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Abstract—The electronic properties of graphene nanoribbons
(GNRs) in the presence of line-edge roughness scattering are stud-
ied. The mobility, conductivity, mean free path, and localization
length of carriers are analytically derived using an effective mass
model for the band structure. This model provides a deep insight
into the operation of armchair GNR devices in the presence of
line-edge roughness. The effects of geometrical and roughness
parameters on the electronic properties of GNRs are estimated
assuming a diffusive transport regime. However, in the presence of
disorder, localization of carriers can occur, which can significantly
reduce the conductance of the device. The effect of localization on
the conductance of rough nanoribbons and its dependences on the
geometrical and roughness parameters are analytically studied.
Since this regime is not suitable for the operation of electronic
devices, one can employ these models to obtain critical geometrical
parameters to suppress the localization of carriers in GNR devices.

Index Terms—Diffusive transport, effective band gap,
graphene, localization, mobility, quantum transport.

I. INTRODUCTION

S INCE the miniaturization of silicon-based devices is ap-
proaching its limits, new transistor materials are desired

[1]. For replacing silicon, many materials such as compound
semiconductors, carbon nanotubes, and graphene have been
studied. Graphene, which is a 2-D sheet of carbon atoms
arranged in a honeycomb lattice, has been studied as a potential
candidate for future electronic applications [2]–[6]. However,
graphene is a gapless material. To induce an electronic band
gap, graphene sheets are patterned into ribbons, which are so-
called graphene nanoribbons (GNRs) [7]. GNRs are quasi-1-D
materials with a band gap depending on the width of the ribbon
and its crystallographic direction [8]. Experimental studies
show that the mobility of GNRs is much lower than that of a
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graphene sheet [2], [9]. To improve the electronic properties of
GNRs and to achieve a better insight into the operation of such
devices, major sources of carrier scattering must be studied. For
electronic applications, a band gap larger than 0.1 eV is essen-
tial. Therefore, the width of GNRs must be scaled below 10 nm
to achieve this goal [8]. In narrow GNRs, edge disorders have a
strong effect on the conductivity [10], [11]. Experimental data
show that the line-edge roughness is the dominant scattering
mechanism for GNRs of widths below 60 nm [12]. Line-edge
roughness causes fluctuations in the edge potential and lead to
the modulation of the band gap. Therefore, a comprehensive in-
vestigation of the effects of edge disorder is needed. The effect
of edge disorder on the electronic properties of GNRs has been
recently addressed in several numerical studies [13]–[20]. An
analytical model for the localization length in GNR due to edge
disorder has been presented in [21]. In that work, an Anderson
model has been employed, and the correlation between edge
disorders has been neglected. In this paper, however, we assume
an exponential autocorrelation between edge disorders. Em-
ploying an effective mass model, analytical models for the mo-
bility, conductivity, mean free path, and localization length for
armchair GNRs have been derived. The conductance of GNRs
is studied in both the diffusive transport and the localization
regimes. The effect of localization is investigated by introduc-
ing an effective band gap, where analytical approximations for
this quantity are presented. The effective mass is fitted to the
tight binding band structure model, where up to three nearest
neighbors and also the passivization of the dangling bonds
with hydrogen are considered [22]. Employing this model, the
effects of the width, temperature, and roughness parameters on
the electronic properties of armchair GNRs are investigated.
Comparison with numerical results shows the excellent accu-
racy of our analytical models. This paper is organized as fol-
lows: In Section II, the band structure model is discussed, and
the quantities related to the band structure are derived. In Sec-
tion III, the line-edge roughness model is discussed, followed
by an analytical derivation of the mobility and conductivity in
Section IV. The roles of the width, temperature, and roughness
parameters are investigated in Section V. In Section VI, the
localization of carriers in GNRs is discussed. Finally, conclud-
ing remarks are presented in Section VII.

II. ELECTRONIC BAND STRUCTURE

It has been shown that a three nearest neighbor tight binding
approximation along with an edge-distortion correction can

0018-9383/$26.00 © 2011 IEEE
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accurately predict the band structure of GNRs [22]. Using a
Taylor expansion around the charge neutrality point, the band
structure of an armchair GNR can be written as [22]

E±
n (kx) ≈ ±

√
(EG,n/2)2 + (�vn)2k2

x (1)

with

EG,n ≡ 2

[
γ1 (2 cos(nθ) + 1) + γ3 (2 cos(2nθ) + 1)

+
4(γ3 + Δγ1)

N + 1
sin2(nθ)

]
(2)

v2
n =

(
3acc

�

)2

×
[
−1

2
γ1 cos(nθ)

×
{
γ1 + γ3 (2 cos(2nθ) + 1)

+
4(γ3 + Δγ1)

N + 1
sin2(nθ)

}

− γ3

{
γ1 + 2γ3 cos(2nθ)

+
4(γ3 + Δγ1)

N + 1
sin2(nθ)

}]
(3)

θ =
π

N + 1
. (4)

In (1), + and − represent the conduction and the valence
bands, respectively; N is the total number of A- and B-type
carbon atoms in each chain of the ribbon (see Fig. 1); n =
1, . . . , N denotes the subband index; and EG,n and EC,n are
the band gap and the band edge energy of the nth subband,
respectively. Due to the symmetric band structure of electrons
and holes, one obtains EG,n = 2EC,n. The first and third
nearest neighbor hopping parameters are γ1 ≈ −3.2 eV and
γ3 ≈ −0.3 eV, respectively. Δγ1 ≈ −0.2 eV is the correction
to the first nearest neighbor due to edge distortion [22]. Using
(2), one can straightforwardly show that the band gap of GNRs
is inversely proportional to the ribbon’s width [22], i.e.,

EG,n ≈ c

W
. (5)

For GNRs with indexes N = 3p, N = 3p+ 1, and N = 3p+
2, where p is an integer, one can fit the band gap of the first
subband to (5) with c = 0.8 eV · nm, c = 1.6 eV · nm, and c =
0.4 eV · nm, respectively (see Fig. 2).

A. Effective Mass Approximation

Applying a Taylor expansion to (1), the band structure of
an armchair GNR can be approximated by an effective mass

Fig. 1. Structure of a GNR with armchair edges and the x–y coordinate
system. The edges of the GNR are terminated by hydrogen atoms.

Fig. 2. (a) Band gap and (b) the effective mass of armchair GNRs as a function
of the width for different GNR types. (Symbols) The exact values and (lines)
the fitted curves.

model as

E±
n (kx) ≈ ±

(
EC,n +

(�vnkx)2

2EC,n

)
= ±

(
EC,n +

�
2k2

x

2m∗
n

)
.

(6)

Effective mass m∗
n of subband n is given by

m∗
n =

EC,n

v2
n

. (7)

The effective mass has width dependence through both terms
in the numerator and the denominator, which are inversely
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proportional to the ribbon width. Therefore, the effective mass
of the subbands can be approximated as

m∗
n

m0
≈ d

W
. (8)

For GNRs with indexes of N = 3p, N = 3p+ 1, and N =
3p+ 2, one can fit the effective mass of the first subband to
(8) with d = 0.7 nm, d = 2.0 nm, and d = 0.4 nm, respectively
(see Fig. 2).

B. Density of States and Carrier Concentration

Using the effective mass model, the density of states per unit
length for the nth subband can be written as

ρn(E)=
4

2π

(
∂E

∂k

)−1

=

√
2m∗

n

π�

1√
E−EG,n/2

Θ(E−EG,n/2).

(9)

Here, Θ is the unit step function. The total density of states
is given by ρ(E) =

∑
n ρn(E). The electron concentration can

be then evaluated as

n =

∞∫
0

ρ(E)f(E) dE. (10)

We assume Fermi–Dirac distribution function f(E) = 1/(1 +
exp[(E − EF )/kBT ]), where kB is the Boltzmann constant,
T is the temperature, and EF is the Fermi level. The electron
concentration follows from (10) as (see the Appendix)

n =

√
2kBT

π�2

∑
n

√
m∗

nF−1/2(ηn) (11)

where F−1/2 is the Fermi integral of order −1/2 [see (55)] and
ηn = (EF − EG,n/2)/kBT . In nondegenerate semiconduc-
tors, the Fermi integral can be approximated as F−1/2(ηn) ≈
exp(ηn), and the concentration can be thus approximated as

n ≈
√

2kBT

π�2

∑
n

√
m∗

n exp
[
(EF −EG,n/2)

kBT

]
. (12)

III. LINE-EDGE ROUGHNESS SCATTERING

Both experimental data [12] and theoretical predictions [10],
[11], [13], [18] indicate that the line-edge roughness is the
dominant source of scattering in narrow GNRs. Line-edge
roughness is a statistical phenomenon that can be described
by introducing an autocorrelation function [23]. An exponential
autocorrelation is applied in this paper for evaluating transition
matrix elements due to line-edge roughness. The scattering rate
and the relaxation time are subsequently analytically derived.

A. Transition Matrix Elements

Using the Fermi-golden rule, the transition rate of electrons
due to line-edge roughness from subband n with initial wave-
vector kx, represented by |ψn(kx)〉, to another subband n′

with final wave-vector k′x, represented by |ψn′(k′x)〉, can be
written as

Sn,n′ (kx, k
′
x) =

2π
�

|〈ψn′ (k′x) |HLER|ψn(kx)〉|2

× δ (En′ (k′x) − En(kx)) . (13)

The delta function states the energy conservation, where line-
edge roughness scattering is assumed to be an elastic process.
Due to open boundaries in the longitudinal direction (x-axis)
and confinement along the transverse direction (y-axis), the
electron wave functions are given by

〈x|ψn(kx)〉 =
1√
L
φn exp(ikxx). (14)

Here, L is the length of the ribbon. In a ribbon with perfect
edges, φn is only a function of transverse-direction φn =
φn(y). However, for ribbons with rough edges, φn also has
some dependence on longitudinal direction φn = φn(y, x). We
assume smooth roughness, where one can neglect the depen-
dence of φn on the longitudinal direction. Furthermore, φn is
assumed to be normalized

∫W

0 |φn(y)|2 = 1.
It is shown in Section II that the band edges and the electronic

band gap of GNRs are inversely proportional to the ribbon’s
width EG,n = c/W , where c is a constant. We assume that the
band edges of the ribbon are modulated by the width fluctu-
ations due to line-edge roughness. Therefore, the perturbation
potential is given by [24]

HLER(x) = δEC,n = − c

W 2
δW = −δW (x)

W
EC,n. (15)

δW (x) denotes the width fluctuations, and W = 〈W (x)〉 is the
average width of the ribbon as

Mn,n′ (kx, k
′
x) = 〈ψn′ (k′x) |HLER|ψn(kx)〉

=
−EC,n

WL

W∫
0

φ∗n′(y)φn(y) dy

L∫
0

δW (x)

× exp [−i (k′x − kx)x] dx

= δn,n′
−EC,n

WL

L∫
0

δW (x)

× exp [−i (k′x − kx)x] dx (16)

where only intrasubband transitions are considered (n′ = n)
[24]. Therefore, one can obtain the square of the transition
matrix elements as

|Mn (kx, k
′
x)|2 =

(
EC,n

WL

)2 ∫
δW (x1) exp [+i (k′x − kx)x1]

×dx1

∫
δW (x2) exp [−i (k′x − kx)x2] dx2. (17)

The ensemble average of (17) leads to

|Mn (kx, k
′
x)|2 =

(
EC,n

WL

)2 ∫ ∫
〈δW (x1)δW (x2)〉

× exp [−iq.(x1 − x2)] dx1 dx2. (18)
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Here, q = kx − k′x. The correlation between δW (x1) and
δW (x2) can be described by an autocorrelation function as
R(x1, x2) = 〈δW (x1)δW (x2)〉. For stationary processes, au-
tocorrelation function R(x1, x2) depends only on the relative
distance between the points, i.e., R(x1, x2) = R(x1 − x2).
Therefore, one can introduce relative coordinate x = x1 − x2

and rewrite (18) as

|Mn(q)|2 =
(
EC,n

WL

)2
L∫

0

dx1

∫
R(x) exp(−iqx) dx

=
(
EC,n

W

)2
G(q)
L

. (19)

The Fourier transform of autocorrelation function G(q) =∫
R(x) exp(−iqx)dx is called the power spectral density. It is

common to use a Gaussian or an exponential autocorrelation
to describe line-edge roughness. In [23], an exponential auto-
correlation function has been employed to model the Si/SiO2

interface roughness. Furthermore, this autocorrelation function
has been used in [24] to model line-edge roughness in GNRs. In
this paper, we consider an exponential autocorrelation function
to evaluate the transition matrix elements, i.e.,

R(x) = ΔW 2 exp
(
− |x|

ΔL

)
(20)

where ΔW is the root mean square of the fluctuation amplitude
and ΔL is the roughness correlation, which is a measure of
smoothness. The power spectrum of R(x) is obtained as

G(q) =
ΔW 2ΔL

1 + q2ΔL2
. (21)

Using (19) and (21), the transition rate [see (13)] can be
evaluated as

Sn (kx, k
′
x) =

4π
�

E2
C,n

W 2L

ΔW 2ΔL
1 + q2ΔL2

δ (En′ (k′x) − En(kx)) .

(22)

We assume two rough edges for the ribbon. Under the condition
that the roughness of these two edges are uncorrelated, one can
simply multiply the transition rate by a factor of two [see (22)].

B. Relaxation Time

To obtain the conductivity and the mobility of GNRs, the
relaxation time due to line-edge roughness must be evaluated.
Using (22), the relaxation time for electrons at some subband n
with wave-vector kx is given by

1
τn(kx)

=
∑
k′

x

Sn (kx, k
′
x)
(

1 − |k′x|
|kx| cosα

)
(1 − f (k′x))

≈ L

π

∫
4π
�

E2
C,n

W 2L

ΔW 2ΔL
1 + q2ΔL2

(
1 − |k′x|

|kx| cosα
)

× δ (En′ (k′x) − En(kx)) dk′x (23)

where the summation runs over all final states k′x and α is
the angle between the initial and final wave vectors. GNRs

are quasi-1-D and carriers that can be only backscattered, i.e.,
α = π. Furthermore, we assume that line-edge roughness in-
duces only intrasubband transitions. Therefore, k′x = −kx or
equivalently q = kx − k′x = 2kx. In nondegenerate semicon-
ductors, the probability of finding the final state empty is very
high. It is, therefore, reasonable to use approximation (1 −
f(k′x)) ≈ 1, which significantly simplifies the derivation of the
relaxation time. By converting the integral over wave vector
into energy and using (6), the relaxation time is obtained as

1
τn(E)

=
(

ΔW
W

)2 4m∗
nE

2
G,nΔL

�3

∫
δ
(
k

′2
x − k2

x

)
1+(kx−k′x)2 ΔL2

dk′x

=
(

ΔW
W

)2 4m∗
nE

2
G,nΔL

�3kx (1 + 4k2
xΔL2)

. (24)

Using relation kx =
√

(2m∗
n/�

2)(E − EG,n/2), the relaxation
time for electrons at subband n due to line-edge roughness
scattering can be written as

τn(E)=
(
W

ΔW

)2

×�
2
(
1 + 8m∗

n(E−EG,n/2)ΔL2/�2
)√

E−EG,n/2

2
√

2m∗
nE

2
G,nΔL

. (25)

IV. ELECTRONIC PROPERTIES

Using the analytical models derived in Sections II and III,
the conductivity and the mobility of GNRs in the presence of
line-edge roughness are evaluated here.

A. Conductivity

In the framework of the linear response theory, the conduc-
tivity in some subband n can be written in the following form:

σn =
q2

π�

∞∫
0

vg,nτn(E)(−∂f/∂E) dE (26)

where vg,n = �
−1∂E/∂k =

√
2(E − EC,n)/m∗

n is the group
velocity of the respective subband, τn is the relaxation time,
and f is the Fermi–Dirac distribution function. Using (25), the
conductivity can be expressed as

σn =
(
W

ΔW

)2
q2�

2πm∗
nE

2
G,nΔLkBT

×
[∫ ∞

0

(E−EC,n)exp[(E−EF )/kBT ]
(1+exp[(E−EF )/kBT ])2

dE︸ ︷︷ ︸
A

+
8ΔL2m∗

n

�2

×
∫ ∞

0

(E − EC,n)2 exp [(E − EF )/kBT ]
(1 + exp [(E −EF )/kBT ])2

dE︸ ︷︷ ︸
B

]
.

(27)

Assuming that the GNR is nondegenerately doped, one
can approximate the Fermi–Dirac distribution function with
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Fig. 3. Comparison between the numerical results and the analytical models of the (a) carrier mobility, (b) conductivity, and (c) concentration as a function of
the GNR width for EF = 0.6EC , ΔW = 0.5 nm, ΔL = 3 nm, and T = 300 K. (Dashed curves) The numerical results and (solid lines) the analytical models.

exp[(EF − E)/kBT ]. Therefore, the two integrals in (27) can
be approximated as

A = (kBT )2 exp [−(EG,n/2 − EF )/kBT ] (28)

B = 2(kBT )3 exp [−(EG,n/2 − EF )/kBT ] . (29)

Finally, the conductivity due to each subband of a GNR can be
obtained as

σn =
(
W

ΔW

)2
q2�kBT

2πm∗
nE

2
G,nΔL

[
1 +

16ΔL2m∗
n

�2
kBT

]

× exp [(EF − EG,n/2)/kBT ] . (30)

B. Mobility

The mobility is given by μ = σ/(qn), where σ is the total
conductivity and n is the carrier concentration due to all the
subbands. However, in a nondegenerate case, it is reasonable
to assume that the first subband mostly contributes to the
total mobility and approximate it with μ ≈ σ1/(qn1). Under
this assumption and using (12) and (30), the mobility can be
approximated as

μ =
(
W

ΔW

)2
q�2

√
kBT

2
√

2πm∗3
1 E

2
G,1ΔL

(
1 +

16ΔL2m∗
1

�2
kBT

)
.

(31)

V. ANALYSIS OF ROUGH GNRS IN

DIFFUSIVE TRANSPORT REGIME

Here, the influence of geometrical and roughness parameters
on the electronic properties of armchair GNRs are investigated.
We consider N = 3p+ 1 type of GNRs. Here, analytical re-
sults are compared with numerical results, where only the first
subband is considered without any parabolic approximation.
For comparison with the experimental data along with the
analytical model, full band calculations are also performed.
In numerical calculations, the carrier concentration, scattering
rate, and conductivity are evaluated according to (10), (22), and
(26), respectively.

A. Ribbon Width

To make a comparison between the derived analytical formu-
las and the numerical results, mobility, conductivity, and elec-
tron concentration are evaluated as a function of the ribbon’s
width. We assume EF = 0.6EC for all results. The numerical
results are based on full band calculations with parameters
described in Section II. As shown in Fig. 3, there is an excellent
agreement between the analytical model and the numerical
calculations. The discrepancy between the analytical model
and numerical calculations appears at wide ribbons, where
the energy band gap of the first subband becomes very close
to the Dirac point. Under this condition, the nondegenerate
assumption will not be accurate.

The electron concentration depends on the width of the
ribbon through the effective mass and the exponential term in
(12). The effective mass is inversely proportional to the ribbon’s
width [see (8)]. Letting EF ∝ EG and EG ∝W−1 [see (5)],
the exponential term in (12) is proportional to exp(−p/W ),
where p is a constant, i.e.,

n ∝W−1/2 exp(−p/W ). (32)

Equation (30) indicates that the conductivity of GNRs contains
two parts. As the effective mass and the band gap are inversely
proportional to the width of the ribbons, the first term of the
conductivity is proportional to W 5 and the second term to
W 4, i.e.,

σ ∝W 5(1 + α/W ) exp(−p/W )

=

⎧⎨
⎩
W 5 exp(−p/W ) α/W � 1
αW 4 exp(−p/W ) α/W � 1
(W 5 + αW 4) exp(−p/W ) otherwise

(33)

where α/W = 16m∗
nΔL2kBT/�

2, and by using (8), one ob-
tains α = 16m0dΔL2kBT/�

2.
It can be easily shown that the first term in the mobility is

proportional to W 5.5 and the second term to W 4.5 as

μ ∝W 5.5(1 + α/W ) =

⎧⎨
⎩
W 5.5 α/W � 1
αW 4.5 α/W � 1
(W 5.5 + αW 4.5) otherwise.

(34)

Under the condition of scaling with constant carrier concen-
tration, the mobility, however, scales with W 5 + αW 4. The
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Fig. 4. Comparison between the experimental data and analytical model of
the carrier mobility for T = 300 K and ΔW = 0.5 nm. (a) ΔL = 3 nm.
(b) ΔL = 15 nm.

mobility obtained from our analytical model is compared with
the experimental data of [9] for W < 4 nm [see Fig. 4(a)] and
[12] for 20 < W < 60 nm (see Fig. 4). Roughness parame-
ters have not reported in the experimental data; however, we
assumed a roughness amplitude of 0.5 nm for both data and
roughness correlation lengths of 3 and 15 nm to fit our model
to the data shown in Fig. 4(a) and (b), respectively.

Reference [12] shows that the mobility of GNRs scales with
the width as AWB , where A is a constant and B = 4.3. In
agreement with the experimental data, our analytical model
also predicts a A ·W 4.3 trend for the mobility (see Fig. 4).
However, the results are different within constant A, which is
independent of the width. We believe this difference is due to
the presence of other width independent scattering mechanisms
such as phonon scattering and Coulomb scattering due to im-
purities at the graphene–substrate interface. It should be noted
that if the experimental data of [9] is extrapolated to wider
ribbons, much larger mobility will be obtained as compared
with those given in [12]. This can be due to a better structural
quality of ribbons obtained by chemical methods [12]. As the
width of the ribbon increases, the energy difference between
subband becomes smaller than kBT . Under this condition,
the contribution of higher subbands cannot be neglected. The
evaluated mobility employing a full band calculation, where
all subbands are included and nonparabolic dispersions are
assumed, are shown in Fig. 4. Apparently, the effective mobility
obtained from the full band calculations is lower than that
predicted by a single-band effective mass model. This can be
attributed to larger effective masses or lower mobility of higher
subbands.

Fig. 5. (a) Comparison between the numerical results and the analytical
models of the carrier mobility as a function of the roughness correlation length.
(Dashed curves) The numerical results and (solid curves) the analytical models
for W = 5 nm, ΔW = 0.5 nm, and T = 300 K. (b) The carrier mobility as a
function of the correlation length for various GNR widths at ΔW = 1 nm and
T = 300 K. (c) The carrier mobility as a function of the correlation length at
various temperatures for W = 5 nm and ΔW = 1 nm. EF = 0.6EC for all
figures.

B. Roughness Parameters

Fig. 5(a) compares the analytically and numerically evalu-
ated mobility as a function of the roughness correlation length.
As shown in Fig. 5, one can define critical correlation length
ΔLC , where the mobility and the conductivity reach their
minimum values. Using (31), the critical correlation length can
be obtained as

ΔLC =
h

8π
√
m∗kBT

. (35)

At ΔLC , the roughness correlation length becomes comparable
the de Broglie wavelength of thermal electrons, and the scatter-
ing rate will be maximum at this point [see (31)]. Therefore,
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Fig. 6. Comparison between the numerical results and the analytical models of the (a) carrier mobility, (b) conductivity, and (c) concentration as a function of
temperature for W = 2 nm, EF = 0.5EC , ΔL = 3 nm, and ΔW = 0.5 nm.

both the conductivity and the mobility take a minimum at this
critical correlation length. As the width increases, the effective
carrier mass decreases, and the minimum of mobility thus
occurs at larger correlation lengths [see Fig. 5(b)]. As the
temperature increases, the average kinetic energy of carriers
increases, which results in the reduction of the thermal de
Broglie wavelength. Therefore, the minimum occurs at shorter
correlation lengths [see Fig. 5(c)].

C. Role of Temperature

Fig. 6 compares the carrier concentration, conductivity, and
mobility obtained from the analytical formula and the numeri-
cal results. Using (12), (30), and (31), the temperature depen-
dence of the carrier concentration, conductivity, and mobility
can be written as

n ∝ T 1/2 exp(−q/T ) (36)

σ ∝ T (1 + βT ) exp(−q/T )

=

⎧⎨
⎩
βT 2 exp(−q/T ) βT � 1
T exp(−q/T ) βT � 1
(T + βT 2) exp(−q/T ) otherwise

(37)

μ ∝ T 1/2(1 + βT )

=

⎧⎨
⎩
βT 3/2 βT � 1
T 1/2 βT � 1
(T 1/2 + βT 3/2) otherwise

(38)

where q = (EC,n − EF )/kB and β = 16m∗
nΔL2kB/�

2.

VI. LOCALIZATION OF CARRIERS

In the absence of scattering, carrier transport is in the ballistic
regime. In this regime, the conductance is independent of the
device length. In the presence of scattering, transport of carriers
is in the diffusive regime, where the spectrum of conductance
is inversely proportional to device length(L), i.e.,

G(E) ≈ G0
1

1 + L/λ(E)

(
− ∂f

∂E

)
(39)

with G0 = 2q2/h. In this regime, the mean free path of carriers
can be defined as λ(E) = vg(E)τ(E). However, in the pres-

ence of a disorder, the carrier wave packet can be scattered back
and forth between potential barriers and standing waves along
the device can develop. In this regime, referred to as localiza-
tion regime, the transport of carriers takes place by tunneling
between localized states, and the spectrum of conductance of
the ribbon exponentially decreases with the ribbon’s length
[25] as

G(E) ≈ G0 exp
[
− L

ξ(E)

](
− ∂f

∂E

)
. (40)

It should be noted that (40) is valid as long as the coherence
length of electrons is longer than the device length. Phase
breaking scattering mechanisms such as phonon scattering can
reduce the coherence length. Experimental results show that
graphene has high electron mobility at room temperature, with
reported values in excess of 15 000 cm2/(V · s) [3]. Scattering
by the acoustic phonons of graphene places intrinsic limits on
the room temperature mobility to 200 000 cm2/(V · s) [26],
[27]. However, for graphene on SiO2 substrates, scattering of
electrons by optical phonons of the substrate is a larger effect
at room temperature than scattering by graphene’s own optical
phonons. This limits the mobility to 40 000 cm2/(V · s) [26].
As a result, a relatively large coherence length in graphene-
based structures is observed [28], [29]. It has been experimen-
tally shown that strong localization can appear in single-layer
GNRs [30] and nanotubes at room temperature [31].

It has been shown that the localization length in quasi-
1-D devices is related to the mean free path by [32] ξn(E) ≈
Nch(E)λn, where Nch(E) denotes the number of active con-
ducting channels at some energy E.

A. Localization Length and Mean Free Path

Using (25) and replacing vg,n, the mean free path due to line-
edge roughness scattering can be obtained as

λn(E) = vg,n(E)τn(E) =
(
W

ΔW

)2

× �
2
(
1+8m∗

n(E−EG,n/2)ΔL2/�2
)
(E−EG,n/2)

2m∗
nΔLE2

G,n

=C
{
(E − EG,n/2) +D(E − EG,n/2)2

}
(41)
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Fig. 7. Comparison between the numerical results and the analytical models
for the localization length as a function of energy for EF = 0.6EC , ΔL =
3 nm, ΔW = 0.3 nm, W = 5 nm, and T = 300 K. (Dashed curves) The
numerical results and (solid curves) the analytical models.

with

C =
(
W

ΔW

)2
�

2

2m∗
nΔLE2

G,n

(42)

D =
8m∗

nΔL2

�2
. (43)

In a nondegenerate device with large splitting of the subbands,
the first subband mostly contributes to the total carrier transport,
i.e., Nch = 1. In this case, one can approximate the localization
length as ξ(E) ≈ λ(E). As shown in Fig. 7, the localization
length is very small for carriers close to the conduction band
and increases as the kinetic energy of the carrier increases. The
width dependence of the mean free path and the localization
length for energies close to the subband edges can be given by

λ = ξ ∝W 4(1 + γ/W 2) =

⎧⎨
⎩
γW 2 γ/W 2 � 1
W 4 γ/W 2 � 1
(W 4 + γW 2) otherwise

(44)

with γ/W 2 = 8cΔL2/�2. If the ribbon has large effective mass
(narrow GNRs) or large correlation length, the localization
length and the mean free path scale as λ, ξ ∝W 2 (see Fig. 8).

B. Conductance in the Localization Regime

Fig. 9 compares the conductance of GNRs in the diffusive
and localization regime. Fig. 9(a) indicates that, at the same
width, localization of carriers is more pronounced in longer
GNRs. Fig. 9(b) shows that, at the same length, localization
is more pronounced in narrower GNRs. This behavior can be
well understood by considering the energy dependence of the
conductance spectrum at different lengths (see Fig. 10). For
energies above the conduction band edge, the exponential tail
of the Fermi function decreases, whereas term exp[−L/ξ(E)]
increases due to the increase in the localization length [see
Fig. 7]. As a result, the conductance spectrum peaks at some
energy Emax. One can define this energy as an effective band
edge for carriers. In a similar way, an effective band gap can
be also defined. In the following, analytical solutions for the

Fig. 8. Localization length as a function of the GNR width for different
roughness amplitudes ΔW for ΔL = 3 nm, EF = 0.6EC , E = 1.2EC and
T = 300 K.

Fig. 9. Comparison of conductance in the (solid curves) localization and
(dash-dot curves) diffusive regime (a) as a function of the width and (b) as
a function of the length. ΔW = 0.5 nm, ΔL = 3 nm, EF = 0.6EC , and
T = 300 K.

effective band edge and band gap are derived. The peak of the
conductivity occurs at

∂ξ(E)
∂E

=
1

kBTL
ξ2(E). (45)

By substituting ξ(E) from (41), a quadratic equation is obtained
for the difference between the effective band gap and band
structure gap ΔEG = 2(Emax − EG,n/2) = EGeff − EG as(

ΔEG

2

)4

+
2
D

(
ΔEG

2

)3

+
1
D2

(
ΔEG

2

)2

−2kBTL

CD

(
ΔEG

2

)
− kBTL

CD2
= 0. (46)
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Fig. 10. Spectrum of conductance in the localization regime as a function of
energy for different GNR lengths L and ΔW = 0.5 nm, ΔL = 3 nm, W =
5 nm, EF = 0.6EC , and T = 300 K.

ΔEG can be evaluated by solving (46) as follows:

ΔEG =

[
Z1/2 +

(
4kBTL

CDZ1/2
− Z ′

)1/2

− 1
D

]
(47)

with

Z = 2Y − 1
2D2

(48)

Z ′ = 2Y − 3
2D2

(49)

Y =

⎧⎨
⎩

5
12D2 +

(
1

2233
D6

+ (kBTL)2

2C2D2

)1/3

U = 0

5
12D2 + U + 1

2332
D4U

U 
= 0.
(50)

U is defined as

U =

⎡
⎣( 1

6D2

)3

+
(
kBTL

2CD

)2

+

(
7

2936D12
+
(
kBTL

2CD

)4

+
(kBTL)2

2433C2D8

)1/2
⎤
⎦1/3

. (51)

Equation (47) gives the exact solution for ΔEG.
However, for D � 1/(E − EG,n/2) and D � 1/(E −

EG,n/2), the localization length can be approximated as
ξ(E) = C(E − EG,n/2) and ξ(E) = CD(E − EG,n/2)2, re-
spectively. Therefore, ΔEG is given by

ΔEG =

⎧⎪⎨
⎪⎩

2
(

kBTL
C

)1/2
D �

(
C

kBTL

)1/2

2
(

2kBTL
CD

)1/3

D �
(

C

2kBTL

)1/2

.
(52)

The validity of this approximation is investigated for different
geometrical and roughness parameters in Fig. 11. As length
L or roughness amplitude increases, the effective band gap
increases and the conductance is significantly reduced. With
the increase in the width, however, the effective band gap is
reduced. Fig. 11(d) shows the effective band gap as a function
of the correlation length. The effective band gap has a max-
imum at some correlation length. As the width of the ribbon
increases, this peak occurs at longer correlation lengths. With
the presented relation, one can obtain the window of geo-

Fig. 11. Comparison between the exact effective band gap and the two
approximations as a function of geometrical and roughness parameters. EF =
0.6EC , and T = 300 K.

metrical parameters where localization of carriers is avoided.
On the other hand, for the given geometrical and roughness
parameters, one can evaluate the effective band gap and the
resulting reduction of the conductivity. Assuming exponential
dependence of the current on the band gap, one can roughly
estimate the changes of the current due to the presence of
localization by ΔI ∝ exp(−ΔEG/kBT ).

VII. CONCLUSION

GNRs with band gaps suitable for electronic applications
have a width below 10 nm. In this regime, line-edge roughness
is the dominant scattering mechanism. Under this condition,
analytical models for the mobility, conductivity, concentration,
mean free path, and localization length of carrier in GNRs
are derived. Using these analytical models, the dependences
of the mentioned quantities on the geometrical and roughness
parameters have been studied and discussed. Our predicted
width dependence of the mobility is in excellent agreement with
the experimental data. The role of carrier localization on the
conductance of rough nanoribbons has been studied, and the
related analytical models have been derived. Employing these
models, one can appropriately select the geometrical parame-
ters for optimizing the performance of GNR-based electronic
devices.

APPENDIX

By substituting (9) in (10), the carrier concentration can be
written as

n =

∞∫
0

∑
n

ρn(E)f(E) dE

=
∑

n

√
2m∗

n

π�

∞∫
0

Θ(E−EG,n/2)√
(E−EG,n/2)

dE

1+exp [(E−EF )/kBT ]
.

(53)
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By defining dimensionless variables tn = (E − EG,n/2)/kBT
and ηn = (EF − EG,n/2)/kBT , the integral in (53) is
given by

∞∫
EC,n

1√
(E − EG,n/2)

dE

1 + exp [(E − EF )/kBT ]

=
√
kBT

∞∫
0

t
−1/2
n

1 + exp(tn − ηn)
dtn

=
√
kBTΓ(1/2)F−1/2(ηn). (54)

Γ represents the Gamma function, where Γ(−1/2) =
√
π, and

F−1/2 is the Fermi integral of order −1/2. The Fermi integral
of type j is defined as

Fj(x) =
1

Γ(j + 1)

∞∫
0

tj

1 + exp(t− x)
dt. (55)

Finally, (53) can be written as

n =

√
2kBT

π�2

∑
n

√
m∗

nF−1/2(ηn). (56)
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