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INTRODUCTION

The deterministic Spherical Harmonics Expansion

(SHE) method for the numerical solution of the

Boltzmann Transport Equation (BTE) has become an

attractive alternative to the stochastic Monte-Carlo

(MC) method. While the method has long been limited

to one-dimensional device simulation due to memory

constraints, modern workstations provide enough re-

sources for running two- and even three-dimensional

simulations [1], [2]. Also, excellent agreement with

MC results became only possible after the method

had been extended to arbitrary expansion orders [3].

However, despite the availability of a suitable for-

malism for a wide range of common scattering op-

erators, the inclusion of carrier-carrier scattering (cc-

scattering) has only been considered in a very early

publication for first-order SHE [4]. In this work we

present a methodology for the inclusion of carrier-

carrier scattering into arbitrary-order SHE and discuss

the implications on the computational effort as well as

the memory requirements.

CARRIER-CARRIER SCATTERING FOR SHE

Using a low-density approximation and neglecting

the Pauli-principle, most scattering mechanisms lead

to a linear scattering operator. However, cc-scattering

leads to a quadratic scattering operator of the form

Qcc{f} =

∫

s(k′,k,k′

2,k2)f(k
′)f(k′

2)−

s(k,k′,k2,k
′

2)f(k)f(k2) d(k
′,k2,k

′

2) ,

where f is the carrier distribution function, k, k2, k
′,

k
′

2 are the wave vectors, and s = σccδ(ε+ε′−ε2−ε′2).
The coefficient σcc is proportional to

σcc(k,k
′,k2,k

′

2) ≃
nδ(k + k

′ − k2 − k
′

2)
[

(k − k
′) + 1/λ2

D

]2

and includes the carrier density n, the Debye-length

λD, a delta distribution for the conservation of mo-

mentum, and shows a strong angular dependence.

Since the denominator is identical to that from ionized

impurity scattering, we treat it in the same way using

an isotropic approximation with identical momentum

relaxation times [5]. This allows for the derivation

of an expression for the projected scattering operator

onto the spherical harmonic Yl,m as

Qcc;l,m{f} =
Z

Y 3
0,0

∫

∞

0

σcc
[

f0,0(ε
′)f0,0(ε+ ε∗ − ε′)

− f0,0(ε
∗)fl,m(ε)

]

× Z(ε′)Z(ε+ ε∗ − ε′) dε′ .

Here, Z is the density of states and ε∗ denotes the

energy of the second carrier. Since this second energy

is unknown by nature, we propose a weighted aver-

age over all energies. As a computationally cheaper

alternative, one may also set ε∗ to the average carrier

energy at the respective location inside the device at

the price of possibly reduced accuracy. Note that the

scattering operator vanishes for the case of f being

given by a Maxwell distribution and is thus consistent

with other scattering mechanisms.

RESULTS

The proposed model is implemented in our free

open source simulator ViennaSHE [6] and evaluated

for bulk silicon in Fig. 1 and Fig. 2. It is shown

that our method is able to resolve the high energy

tails of the distribution function well. Only a few

additional nonlinear Picard iterations are sufficient for

convergence. In Fig. 3 our method is applied to two

MOSFET devices with different channel lengths. An

elevation of the high-energy tail due to cc-scattering is

observed, emphasizing the importance of cc-scattering

for predictive device simulation. The drawback of the

proposed method is that the integral expression for

Qcc;l,m couples all energies with each other, which

leads to a quadratic dependence of the computational

effort on the number of energy points, cf. Fig. 4.

CONCLUSION

We have suggested a formulation that allows for the

inclusion of cc-scattering into arbitrary-order SHE. An

initial comparison shows good agreement with bulk

MC results and can also be used on two or three-

dimensional geometries.
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Fig. 1. Simulation of the electron distribution with and without

electron-electron (ee) scattering in bulk silicon at an applied field

of 10 kV/cm. The elevation of the distribution function at higher

energies is well reflected by SHE with the proposed method.

After at most eight Picard iterations, the change of the distribution

function becomes negligible.
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Fig. 2. Simulation of the electron distribution with and without

ee-scattering in bulk silicon at an applied field of 100 kV/cm.

The high-energy tail of the distribution function around 2 eV is

essentially resolved by the proposed method after only one Picard

iteration.
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Fig. 3. Comparison of the electron energy distribution function at

channel-drain transition region for a 22nm and a 110nm MOSFET

device with VDS = 1.0 Volt and VG = 0.8 Volt. The influence of

cc-scattering on the high-energy tail of the distribution function is

particularly pronounced in the smaller device. After at most three

Picard iterations, convergence for practical purposes is obtained.

The ripples at lower energies are due to optical phonon scattering.
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Fig. 4. Nonzeros and number of unknowns of the system

matrix for a 22nm MOSFET device. While both the number

of unknowns and the number of nonzeros in the system matrix

scale linearly with the number of energy points, carrier-carrier

scattering leads to a coupling of all energy points, leading to

quadratic effort. Memory requirements and simulation times are

consequently increased by a factor of three using 50 energy points

and up to a factor of 20 when using 400 points in total energy

direction. With typically 100 to 200 energy points per electron

volt, one thus has to expect increased memory requirements of

one order of magnitude in low-voltage applications.
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