditioned
CG solver is fastest up to problem sizes of about 106, while
the use of AMG methods already starts to pay off in a purely
CPU-based environment at problem sizes of 104.

The benchmark results in Tab. 1 further show that the use
of GPU acceleration reduces the solver cycle time by up to

Method poisson2d poisson3d navier-stokes
rs direct (CPU) 1.064 (0.609;6) 5.161 (1.777;10) 5.476 (1.501;13)
rs direct (CPU) 0.794 (0.724;6) 1.940 (2.587;10) 1.640 (2.393;13)
rsop direct (CPU) 1.123 (0.632;6) 1.947(0.806;12) 1.631(0.480;21)
rsop direct (GPU) 0.772 (0.702;6) 1.090(0.854;12) 0.789(0.508;21)
rs0 direct (CPU) 1.192 (0.434;13) 4.460 (1.540;10) 4.777 (1.154;17)
rs0 direct (GPU) 0.586(0.452;13) 2.354 (1.730;10) 2.166 (1.319;17)
rs3 direct (CPU) 0.988(0.470;8) 6.215 (2.132;10) 6.395 (1.555;16)
rs3 direct (GPU) 0.591 (0.486;8) 3.298 (2.427;10) 2.922 (1.801;16)

Table 2. Total execution time for three different linear systems. Total execution times in seconds are given. Setup times and the
number of solver iterations are given in parentheses. Due tothe short setup times, one-pass RS coarsening is the fastestmethod
using CPU and GPU for the three-dimensional problems despite the additional solver iterations. For the two-dimensional
Poisson equation, RS3 and RS0 are fastest on the CPU and GPU respectively.

Method poisson2d poisson3d navier-stokes
rs direct (6; 2.2; 10) (8; 7.2; 327) (8; 7.2; 297)
rsopdirect (6; 2.2; 9) (5; 2.4; 64) (4; 1.7; 47)
rs0 direct (6; 2.2; 14) (8; 7.3; 300) (8; 6.3; 260)
rs3 direct (7; 2.3; 25) (9; 10.2; 377) (9; 8.7; 326)

Table 3. Number of coarse levels, operator complexity and
maximum stencil size for the three different linear systems
considered for the benchmark in Tab. 2.

one order of magnitude. Consequently, total execution timeof
AMG methods is mostly given by the setup time when GPUs
are used. In a pure CPU setting, solver cycle times still con-
tribute more than half of the total execution time on average.
Therefore, we conclude that GPUs lead to a shift of emphasis
towards the AMG setup phase, hence additional solver itera-
tions are much less a concern than in a pure CPU setting.

With the AMG setup time identified as the main bottle-
neck in a GPU environment, we now turn to a more detailed
comparison of setup times for different coarsening strategies.
Three different matrices are compared: The two-dimensional
finite element discretization with 65025 unknowns from the
previous benchmark (poisson2d), a three-dimensional finite
element discretization of the Poisson equation with 31713
unknowns (poisson3d), and a system of 24202 unknowns ob-
tained from the three-dimensional discretization of the time-
dependent Navier-Stokes equations using a Backward Euler
scheme (navier-stokes). The results in Tab. 2 again confirm
that shortest setup times finally yield smallest total execu-
tion times. For the two-dimensional Poisson equation, RS0
leads to shortest setup times and shortest execution times on
GPUs, because the additional solver iterations required com-
pared to other AMG methods do not significantly contribute
to the overall time budget. On CPUs, however, the additional
effort spent on the introduction of additional coarse points at
block boundaries pays off due to the smaller number of solver
iterations required. One-pass RS coarsening leads to shortest

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8

P
oi

nt
s,

 S
te

nc
il

S
iz

e

Level

Points (RS)
Avg. Stencil Size (RS)

Points (One-Pass)
Avg. Stencil Size (One-Pass)

Figure 2. Comparison of RS and one-pass coarsening for
the three-dimensional Poisson equation benchmark problem.
The number of points and the average stencil size are plotted
for each coarse level. It can be seen that less coarse levels
considerably reduce the maximum stencil size.

execution for the solution of the three-dimensional Poisson
equation and the Navier-Stokes equations both for CPUs and
GPUs, even though the highest number of solver iterations
are required. Thus, for all three systems shortest setup times
lead to shortest overall execution times if GPU acceleration
is used. Moreover, our benchmark results show that a large
difference in total execution times is obtained for the various
AMG methods, hence we expect that it is insufficient to tune
only a single AMG method for GPUs when aiming at good
performance for a large class of problems.

A comparison of the metrics defined in Sec. 3. for the three
linear systems is given in Tab. 3. The number of solver it-
erations given in Tab. 1 and Tab. 2 is clearly not suitable as
a metric for performance of AMG methods when GPU ac-
celeration is employed, because fastest total execution times
are obtained for methods with highest iteration count. The

three-dimensional benchmarkspoisson3dand navier-stokes
suggest that the number of coarse levels, operator complex-
ity, and average stencil size are related metrics. Particularly, a
low operator complexity for fast setup times requires a small
number of coarse levels, which in turn keeps the average sten-
cil size small.

The number of points as well as the average stencil size at
each level are plotted in Fig. 2. While the average stencil size
initially increases at the same rate, the faster coarseningof
one-pass RS coarsening leads to an earlier saturation of the
average stencil size, which in turn reduces the computational
effort considerably. In contrast, RS coarsening leads to es-
sentially dense matrices at the coarsest levels, thus increasing
the overall computational effort substantially even though a
much smaller number of unknowns than for the initial system
is encountered.

5. OUTLOOK AND CONCLUSION
With the broad availability of GPUs with high computa-

tional power on average workstations, a reevaluation of alge-
braic multigrid methods is required. While execution times
for setup and solver phase need to be somewhat balanced in
a purely CPU-based setting, execution times for the solver
phase become much less pronounced if GPU acceleration is
used. Even though GPU acceleration could also be employed
for the setup phase, results by Bellet al. [8] suggest that only
mild performance improvements can be obtained there. Con-
sequently, research efforts need to be focused on the AMG
setup phase in order to reduce setup times, possibly at the
cost of higher solver iterations. Clearly, linear scaling of exe-
cution times with respect to the number of unknowns should
still be preserved.

Our benchmark results show that smallest overall execu-
tion times with GPU acceleration is obtained for AMG meth-
ods with smallest setup time. Moreover, for small to medium
sized problems, unpreconditioned iterative solvers on GPUs
are considerably more attractive than in a purely CPU-based
environment despite of a high number of solver iterations re-
quired.

REFERENCES
[1] Y. Saad,Iterative Methods for Sparse Linear Systems,

Second Edition, SIAM (2003).

[2] U. Trottenberget. al., Multigrid. Academic Press (2001).

[3] Hypre.
http://acts.nersc.gov/hypre/

[4] Algebraic Multigrid Solvers in Python (PyAMG).
http://www.pyamg.org/

[5] Algebraic Multigrid Methods for Systems (SAMG).
http://www.scai.fraunhofer.de/samg/

[6] U. M. Yang, Parallel Algebraic Multigrid Methods - High
Performance Preconditioners. In:Numerical Solution of
Partial Differential Equations on Parallel Computers,
p. 209-236, Springer (2006).

[7] A. J. Clearyet al., Robustness and Scalability of Alge-
braic Multigrid. SIAM Journal on Scientific Computing,
vol. 21, p. 1886–1908 (2000).

[8] N. Bell et al., Exposing Fine-Grained Parallelism in Al-
gebraic Multigrid Methods. NVIDIA Technical Report
NVR-2011-002 (2011).

[9] NVIDIA CUDA.
http://www.nvidia.com/.

[10] OpenCL.
http://www.khronos.org/opencl/.

[11] MAGMA Library.
http://icl.cs.utk.edu/magma/

[12] Cusp Library.
http://code.google.com/p/cusp-library/

[13] Vienna Computing Library (ViennaCL).
http://viennacl.sourceforge.net/.

[14] P. S. Vassilevski,Multilevel Block Factorization Precon-
ditioners, Springer (2008).

[15] M. J. Grote and T. Huckle, Parallel Preconditioning
with Sparse Approximate Inverses.SIAM J. Sci. Comp.,
vol. 18, no. 3, p. 838–853 (1997).

[16] V. Heuvelineet al., Parallel Smoothers for Matrix-based
Multigrid Methods on Unstructured Meshes Using Mul-
ticore CPUs and GPUs.EMCL Preprint Series, no. 9
(2011)

[17] J. W. Ruge and K. Stüben, Algebraic Multigrid (AMG).
In S. F. McCormick (editor):Multigrid Methods, SIAM,
p. 73-130 (1987).

[18] P. Vaneket al., Algebraic Multigrid By Smoothed Ag-
gregation For Second And Fourth Order Elliptic Prob-
lems.Computing, vol. 56, no. 3, p. 179-196 (1996).

