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a b s t r a c t

Requirements in scientific computing emerge from various areas such as algebraic
topology, geometrical algebra, and differential topology with different notations. Cell and
complex properties are introduced in order to derive a common specification for properties
of data structures. Only topological properties are used, thereby separating the actual
data storage structure from the stored data. Several theoretical topological properties are
introduced, and traversal capabilities which excel current implementations are presented
and accompanied by selected examples.

This work focuses on extracting these necessarymathematical concepts and introduces
generic programming concepts necessary to fully transfer the mathematical concepts. Not
only theoretical contributions are presented, but they are also demonstrated by means of
applications in scientific computing.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Scientific computing is understood here as the collection of mathematical concepts which aid in the treatment of
problems emerging from different areas of science which rely on mappings to finite spaces. Considering not only several
mathematical concepts but also the computational efficiency of software implementations of these numerical methods
results in high overall complexity, because several kinds of topological cell complexes and their corresponding embeddings
in arbitrary spatial dimensions as well as various solving strategies have to be considered during application development.
The development of software for the numerical simulation of disparate physical phenomena, such as electromagnetic wave
propagation, heat transfer and mechanical deformation, is not straightforward and remains complex even today.

To combine the necessary concepts, an efficient representation and manipulation of scientific computing’s problem
domain requires flexible and efficient data structure specification mechanisms supporting arbitrary dimensions and
topological spaces. One prominent example of flexible data structure manipulation is the C++ STL and the separation of data
structures and algorithms bymeans of iterators. Iterators have become key elements of modern programming because they
enable the formulation of algorithms independently of the data structure, which in turnmake data structures exchangeable.
Up to now, this approach has focused on sequence, associative, and graph data structures. This great achievement of
accessing all data structures in aminimal but concise way led to the conception of generic programming. A detailed analysis
of generic programming from the perspective of category theory has already been published [30]. In contrast to the approach
from category theory, the work presented here deals with the definition and characterization of data structures and their
inherent topological structure.
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Fig. 1. Cell complex and associated data for 0-cells (left, vertices) and 1-cells (right, edges).

By using a topological characterization of data structures, two different parts of a classification scheme are introduced
which can be summarized with the following expression and the distance between the topological space and the data type
used:

topological space + data type = data structure

A necessary first step is to create a distinct categorization for different types for data structure. The approach presented
here uses an extra notion of a topological cell concept. The dimension of a cell is then used to create a hierarchy for data
structure classification. Another feature available by a cell concept is given by using a mapping from a topological space
to partially ordered sets. Then generalized traversal operations can be derived enabling a common interface for different
operations in a dimension and data structure independent way. On the basis of this formalization several properties of data
structures (e.g., of the C++ STL) are derived and generalized to various other data structures (e.g., graphs, meshes, grids).
Another directly derived concept is related to a container’s topology, or more generally to the topology of a complex. This
property enables a distinction to bemade between global and local (dense/sequence and sparse/associative) structures. The
final classification scheme is then summarized in Table 3.

The second part concerns the separation of data access and traversal [2] using the mathematical concept of fiber bundles
[11]. This formal introduction enables a clean separation of the internal combinatorial properties of data structures and the
mechanisms of data storage. On the basis of this concept it can be shown that application design can be greatly eased. Full
backward compatibility with all existing data structures from the STL is achieved using an additional concept. Additionally,
several issues of the currently used iterator categorization are studied and consistently related to the formalization given
here.

The goal of the conversion of mathematical concepts presented is the minimization of the distance between the
mathematical specification and the source code developed. This not only enables much faster application development
but also reduces the possibility for errors. This formalized approach to topological properties and the traversal mechanism
provides a new possibility of employing the functional programming paradigm which is emerging in C++ with the support
of additional libraries [9,10]. Up to now, functional expressions have lacked the support of a unique interface for all different
kinds of data structure iterations. By enabling a functional specification mechanism, stateless programming and hence
parallelization of the final application become available.

A short example is given to introduce the application of generic algorithms by closely modeling the mathematical
concepts. Discretized partial differential equations require physical quantities mapped to different locations in the
abstractions of physical space. Using a finite volumediscretization scheme [18] a generic Poisson equation div(ε grad(Ψ )) =

ϱ can be formulated in two spatial dimensions as−
j

Dij Aij = ϱ Dij =
Ψj − Ψi

dij

εi + εj

2
(1)

Quantities require different storage locations, such as Dij, Aij, dij on 1-cells (edges), and Ψi, εi on 0-cells (vertices). The
value Aij represents the area of the dual graph (Voronoi graph). Dij stands for the projection of the dielectric flux onto the
cell/edge ci that connects the vertices vi and vj. Fig. 1 depicts the different storage locations.

The direct transformation of each equation element canbe observed clearlywhen considering the following source code:

Generic Poisson equation
value =
( sum<edge>

[
d i f f <vertex >[ Ps i ] ∗ A / d ∗ sum<vertex >[ eps ] / 2

] − rho
) ( vx ) ;

The term Psi represents the desired solution quantity, A the Voronoi area, d the distance of two vertices, rho the right
hand side, and eps a material property. The complex resulting from this mapping is completed by specifying the current
vertex object vx at run-time.
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The generic programming concepts described can be seen as an abstraction and unification of the following develop-
ments:
- The formalization of data structures is based on GrAL [5], introduced in Section 2.
- The separation of data access and traversal is derived from the cursor and property map concept [2] or, in a more general
way, from the theory of fiber bundles [11,4].
Section 2 reviews current approaches, and explains and highlights current as well as possible future applications.

Section 3 introduces necessary mathematical concepts for the underlying data structure classification hierarchy as well
as giving a brief overview for order concepts in order to explain the topological traversal capabilities before introducing
fiber bundles as an abstraction for data access. The library’s set-up is introduced in Section 4. Examples ranging from 0-cell
complexes up to 2-cell complexes are provided, accompanied by applications of the traversal mechanisms. References to
relatedwork aswell as implementation details are also discussed. Section 5 then reviews a few example applications as well
as performance benchmarks for examples from the field of TCAD along with comparisons to related work.

2. Historical overview and related work

The motivation for reviewing and developing a variety of concepts for scientific computing is derived from the need for
flexibility in high performance applications. Therefore, the main related works consist of libraries which are compared to
highlight the importance of a clean application design in the field of scientific computing under the necessary performance
constraints. Significant advances toward a flexible and generic applicationdesignhave beenmade and are briefly overviewed
chronologically:

- 1993: first generic application for scientific visualization based on fiber bundles [20];
- 1995: multi-paradigm language run-time performance (C++) equal to Fortran [38];
- 1997: emergence of the generic programming paradigm in the shape of C++’s STL [26];
- 2002: generic data structure interface and generic traversal operations [6];
- 2002: the generic graph library [32] introduces the concept of property maps;
- 2003: concepts for the separation of traversal and data access [2].

By using these approaches the effort of application development in the area of scientific computing is already greatly
reduced. In particular the formal and abstract interface specification of the generic programming approach, implemented
by means of static parametric polymorphism in C++, offers a formal method of specification to the user, which the compiler
can verify. Reusability and orthogonality of the libraries is thereby accomplished without sacrificing overall performance.

The main goals of the presented approach can be summarized as a complete formal transfer of mathematical concepts
to implementations which support full interoperability by using only orthogonal base concepts. The following concepts can
therefore be summarized:
- Data structure specifications for arbitrary dimensions based on cell complex properties.
In the following, libraries are presented which are already specialized to specific dimensions. The approach presented
offers concepts regarding cell and complex topology which enable cell complex specifications in arbitrary dimensions,
while additionally offering interoperability to already existing and specialized approaches.

- Application of the fiber bundle approach outside the visualization area.
STL and related iteration capabilities separate data structures and algorithms but suffer fromoverly restrictive definitions.
The fiber bundle separation described offers backward compatibility to this iteration approach1 but does not suffer from
the extension constraint.

- Closed (incidence and adjacency) traversal operations.
Iteration in related works is mostly integrated into the topological environments of the libraries. By using fiber bundles
the topological index space (base space) is separated from the data storage space (fiber space). This not only resolves the
cursor/property map issues but also enables topological traversal structures for cell complexes of arbitrary dimension.

- High overall application performance.
Several generic library approaches have shown that abstract generic programming does not introduce an abstraction
penalty. By using the techniques already established (meta-programming, small object optimization), mathematical
concepts can be transferred directly into a generic library.
Starting from this overview, related works are presented in more detail. All of the related work libraries are a great

achievement in the specific fields of scientific computing. But the disadvantage always remains that these libraries were not
developed with interoperability in mind, e.g., using a CGAL algorithm with GrAL data structures.

A major step towards a flexible use of data structures was developed by the Boost Graph Library (BGL [32]). This
library implements a generic interface to enable access to arbitrary graph structures but hides the details of the actual
implementation. This approach was one of the first approaches in the field of non-trivial data structures with respect

1 Backward compatibility is possible by setting the index space depth to zero.
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to library interoperability. The interfaces make it possible for any graph library that implements these interfaces to be
interoperable with the BGL. The approach is similar to the one taken by the C++ STL to ensure the interoperability of the
various algorithms and containers. The propertymap concept [32]was also introduced. Unfortunately the BGLwas designed
for graphs only and neither lower nor higher dimensional data structures can be handled. All libraries which implement and
interface of this type are interoperable with the BGL generic algorithms and are presented in Section 4.1.2.

The Grid Algorithms Library (GrAL [5]) was one of the first contributions towards the unification of data structures of
arbitrary dimensions for the field of scientific computing. A common interface for grids was designed which facilitated
dimensionally and topologically independent access and traversal. Mathematical concepts for topological spaces were
introduced and applied to grids. Applications for solving PDEs were presented; however no concrete implementation was
provided. Concepts for accessing data abstractly, like propertymaps,were also introduced and demonstrated in applications.

The Computational Geometry Algorithm Library (CGAL [14]) is another important collection of reusable components
of a great number of geometrical algorithms and data structures, such as two- and three-dimensional modules for mesh
generation, Voronoi diagrams or surfacemesh simplification, in a generic, library-centered approach. Themain contribution
of CGAL is the concept of an algebraically parameterized kernel [29] which is responsible for the actual robustness of the
implementation of the mathematical operations.

FiberLib2 was inspired by Butler’s vector bundle data model [11] and OpenDX and is a reimplementation of a data model
which was originally conceived [4] to visualize numerical data originating from general relativity. Since the mathematics of
general relativity require explicit treatment of otherwise implicitly assumed properties of space and time, designing a data
model to cover the issues of general relativity improves its generality. However, this library has so far remained restricted
to the field of visualization.

The Sophus C++ library [17] aims to provide coordinate-free formulations.2 This library implements grid components for
sequential and parallel high performance computing. To achieve this, a field layer for numerical discretization schemes, a
tensor layer for handling various quantities, and finally an application layerwith solver interfaceswere developed. However,
this approach suffers from severe abstraction penalties and requires a code transformation tool [3].

Themost importantworks related to the approach at hand are generic libraries. Theoreticalworks are briefly summarized
which share mathematical concepts:
- An arbitrary cell specification was introduced [13] in the context of continuous functions related to Voronoi diagrams.
This approach closely models the n-cell specification of the approach presented.

- Concepts of combinatorial maps or the extended notion of generalized maps [25] are part of the field of combinatorial
topology, which can be seen as a direct precursor to the approach presented here.3 Such maps already use the notion
of abstract cell complexes to some extent but do not integrate various already existing data structures. Also no
implementation in the field of high performance scientific computing is given. Incidence and adjacency relations were
given but suffer from the separate cell topology concept presented here.

- The notion and concepts of cell complexes applied to data structureswere already used to describe the structure of images
[22,23]. On top of the topological classification of images, generic algorithms were described and efficiently applied. The
reason for using images is related to the internal topological structure of images.4 No extension for the treatment of
general data structures was given.5

No furtherworkwas found that uses a formal data structure specification for arbitrary dimensions and a separation of cell
and complex topology. Although the concept of fiber bundles has been already implemented in libraries, a fully orthogonal
approach within the scope of high performance generic software components is still missing.

3. Mathematical properties of data structures

The following section introduces mathematical concepts of topology and order theory to formalize the combinatorial
structure of cells and the global structure of cell complexes [12]. The combinatorial properties of a cell complex for
characterizing different data structures of arbitrary dimensions and the internal structure of their cells are of particular
interest to this work and are summarized in Table 3.

The mathematical concepts presented naturally introduce formal requirements for data structure interfaces and enable
common traversal mechanisms. Here traversal means a generalized iteration, e.g., vertices on edges or cells on vertices. A
complete introduction of all terms is available [5,21]. Fig. 2 depicts an overview of the terms used and their relation to each
other.

The goal of this introduction of mathematical concepts is to demonstrate that data structures can be seen as a projection
onto finite CW-cell complexes. Briefly, a cell can be described by the possibility of storing the user’s data. A cell complex is

2 The GTL also supports coordinate-free formulations for PDEs by using differential formswhich can be naturally integrated by the fiber bundle approach.
A subsequent publication will include this formulation possibility as well.
3 The current version of GTL fully implements algebraic topology concepts like chain and co-chain concepts with arbitrary coefficient functions.
4 By using the terms introduced here, an image can be described by 0-cell and a global complex topology.
5 Today this set of operations can be described by homological and co-homological concepts using chains and co-chains. The chain and co-chain concepts

are also supported by the GTL by calling n-skeletons chains and supporting integer or arbitrary coefficients for each n-cell.
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Fig. 2. Overview of mathematical concepts introduced in this section, starting with the most basic concept of a vertex which represents a single set with
one element.

then a collection of well connected cells. On the basis of cell complexes several properties of data structures (e.g., of the C++
STL, graphs, meshes, grids) are overviewed and generalized. A commonway to traverse these data structures based on their
combinatorial properties is derived as well.

Afterwards a formal separation of traversal and data access by the means of the mathematical concept of fiber bundles
is given. This separation enables a clean separation of the combinatorial properties of data structures and the mechanisms
of data storage and access. Algorithms can operate independently of the used data structures.

3.1. Topology

The first part of this mathematical introduction is related to topological spaces. The formal definition of a topological
space is given next:

Definition 1 (Topological Spaces). A topological space (X, T ) consists of a set X and a family T of subsets of X such that:
- (T1) ∅ ∈ T and X ∈ T .
- (T2) T is closed under finite intersection.
- (T3) T is closed under arbitrary union.

The family T is called a topology on X , and the members of T are called open sets. These properties are later used to
describe interdimensional elements for the complex such as edges of a cell.

In the following a basic set X = {a, b, c} is given, where the subsets {a}, {b}, and {c} model vertices, and one topology.

(X, T ) = {∅,

{a}, {b}, {c},
{a, b}, {a, c}, {b, c},
{a, b, c}}

This pair of the original set and the set of subsets generates the topological space. This particular topological space is used
in several examples throughout this section.

The general definition for a topological space is very abstract and allows several topological spaces which are not useful
in the field of data structures, e.g. a topological space (X, T ) with a trivial topology T = {∅, X}. So basic mechanisms of
separation within a topological space are introduced.

Definition 2 (Hausdorff Spaces). The topological space (X, T ) is said to be Hausdorff if, given x, y ∈ X with x ≠ y, there
exist open sets U1,U2 such that x ∈ U1, y ∈ U2 and U1


U2 = ∅.

A computer’s data structures need the separation characteristics of a Hausdorff space. As soon as a topological space is a
Hausdorff space the view of data structures correlates with this topological space. An important part of the characterization
of data structures is the possibility of declaring a dimension for data structures. Here the dimension of an object, called a
cell, is used, which usually accommodates a user’s data.

Definition 3 (N-Cell). A subset c ⊂ X of a Hausdorff space X is an open cell if it is homeomorphic to the interior of the open
n-dimensional ball Dn

= {x ∈ Rn
: |x| < 1}.

The number n is unique due to the invariance of domain theorem [5], and is called the dimension of c , whereas homeomorphic
means that two ormore spaces share the same topological characteristics [5]. The following list assigns terms corresponding
to other areas of scientific computing:
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Fig. 3. Examples of violations of correct cell attachment. Left: cells of different dimensions (two 2-cells and one 1-cell). Middle: cells do not intersect at
vertices. Right: intersection of cells.

Fig. 4. Representation of a 1-cell complex with cells (X1 , edges, C) and vertices (X0 , V).

- 0-cell: point;
- 1-cell: edge;
- 2-cell: facet;
- n-cell: cell.

A collection of cells may form larger structures, so-called complexes, which are identified by the cell with the highest
dimension. With the concepts already made known, the concept of a cell complex is introduced, which models the concept
of a data structure directly.

Definition 4 (CW-Complex). A CW-complexC is an inductively defined system of spaces X (−1)
⊆ X (0)

⊆ X (1)
⊆ · · · ⊆ X (n),

constructed from pairwise disjoint open cells such that X (n) is obtained from X (n−1) by attaching adjacent n-cells to each
(n − 1)-cell where X (−1)

= ∅.

This CW-cell complex6 with the underlying topological space guarantees that all interdimensional objects are connected
in an appropriate manner. Although there are various possible attachments of cells, only one process results in a cell
complex; see Fig. 3.

The respective subspaces X (n) are called the n-skeletons of the cell complex. From the viewpoint of the underlying
topological space the skeletons are the subspaces of the topological space with corresponding topologies. Incidence and
adjacency traversal7 is directly related to the configuration of the space (complex topology) and the connectivity of the cells
(cell topology).

For this work, the most important property of a CW-complex can be explained by the use of different n-cells and a
consistent way of attaching n − 1 cells to them. A convenient abbreviation is used to specify the finite CW-cell complex
with its dimensionality, e.g., a 1-cell complex describes a one-dimensional finite CW-cell complex. An illustration of this
type of cell complex is given in Fig. 4. As an example, adjacency traversal is possible by using C1 as a starting edge, where
the traversal operation returns C2, followed by C3, and C4.

For now, sufficient means have been introduced to handle the underlying topological space of data structures. Each
subspace can be uniquely characterized by its dimension. A simple container can be classified as a 0-cell complex because of
the absence of higher dimensional cells (edges). A graph can be classified as a 1-cell complex because of the existence of 1-
cells (edges). All of these subspaces are connected appropriately by the concept of a finite CW-cell complex and summarized
in Table 1.

A common interface for characterizing data structures is now available. A drawback of this characterization can be easily
seen in the case of the 0-cell complexes. The topological space and subspaces only guarantee the correct connection of its
subsets, but traversal mechanisms based on these concepts cannot be derived. Relations between subsets of the topological
space are required to formalize the internal structure of cells (cell topology) and the structure of cell complexes (complex
topology). Incidence and adjacency traversal can then be directly derived from this concept.

6 A CW-complex (closure-finite weak topology) with arbitrary cells.
7 Examples of incidence traversal can be given by vertex on edge traversal, and for adjacency traversal by vertex to vertex traversal.
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Fig. 5. Cell topology of a simplex cell in two dimensions.

Fig. 6. Cell topology of a cuboid cell in two dimensions.

Table 1
Classification scheme based on the dimension of the cells.

Data structure Cell dimension

Array 0
Singly linked list (SLL)/stream 0
Doubly linked list (DLL)/binary tree 0
Arbitrary tree 0
Graph 1
Grid 2
Grid 3

Table 2
Classification scheme based on the dimensions of cells and the cell topology.

Data structure Cell dimension Cell topology

Array 0 Simplex
SLL/stream 0 Simplex
DLL/binary tree 0 Simplex
Arbitrary tree 0 Simplex
Graph 1 Simplex
Grid 2,3,.. Polytope
Grid 2,3,.. Cuboid
Grid 2,3,.. Simplex

3.2. Cell topology

An important classification property already introduced is the dimension of a cell, e.g., 1-cells are collected in a 1-cell
complex (graph), and 2-cells represent a grid or a mesh, but this leaves out the internal structure of a cell. The dimension
of a cell is used to classify the whole complex, whereas the cell topology presented here represents the internal structure
of a cell. This section uses a Hasse diagram to depict the internal structure, but other set/subset representations can also
be used. A Hasse diagram depicts partially ordered sets (posets), where not all elements within a topological spaces can be
compared, e.g., a 1-cell (edge) is not directly related to a 2-cell (triangle). By using the topology of a cell, a simplex cell is
distinguishable from a cuboid8 cell type in several dimensions as depicted in Figs. 5 and 6.

Next, interdimensional objects such as edges and facets can be identified, as can their relations to the cell. As can be seen,
a complete traversal of all different objects is already determined by this structure. Vertex on edge as well as vertex on cell
cases can be derived using the sets of the cell topology.

The topological characterization introduced in Table 1 can then be extended by including the cell topology and is given
in Table 2. As can be seen, the 0-cell complex types do not differ at all. From dimension greater than 1, a distinction can be
achieved by specifying the cell topology.

8 The cuboid cell described here is a topological abstraction of cells with 2n vertices, where n represents the dimension, e.g., a 2-cuboid cell represents
a convex quadrilateral, and a 3-cuboid cell represents a regular convex hexahedron (cube).
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Fig. 7. Complex topology of an array.

Fig. 8. Complex topology of a singly linked list.

Fig. 9. Complex topology of a tree.

Fig. 10. Complex topology of a graph. Left: graph representation. Right: complex topology.

3.3. Complex topology

As the cell topology is used to describe the topology of a cell, this section deals with the structure of the cell complex,
the complex topology. This concept finally creates the basic mechanisms required for identifying the important property of
a unique classification for data structures.

In the following, several examples of different data structures within the context of 0-cell complex types are presented.
The data structure first reviewedmodels the concept of an array. The internal topology can be described using a 0-cell, which
means that no internal traversal is possible. The complex topology is based on a global property. In terms of the STL, this is
called the random access property.

An array structure is shown9 in Fig. 7; in contrast, Fig. 8 presents the structure of a singly linked list. Only locally
neighboring cells can be traversed by this data structure which can be seen in the poset on the right. Furthermore the
number of elements in the meta-cell10 subset is bounded by a constant number, unique for each type of data structure in
the 0-cell complex regime. The singly linked list uses two elements in the meta-cell, later stated as local(2) and called
the forward concept in the STL.

The external topology of a tree structure is depicted, whereas the term local(4) is used for the characterization of the
meta-cell (Fig. 9).

The next example already uses a cell dimension of 1. Fig. 10 introduces the complex topology of a graph with local
properties. Vertices incident to an edge can be traversed as well as adjacent edges, as depicted in Fig. 10 on the right.

For dimensions greater than 1, Fig. 11 depicts the cell topology of a 2-simplex cell complex. As can be seen, the items of
the related set and subsets are cells and meta-cells, in contrast to the sets and subsets of the cell topology diagrams. For this
complex, the bottom nodes {1}, {2}, {3}, {4}, {5} and {6} represent the 2-cells. The rectangle in the figure marks the selected
cell number.

The topology of the cell complex is only available locally because of the fact that the meta-cell set can have an arbitrary
number of elements. In other words, there can be an arbitrary number of triangles in this cell complex attached to the
innermost vertex. The final classification scheme uses the term local to represent this fact.

9 The edges in the respective diagrams represent incidence relations and can be read from the top down.
10 A meta-cell is used here as a subset which is not explicitly available within the data structure, but creates a distinct classification property.
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Fig. 11. Complex topology of a simplex cell complex.

Fig. 12. Complex topology of a cuboid cell complex.

Table 3
The final topological classification scheme for various data structures of arbitrary dimension. The cell dimension is used to primarily classify data structures.
Then the cell topology creates another distinct classification property for higher dimensional complex types. The complex topology provides the final
property of classification for local and global storage (dense and sparse storage).

Data structure Cell dimension Cell topology Complex topology

Array/vector 0 Simplex Global
SLL/stream 0 Simplex Local(2)
DLL/binary tree 0 Simplex Local(3)
Arbitrary tree 0 Simplex Local(4)
Graph 1 Simplex Local
Regular grid 2 Cuboid Global
Regular grid 2 Cuboid Local
Irregular grid 2 Simplex Local
Regular grid 3 Cuboid Global
Regular grid 3 Cuboid Local
Irregular grid 3 Simplex Local

Fig. 12 presents the complex topology of a cuboid cell complex. The rectanglemarks themain cell (5) under consideration.
In comparison to the simplex cell complex, the depicted poset varies in one important fact: The number of elements in the
meta-cell set is always constant throughout all of the cell complex.

This fact can be used to create an implicit data structure. All subsets of the cell complex can be created implicitly. On
the basis of this property the topology of the cell complex can be used as a globally known property and the classification
scheme uses the term global to represent this fact.

On the basis of this introduction, a formal, concise definition is derived, as summarized in Table 3. Section 4 yields a
homogeneous interface for all different types of data structures based on this characterization. The cell topology uses a
keyword to identify the internal object type while the complex topology uses the number of elements of the corresponding
subspace (skeleton).

3.4. Theory of fiber bundles

This section deals with the separation of traversal of data structures and the corresponding data access. A mathematical
model for this separationwas introduced in 1992 [11] andmost of the currently used data structures use this concept already
but not to its full extent. Therefore, a brief introduction to the theory of fiber bundles and a concept to enable backward
compatibility with established data structures is presented.

With the advent of the C++ STL, the separation of data structures and algorithms by the means of iterators has become
one of the key elements for the generic programming paradigm, because the implementation complexity of algorithms and
data structures is reduced significantly. However, iterators combine traversal and data access. The well-known example of a
std::vector<bool> can actually bemodeled by a randomaccess container [2], but due to the currently used classification
of iterators, this container cannot be used with respect to this classification type.

An alternative approach was suggested [2]: separating the traversal and data accessor into a cursor and property map
concept. A possible application of this approach is demonstrated in the following code snippet:
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Separated iteration and data access
vector <bool> container ;
vector <bool > : : i t e r a to r i t ;
property_map pm( container ) ;

i t = container . begin ( ) ;
++ i t ; / / i t e r a t i o n
bool value = pm(∗ i t ) ; / / data access

But this approach suffers from backward compatibility issues. The iterator approach cannot be used directly due to the
explicitly indirect data access in another container pm.

On the basis of the formal classification introduced earlier (Section 3) the combination of traversal and data access is
analyzed in more detail. The following list overviews the basic iterator traits [26]:

Iterator category Specification Property

Input/output Data property
Forward Local(2) Topological property
Bidirectional Local(3) Topological property
Random access Global Topological property

As can be seen, there is a unique and distinguishable definition possible for all data structure properties. On the one
hand, the backward and forward compatibility of the new iterator categories are a major problem [42] and are not included
in the new C++0x standard [16]. On the other hand, problems are encountered if iterator categories are integrated into the
introduced topological specification. In the following the replacements for the input and output traits are listed:

Iterator category Specification Property

Incrementable Local(2) Topological property
Single pass Data property
Forward Local(2) Data and topological property

The combinatorial properties of the underlying spaces of these three categories are the same: a 0-cell complex with a
local topological structure such as:

Data structure Cell dimension Cell topology Complex topology

SLL/stream 0 Simplex Local(2)

The old iterator properties have only used two different categories which specify the behavior of data, namely the input
and output properties. Only the incrementable property can be described by a topological property; the other two categories
are data dependent.

On the basis of these examples, the necessity of separating the topological structure from the attached data can be
identified, which has already found an elegant solution in the form of the fiber bundle approach. The original contribution
of this theory was given in Butler’s vector bundle model [11] which is briefly reviewed here:

Definition 5 (Fiber Bundle). A fiber bundle structure on a topological space E, with fiber F , consists of amapπ : E → B such
that each point of the topological space B has a neighborhoodUb for which there is a homeomorphism f : π−1(Ub) → Ub×F
making the following diagram commute.

E is called the total space, B is called the base space and F is called the fiber space. In other words, this definition requires
that a total space E can be written locally as the product of a base space B and a fiber space F . A direct application of these
terms is provided in the following example:
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Fig. 13. A fiber space with a simple base space over a 0-cell complex.

Fig. 14. Illustration of an index space depths of 0 (left) and 1 (right). The base space is modeled by a 0-cell complex.

Total space Data structure
Base space Cell complex (index space)
Fiber space Attached data

The decomposition using a base space is enforced by a formal introduction of data structures. As an example, Fig. 13
depicts an array data structure as seen on the basis of the concept of fiber bundles. The indices of this array model the
base space, which means that each 0-cell can be accessed through a global index. A simple fiber space, which preserves the
neighborhood of the base space and contains the data of the array, is attached to each cell.

Employing the concept of fiber bundles, the base space is cleanly separated from the fiber space. For the base space of
lower dimensional data structures, such as an array or a singly linked list, the only relevant information is the number of
elements, the cardinality of the index space. On using a matrix property, this is a dense index space (in contrast to sparse
index spaces). Therefore most of the data structures do not separate these two spaces. For backward compatibility with
common data structures the concept of an index space depth is introduced.

As can be seen in Fig. 14, common data structures, such as arrays and lists, can be modeled with an index space depth of
0. The cursor and property map concept always model an index space depth of 1. An index space depth of 0 means that the
index can be used as a value directly. An index space depth of 1 or greater means that the index value returned has to be
used in another container, e.g. a fiber.

The advantage of this approach is similar to that of the cursor and property map [2] but differs in several details. The
similarity is that the two properties can be implemented independently. But the fiber bundle approach equips the fiber
space with much more structure, e.g., when storing more than a single value at a specific traversal position. This feature
is especially useful in the area of scientific computing, where different data sets have to be managed, e.g., multiple scalar
or vector values on a vertex, face, or cell. On the basis of the structure of the fiber space, vertical and horizontal subsets
(slices) can be extracted. Another important property of the fiber bundle approach is that an equal (isomorphic) base space
can be exchanged with another cell complex of the same dimension. Finally, the additional concept of an index space depth
can be used, which provides full backward compatibility of all data structures in the same context as higher dimensional
data structures, such as grids and meshes. The following table summarizes the common features and the differences, while
examples are given in Section 4.

Cursor and property map Fiber bundles

Isomorphic base space No Yes
Traversal possibilities STL iteration Cell complex
Traverse base space Yes Yes
Traverse fiber space No Yes
Data access Single value Topological space
Fiber space slices No Yes
Backward compatibility No Yes

4. Generic topology library

This section not only gives an overview of the library, but also elucidates the transition from mathematical concepts
to a library. It then proceeds to give examples for cell and complex type specifications which also encompass reviews
of data structures in related libraries, which are classified according to their corresponding properties, thereby revealing
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Fig. 15. Conceptual view of the GTL.

the common interface for several data structures. The library is based on layered and orthogonal concepts, which are
schematically illustrated in Fig. 15. It follows from this design that each layer may be used separately.

The lowest layer represents mechanisms for handling sets. Most of this layer is implemented by means of several
different data types. This layer also integrates a homogeneous access to compile time and run-time mechanisms. The next
layer implements poset traversal mechanisms. Generic traversal operations use the information of the sets and specify
the corresponding traversal objects. Cell and complex topology modules offer various access mechanisms based on the
underlying set operations. Local and global properties of the complex topology part are implemented with their respective
interfaces, as given in detail in Section 3.3. The layers on the left can be seen as the base space properties of the fiber
bundle approach. The right side of the figure depicts the fiber space with the corresponding quantity and accessor layer. The
implementation basically adheres the propertymap concept but differs in several details, as explained in Section 3.4. Finally,
the container layer combines the final complex part with the data storage part, also considering the index space depth.

To guarantee an overall high performance and to avoid abstraction penalties, different times of evaluation have been
made available. The cell and complex which provide all necessary information at compile time are completely optimized
by the compiler and do not introduce any run-time overhead. Run-time specification is only necessary where topological
information for cell or complex topology is not available at compile time, e.g., for polytope cell topologies or local complex
topologies (meshes). The following table overviews the different mechanisms with their corresponding times of evaluation.

Compile time Run-time

Cell topology, simplex Yes No
Cell topology, cuboid Yes No
Cell topology, polytope No Yes
Complex topology, local No Yes
Complex topology, global Yes No

With the advent of the Fusion library [8] the interplay between compile and run-time is encapsulated cleanly. In the
following the transition from the formal introduction to the notation made possible by the GTL is presented. Cells can be
created by simply specifying their necessary topological properties: dimension and cell type.11

Cell type definition
cel l_type <0 , simplex> c e l l s _ t ;
cel l_type <3 , cuboid> c e l l c _ t ;

Further specification for cell complexes is then possible by stating the cell types as well as the complex topology: global
or local. As an example, an array, a doubly linked list, and a regular grid can be modelled concisely.

Complex type definition
complex_type< ce l l s _ t , g lobal > complex1_t ; / / array
complex_type< ce l l s _ t , loca l <3> > complex2_t ; / / DLL / t r e e
complex_type< ce l l c _ t , global > complex3_t ; / / r egu lar gr id

Data accessors model the fiber bundle approach and equip the data storage with additional structure such as base space
index access, fiber space index access, and slice extraction. The container for the accessors can be chosen arbitrarily to satisfy
the application requirements.

Data accessors for the container
value = fb : : get_value ( container ) ( base_handle , quan_key ) ;
/ / or . .
value = fb : : get_value ( container )(∗ vertex_on_cell , quan_key ) ;

11 Typedefs are suppressed due to space constraints. Suffixes are used to distinguish between the abstract concept type, e.g., cell_type, and the
corresponding model type, e.g., cells_t. Both are types and hence carry a suffix to separate them from the instantiated object.
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Here the base_handle (index) selects the respective fiber whereas the quan_key selects the corresponding fiber
element. In contrast to the cursor and property map concept, the fiber bundle approach allows a traversal within the fiber
space as well:

Fiber access
f i be r = fb : : ge t_ f iber ( container ) ( base_handle ) ;
for ( i t = f i be r . begin ( ) ; i t != f i be r . end ( ) ; ++ i t )
{ / / . . . }

Next, a slice can be extracted, which means that the complete data attached to a base space can be returned:

Slice access
s l i c e = fb : : ge t _ s l i c e ( container ) ( quan_key ) ;
for ( i t = s l i c e . begin ( ) ; i t != sl ice_end ( ) ; ++ i t )
{

/ / . .
}

The following code snippet gives a simple example of the generic use of a data accessor similar to the property map
concept, where a scalar value is assigned to each vertex in a domain. In the given example the data accessor is extracted
from the container to enable functional access.

Data accessor
da_type da ( container , key_d ) ;

for_each
(
container . vertex_begin ( ) ,
container . vertex_end ( ) ,
da = 1.0
) ;

The container type is presented next, which combines the complex types (base space properties) with the data types
(fiber space properties). Finally the index_space_depth property is used to introduce the distance of the data accessors
from the base space.

Container type definition
typedef long data_t ;
typedef container_type <complex1_t ,

data_t ,
indexspace <0> > container_t ;

container_t container ;

The following sections introduce several examples for cell complex types of different dimensions as well as a comparison
of the GTL with the related works.

4.1. Data structure definition

By identifying data structures with finite topological spaces, or more specifically with cell complexes, concepts from
topology, such as complex type, cell type, and the dimension, are available for common properties to be studied. This section
illustrates the mathematical concepts introduced by giving examples of data structure equivalence of STL containers and
GTL specifications. Data structure definitions of 0-cell complexes are compared to STL data structures. Then 1-cell complexes
are used to compare BGL traversals and GTL traversals. It is shown that GTL and BGL are interoperable, which means that
the same algorithms can be used. More complex traversal algorithms are then given for 2-cell complexes and compared to
CGAL and GrAL algorithms. Not only can the algorithms from CGAL and GrAL bemade available for the other libraries by the
GTL, but it is demonstrated that GTL’s traversal can be combined in arbitrary ways. Arbitrary dimensional cell complexes
are then presented to highlight the unlimited topological specification possibilities.

4.1.1. The 0-cell complex
The 0-cell complex types are used, e.g., for the data structures within the C++ STL. The next code snippet presents an

example of specification with the GTL whereas the tags simplex and cuboid stand for the cell topology type. The tags global
and local specify the complex topology. GTL’s internal representations are normally linked to STL data structures but can be
changed easily.
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STL data structure definitions
cel l_type <0 , simplex> c e l l s _ t ;

complex_type< ce l l s _ t , g lobal > cx ; / / array
complex_type< ce l l s _ t , loca l <2> > cx ; / / SLL / stream
complex_type< ce l l s _ t , loca l <3> > cx ; / / DLL / t r e e
complex_type< ce l l s _ t , loca l <4> > cx ; / / a r b i t r a r y t r ee

For cell complexes of this dimension the STL iterator traits may be used to classify the data structure as well:

STL data structure definitions, STL iterator traits
complex_type< ce l l s _ t , random_access> cx ; / / simplex , g l oba l
complex_type< ce l l s _ t , forward> cx ; / / simplex , l o ca l <2>
complex_type< ce l l s _ t , b id i rec t iona l > cx ; / / simplex , l o ca l <3>

The equivalence of STL data structures and the GTL specification is illustrated in the following code snippet12:
Equivalence of data structures

typedef cel l_type <0 , simplex> c e l l s _ t ;
typedef complex_type< ce l l s _ t , random_access> complex_t ;
typedef long data_t ;
typedef container_type <complex_t ,

data_t ,
indexspace <0> > container_t ;

container_t container ;

/ / i s equ iva lent to

std : : vector <data_t > container ;

The separation of the topological structure and data specification can be observed clearly.

4.1.2. The 1-cell complex
This type of cell complex is usually called a graph. Fig. 10 presents a typical example. A cell of this type of cell complex is

called an edge. Information on the incidence and adjacency of edges and vertices is available. The next code snippet presents
a traversal (iteration) of all edges using mechanisms of the BGL.13

BGL traversal
typedef adjacency_l is t <vecS , vecS> Graph ;
Graph gr ( number_of_points ) ;

/ / edge i n i t i a l i z a t i o n

edge_iterator e i t , eit_end ;

for ( t i e ( e i t , eit_end ) = edges ( gr ) ;
e i t != eit_end ; ++ e i t )

{
test_source1 += source (∗ ei t , gr ) ;
test_source2 += target (∗ ei t , gr ) ;

}

The same functionality can be accomplished with the GTL as is demonstrated in the following snippet of code. The
global tag is used to highlight the global structure of the graph, which means that the internal data layout is prepared
for dense graph storage. In terms of the BGL, an adjacency graph data structure is used. All BGL algorithms can then be
used, with the GTL acting as an interface layer only.

12 The current version of GTL uses trait classes to remove unnecessary code.
13 For the BGL traversal snippet no GTL part is used.
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Fig. 16. Incidence relation and traversal operation.

GTL traversal
typedef cel l_type <1 , simplex> c e l l s _ t ;
typedef complex_type< ce l l s _ t , global > complex_t ;
typedef long data_t ;
typedef container_type <complex_t ,

data_t ,
indexspace <1> > container_t ;

container_t container ( number_of_vertices ) ;

/ / c e l l i n i t i a l i z a t i o n

container_t : : ce l l _on_ver tex_ i t covit , covit_end ;

for ( t i e ( covit , covit_end ) = c e l l s ( topo ) ;
cov i t != covit_end ; ++ covi t )

{
test_source1 += source (∗ covit , topo ) ;
test_source2 += target (∗ covit , topo ) ;

}

4.1.3. The 2-cell complex
This type of cell complex is usually called a grid. The following example specifies two-dimensional cell complexes; a

simplex cell complex and a cuboid cell complex are depicted in Figs. 11 and 12 respectively.

Grid definitions
cel l_type <2 , simplex> c e l l s _ t ;
cel l_type <2 , cuboid> c e l l c _ t ;
complex_type< ce l l s _ t , global > cx_g ; / / i r r e gu l a r gr id
complex_type< ce l l c _ t , loca l > cx_l ; / / r egu lar gr id

An illustration of the traversal mechanisms of the GTL is presented in the following code snippet. The traversal starts
with an arbitrary cell of the 2-cell complex followed by a vertex on cell traversal, which is initialized with the selected cell
of the complex. During this loop the currently evaluated vertex is used to initiate an additional edge on vertex traversal.
A corresponding graphical representation is given in Fig. 16. The highlighted objects mark the currently evaluated objects.
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In the first traversal state the vertex v1 is used and the traversal is performed over the incident edge, before the traversal
continues with the remaining vertices.

More complex traversal
c e l l _ i t e r a t o r c _ i t = container . ce l l_begin ( ) ;

ver tex_on_ce l l _ i te ra tor voc_i t = container . voc_begin (∗ c _ i t ) ;
ver tex_on_ce l l _ i te ra tor voce_it = container . voc_end(∗ c _ i t ) ;

for ( ; voc_ i t != voce_it ; voc_ i t . increment ( ) )
{

edge_on_vertex_iterator eov_it = container . eov_begin (∗ voc_i t ) ;
edge_on_vertex_iterator eove_it = container . eov_end(∗ voc_i t ) ;

for ( ; eov_it != eove_it ; eov_it . increment ( ) )
{ / / operat ions on edges }

}

The traversal can be used independently of the dimension or type of cell complex used. Only three different objects have
to be guaranteed by the cell complex: vertices, edges, and cells. All cell complex types which support these three objects
can be used for this traversal.

The next example, which implements the traversal of all facets related to a cell, compares the traversal mechanisms of
the CGAL and the GTL.

CGAL traversal for the cell topology
/ / . . . . . Polyhedron P d e f i n i t i o n

for ( Face t_ i te ra tor i = P . facets_begin ( ) ;
i != P . facets_end ( ) ; ++ i )

{
Hal fedge_facet_c i rcu lator j = i−>facet_begin ( ) ;

do
{ / / operat ions on f a c e t
} while ( ++ j != i−>facet_begin ( ) ) ;

}

GTL traversal for the cell topology
/ / conta iner d e f i n i t i o n

c e l l _ i t e r a t o r c _ i t = container . ce l l_begin ( ) ;

f a ce t _on_ce l l _ i t e ra to r f o c _ i t = container . foc_begin (∗ c _ i t ) ;
f a ce t _on_ce l l _ i t e ra to r foce_ i t = container . foc_end (∗ c _ i t ) ;

for ( ; f o c _ i t != foce_ i t ; ++ f o c _ i t )
{ / / operat ions on f a c e t }

The next example compares the GrAL traversal with the traversal operations of the GTL.

GrAL traversal
typedef grid_types <Triang2D> gt ;
Triang2D CC;

for ( gt : : C e l l I t e r a t o r c (CC ) ; ! c . IsDone ( ) ;++ c )
{

/ / loop over a l l v e r t i c e s vc o f c e l l c , p r in t number o f vc
gt : : VertexOnCel l I terator vc ;
for ( vc = (∗c ) . F i r s tVertex ( ) ; ! vc . IsDone ( ) ; ++vc )
{ / / use ∗vc }

/ / loop over a l l neighbors
for ( gt : : Ce l lOnCe l l I t e ra tor cc ( c ) ; ! cc . IsDone ( ) ; ++cc )
{ / / use cc }

}
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GTL traversal
cel l_type <2 , simplex> c e l l ; / / t r i a n g l e
/ / conta iner d e f i n i t i o n
c e l l _ i t e r a t o r c _ i t = container . ce l l_begin ( ) ;
c e l l _ i t e r a t o r ce_ i t = container . cel l_end ( ) ;

for ( ; c _ i t != ce_ i t ; ++ c _ i t )
{

ver tex_on_ce l l _ i te ra tor voc_i t = container . voc_begin (∗ c _ i t ) ;
ver tex_on_ce l l _ i te ra tor voce_it = container . voc_end(∗ c _ i t ) ;

for ( ; voc_ i t != voce_it ; voc_ i t . increment ( ) )
{ / / use ∗voc_ i t }

c e l l _on_ce l l _ i t e r a to r coc_ i t = container . coc_begin (∗ c _ i t ) ;
c e l l _on_ce l l _ i t e r a to r coce_ i t = container . coc_end(∗ c _ i t ) ;

for ( ; coc_ i t != coce_ i t ; ++ coc_ i t )
{ / / use ∗ co c _ i t }

}

The interfaces can be exchanged easily and each of these libraries can be used with the GTL interface. The 3-cell complex
is similar if the simplex and cuboid object types are used. Therefore the corresponding figures and code snippets are
omitted.

4.1.4. The ND cell complex
On the basis of the formal definition of finite cell complexes, higher dimensions can be used as well. The only extension

to the GTL is the introduction of the cell and complex topology for higher dimensions. For the simple case of a four-
dimensional hypercube, the cell topology can be calculated as in the other dimensions. The following code snippet
presents the implementation of a 4-cell simplex complex.14 The stored data are based on scalar values using a long
representation.

Traversal with the approach presented here
typedef cel l_type <4 , simplex> c e l l s _ t ;
typedef complex_type< ce l l s _ t , random_access> complex_t ;
typedef long data_t ;
typedef container_t <complex_t , data_t , indexspace <1> >

container_t ;

5. Application and performance

This section presents several applications of the GTL, starting with traversal examples, some which exceed the
possibilities provided by other libraries. Next, a performance analysis is given where the GTL is compared to native C and
BGL examples. Finally, an application from the field of device simulation is given using a finite volume discretization scheme
specified in a dimension and topology independent manner. By providing a concise interface to different kinds of data
structures, different types of equation specification aremade possible. In this way algorithms and equations can be specified
independently of dimension or topological cell complex type. Here the functional programming paradigm becomes visible
by using a partitioned index space and parallel assembly without source code modification [37,36].

5.1. Traversal

To introduce a simple example based on themechanisms of the GTL a container is traversed,15 the data accumulated and
the result printed.

14 Due to compile time restrictions only up to 11 dimensions are currently available in GTL.
15 The gtl::traverse is a Phoenix function object which wraps the container iterators.
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Fig. 17. Two-dimensional iteration. A two-dimensional field of vectors is traversed.

Fig. 18. Meta-cell iteration. In this iteration the two elements closest to a given element are traversed.

GTL traversal with accumulation
typedef container <2 , random_access> topo_t ;
typedef long data_t ;
container_type <topo_t , data_t > container ;
container_type : : data_accessor da ;
g t l : : traverse < ce l l >
[

std : : cout << g t l : : sum<vertex > (0 . 0 ) [ da ] << std : : endl
] ( container ) ;

To present the interoperability with STL containers, a standard vector is traversed and all of its elements are summed.
This is still possible using standard algorithms as shown for comparison.

C++ STL and GTL traversal and accumulation
vector < int > vec ;
std : : accumulate ( vec . begin ( ) , vec . end ( ) , ZERO , _1 + _2 ) ; / / STL
g t l : : sum<ce l l >[ _1 ] ( vec ) ; / / GTL

The following operations are not efficiently possible with standard algorithms but can be specified using functional
environments like FC++ [27] and Phoenix [10]. An iteration over a two-dimensional field is performed as depicted in Fig. 17.

Two-dimensional traversal
vector <vector < int > > vec2 ;

std : : accumulate ( vec2 . begin ( ) , vec2 . end ( ) , 0 ,
_1 +
phoenix : : accumulate ( _2 , 0 .0 , lambda ( ) [ _1 + _2 ] ) ) / / Phoenix

g t l : : sum<ce l l > [ g t l : : sum<ce l l >[ _1 ] ] ( vec2 ) ; / / GTL

The following is an example which exceeds the power of available functional frameworks. A traversal operation over a
container is used which accumulates the product of the values stored in the N elements, which are topologically closest to
the initial element. The GTL groups these vertices into ameta-cell (Fig. 18)16 as already presented in Section 3.3. The vertices
within a meta_cell<N>, which is provided by the GTL, can then be traversed like vertices attached to a simplex or cube.
This mechanism is used to calculate, e.g., higher order finite difference schemes.

GTL iteration with sum and product operation
vector < int > vec ;

g t l : : sum<ce l l >
[

g t l : : product < g t l : : meta_cell <3> >[_1 ]
] ( vec ) ;

Even though FC++ and Phoenix2 provide container access, such operations cannot be carried out in an easy manner
without rewriting some components for this special case. Using the iteration data structures of the GTL, one can use arbitrary
subsets for accumulation or iteration.

16 Here, the meta-cell simply represents a subset of elements.



342 R. Heinzl, P. Schwaha / Science of Computer Programming 76 (2011) 324–346

Fig. 19. Topological traversal of vertices.

Fig. 20. 0-cell traversal on the P4 (left) and AMD64 (right); the units are iterations per second.

Fig. 21. 0-cell traversal on the G5 (left) and IBM (right); the units are iterations per second.

5.2. Performance analysis

The most important parts of how to achieve high performance in C++ can be summarized on the one hand by static
parametric polymorphism [24,35,28] for global optimization with inlined function blocks, and on the other hand by
lightweight object optimization [33] which enables allocation of simple objects to registers.

This has already been demonstrated in the field of numerical analysis, yielding figures comparable to those of Fortran
[39,38,40], the previously undisputed choice for this kind of calculation. The C and Fortran languages do not offer techniques
for a variable degree of optimization, such as controlled loop unrolling [34,24]. Such tasks are left to the compiler. Therefore,
libraries have to use special techniques as employed by ATLAS [41] or have to rely on manually tuned code elements which
have been assembled by domain experts or the vendors of the microprocessor architecture used.

To analyze the performance of the implemented GTL approach [19] on various computer systems, the maximum
achievable performance is summarized in the following table, which shows the CPU types, the amount of RAM, and the
compilers used. A balance factor (BF) is evaluated by dividing the maximum MFLOPS measured by ATLAS [41] by the
maximum memory band width (MB) in megabytes per second measured with STREAM [1]. This factor states the relative
cost of arithmetic calculations compared to memory access.
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Fig. 22. Topological traversal of cells for a 1-cell complex.

Fig. 23. Incidence traversal for the BGL and the GTL approach on the P4 (left) and AMD64 (right); the units are iterations per second.

Fig. 24. Incidence traversal for the BGL and the GTL approach on the G5 (left) and IBM (right); the units are iterations per second.

Type Speed RAM GCC MFLOPS MB/s Balance factor

P4 1 × 2.8 GHz 2 GB 4.0.3 2310.9 3045.8 0.7
AMD64 1 × 2.2 GHz 2 GB 3.4.4 3543.0 2667.7 1.2
IBMP655 8 × 1.5 GHz 64 GB 4.0.1 16361.7 4830.4 3.4
G5 4 × 2.5 GHz 8 GB 4.0.0 24434.0 3213.3 7.6
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The first analysis concerns to the topological traversal for different dimensional cell complex types. First a typical repre-
sentative of a 0-cell complex, e.g., an array, is traversed. The C++ STL containers, such as a vector or list, are representatives
and are schematically depicted in Fig. 19, where the points represent the cells on which data values are stored.

To investigate the abstraction penalty of the generic code a simple C implementation is used without any generic
overhead which might be attributable to the GTL. The next code snippet presents the C source code for a three-dimensional
0-cell complex (cube) and is followed by the generic approach:

C approach for 0-cell traversal
for ( i3 = 0; i3 < sized3 ; i3 ++)

for ( i2 = 0; i2 < sized2 ; i2 ++)
for ( i1 = 0; i1 < sized1 ; i1 ++)
{ / / operat ions , use i1 , i2 , i3 }

Generic approach for 0-cell traversal
vi t1 = container . vertex_begin ( ) ;
v i t2 = container . vertex_end ( ) ;
for ( ; v i t1 != vi t2 ; ++vi t1 )
{ / / operat ions , use ∗v i t1 }

Figs. 20–21present results obtainedon four different computer systems. As canbe seen, the performances are comparable
on different systems without incurring an abstraction penalty from the highly generic code when compared to a simple C
implementation.

To provide a more complex example, the traversal mechanisms of the BGL data structures are compared to the approach
given here. Fig. 22 presents a 1-cell complex type with an edge traversal mechanism. The source code snippets from
Section 4.1.2 are used as the corresponding implementations.

Figs. 23–24 present the run-time results for edge on vertex traversal. The overall run-time behavior of the GTL is
comparable, at times even superior, to that of the BGL.

5.3. TCAD Application

In this section, an example of a TCAD device simulation application is presented. Themost basicmodel, the drift-diffusion
model, consists of a set of coupled partial differential equations which need to be assembled and solved. In this case the
assembly time is usually small compared to the time spent on the solution of the equation system. More sophisticated and
complex models, such as the energy transport model presented or higher transport models, however, spend an increasing
amount of time on equation assembly.

Discretized using finite volume schemes, it can be assembled in parallel by partitioning the traversal space due to the
linewise entries into the matrix. Eq. (2) shows the energy flux equation for electrons, which is solved self-consistently with
Poisson’s equation and the current relations [31]. The following code snippet demonstrates the actual C++ code for the
electron temperature T_n determined by Eq. (2) [15]:

div

αn grad(nT 2

n ) + gradϕ n Tn


= −gradϕ · Jn − βn n(Tn − TLattice). (2)

Each sum can be automatically parallelized by using the parallel STL, where the full matrix line is assembled in parallel by a
vertex partitioning mechanism executed by spawned threads17:

(sum<edge >( )
[ l e t ( _x = Bern ( edge_log <vertex >(T_n ) ) / T_n ∗

sum<vertex >( ) [ phi ] +
sum<vertex >( ) [ T_n ] )

[
alpha_n ∗ T_n / Bern ( edge_log <vertex >(T_n ) ) ∗

sum<vertex >( ) [ Bern ( _x ) ∗ n ∗ T_n ] ∗

area / d i s t
]

]
+ sum<edge >( )
[ sum<vertex >( ) [ phi ] / d i s t ∗ J_n ] ∗ vol

+ beta_n ∗ n ∗ ( T_n − T_ l a t t i c e ) ∗ vol
) ( vx ) ;

17 The _x represents Phoenix 2 local scope variables.
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Table 4
Comparisons of the simulation times for drift-diffusion and hydrodynamic simulation of a pn-diodewith GCC 4.2 on an AMDX4 Phenom9600 (Quad-Core).

Example Sequential (s) 2 threads (s) 4 threads (s)

DD 10.0 9.3 8.1
HD 15.2 10.5 8.8

Table 5
Comparisons of the simulation times for drift-diffusion and hydrodynamic simulation of a pn-diode with GCC 4.2 on an Opteron Cluster with 4xDual-Core
8222 SE.

Example Sequential (s) 2 threads (s) 4 threads (s) 8 threads (s)

DD 11.6 10.1 9.1 8.3
HD 17.8 14.7 10.5 8.9

Several existing multi-thread libraries can be used orthogonally due to the separate partitioning of the vertex space (e.g.,
the Boost thread library [7]). This method can then be used for all finite volume codes.

To present the results obtained by using differentmachines and not altering the actual code parts, a benchmark18 is given
for a simple drift-diffusion (DD) and hydrodynamic (HD) simulation for a two-dimensional pn-diode with 4000 elements
(Table 4). The bias voltage is stepped from −0.03 V to 1 V. For the actual benchmarks, a sequential implementation of a
BiCGStab algorithm was used.

Table 5 reviews the benchmark results from four AMD 4xDual-Core Opteron Cluster 8222 SE 3 GHz with 2 × 32 GByte
and 2 × 16 GByte RAM.

6. Conclusion

By usingmathematical concepts derived from topology, data structure properties can be separated into cell and complex
topologies. The separation of topological structure and data access has been studied by using concepts from the theory of
fiber bundles. Iterator, cursor, and property map concepts are analyzed and a common data accessor with full backward
compatibility has been presented.

A common specification for various data structure properties of arbitrary dimension and topological cell types then
enables the efficient development of generic algorithms and applications in the field of scientific computing. The separation
of base and fiber space eases thehandling ofmore complexdata sets byproviding a commonaccessmechanism. Additionally,
traversal capabilities are availablewhich exceed the capabilities of other libraries. This has beenpresented in the final section
by presenting complex traversal capabilities as well as a performance comparisons of the GTL to other libraries.

Functional programming greatly benefits from common characterization of data structures and the common traversal
properties due to inherent parallelization capabilities. A final application benchmark from the field of TCAD has been
presented and hence it was shown that modern computer architectures can benefit greatly from the inherent parallel
capabilities of the approach presented.
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