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We present a model based on k � p theory which is able to capture the subband structure effects present
in ultra-thin strained silicon nanowires. For electrons, the effective mass and valley minima are calcu-
lated for different crystal orientations, thicknesses, and strains. The actual enhancement of the transport
properties depends highly on the crystal orientation of the nanowire axis; for certain orientations strain
and confinement can play together to give a significant increase of the electron mobility. We also show
that the effects of both strain and confinement on mobility are generally more pronounced in nanowires
than in thin films. We show that optimal transport properties can be expected to be achieved through a
mix of confinement and strain. Our results are in good agreement with recent experimental findings.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

Nanowire-based gate-all-around transistors offer a perspective
for further device size reduction in microelectronics. On one hand,
gate-all-around device architectures exhibit superior electrostatic
control of the channel over planar or silicon-on-insulator (SOI)
technologies due to a high surface to volume ratio. Improved elec-
trostatic control remedies short channel effects that plague mod-
ern planar technologies, especially in the subthreshold regime of
operation. On the other hand, if the nanowire channels are made
very thin, quantum effects begin to appear. While in traditional
planar device architectures quantum effects almost always ad-
versely affect device performance, they offer opportunities for
performance improvement in non-planar architectures, such as
transistors with nanowire channels.

In a recent experimental study [1], nanowires with gate-
all-around structure as thin as 3 nm were successfully fabricated
using a top down structuring process [2]. The produced nanowires
had a [110] oriented axis and (�110) and (001) oriented walls.
Most notably, the authors presented results of axially strained
nanowire field effect transistors where the measured strain-
induced current increase surpassed the current increase observed
in (100) oriented thin SOI films in [110] direction by roughly a
factor of two.

In this work we first attempt to examine in detail the subband
structure effects causing the current enhancement. Then we ex-
plore the design space spanned by nanowire geometry (i.e. quan-
tum confinement) and strain conditions. The outline of this paper
is as follows: In Section 2 we will present the k � p model of the
ll rights reserved.
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nanowire subband structure, which accurately treats confinement
and strain. Here, we will also give some relevant details about the
computational procedure itself. In Section 3 we will present the re-
sults of our subband structure calculations. Here, we will discuss
the influence of nanowire diameter, cross-section shape, and stress
on the subband structure and the transport properties arising
therefrom. In Section 4 we will summarize and conclude this
paper.
2. Subband structure modeling

To understand the transport properties in wires less than 10 nm
wide, one must carefully take quantization effects into account. A
simple treatment using effective masses fails to satisfactorily de-
scribe the subband structure of such thin devices. This is due to
the energy of the lowest subband already being of the order of
100 meV where non-parabolicity effects become noticeable.

2.1. Bulk Hamiltonian

The starting point is the strain-dependent description of the
bulk silicon conduction band structure using a two band k � p mod-
el which is due to Hensel et al. [3]. Commonly in k � p models, the
expansion is taken around the C point where the minima and max-
ima of the interacting conduction and valence bands are located.
This is practical for modeling band structures of direct semicon-
ductors and in cases where one looks at the valence band structure
only. In silicon, which has an indirect bandgap, this is not feasible.
Therefore, the model used here assumes, that the interacting bands
are the lowest two conduction bands, with the remaining bands
being treated as perturbation. The expansion is performed around
one of the three X points where a pair of adjacent D valleys touch.
-type silicon nanowires using strain and confinement. Solid State Electron

http://dx.doi.org/10.1016/j.sse.2011.11.022
mailto:stanojevic@iue.tuwien.ac.at
http://dx.doi.org/10.1016/j.sse.2011.11.022
http://www.sciencedirect.com/science/journal/00381101
http://www.elsevier.com/locate/sse
http://dx.doi.org/10.1016/j.sse.2011.11.022
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The model is valid for the conduction band up to 0.5 eV, as was
shown through benchmarking against density functional theory
(DFT), semi-empirical tight binding (TB), and empirical pseudopo-
tential method (EPM) calculations [4,5]. It includes a first-order
treatment of uniaxial and shear strain effects on the conduction
band by means of deformation potentials.

The model Hamiltonian describing a pair of adjacent D-valleys
reads as follows:

H ¼
1
2 p� �m�1 � p� þNueff þ V � pnpg

M þ 2Nu0eng

� pnpg
M þ 2Nu0eng
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Here, p± are the crystal momenta with respect to the valley min-
ima. m�1 is the inverse of the effective mass tensor at each of the
valley minima, with ml = 0.91me and mt = 0.19me. 1

M � 1
mt
� 1

me
de-

scribes the coupling between the two valleys; k0 ¼ 0:15 2p
a amounts

to the distance in k-space between a X point and the D valley min-
ima; eff and eng are uniaxial and shear strain components, and
Nu = 9.0 eV and Nu0 ¼ 7:0 eV the respective deformation potentials.
V denotes the conduction band edge.

The crystal momenta, k-vectors, masses, and strains in (1) are
given in the coordinate system of the k � p expansion, en, eg, ef.
One expansion gives a Hamiltonian for only two of the six conduc-
tion band valleys in silicon; the Hamiltonian for the other two val-
ley pairs can be obtained by taking even permutations of the basis
vectors. The device, which in our case is a nanowire channel,
generally uses a coordinate system which differs from the one used
in (1); we name it the device coordinate system ex, ey, ez, where ez

denotes the axial coordinate and ex and ey are the cross-section
coordinates. The transformation matrix reads

U ¼
en � ex en � ey en � ez

eg � ex eg � ey eg � ez

ef � ex ef � ey ef � ez

0
B@

1
CA: ð2Þ

It is convenient to specify the device axes in terms of Miller
indices. The main axis of our device is the nanowire axis, which
can be specified e.g. as [110]. If we choose ez as our nanowire axis,
the third column in (2) becomes ð110ÞT=

ffiffiffi
2
p

in this case. If the wire
is not rotationally symmetric the orientation of one of the surfaces
must be specified additionally. Using the matrix from (2) we can
establish the relations
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Using these relations we can express the Hamiltonian (1) in terms
of kx, ky, kz, which are defined in the device coordinate system.

2.2. Quantization of the Hamiltonian

The next step is to introduce quantization. In a nanowire elec-
trons are only partially quantized: while they are confined within
the cross-section of the nanowire, they are free to move along the
nanowire axis. This is modeled by substituting the k-vector compo-
nents perpendicular to the axis with derivatives and by parame-
trizing the axial k-vector component.
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The rotated Hamiltonian (1) can be expressed as

H ¼
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At this point the quantization is introduced by adding Dirichlet
boundary conditions to the problem, i.e. we require the wavefunc-
tion to vanish at the nanowire boundary.

2.3. Stress and strain

Strain couples to the Hamiltonian through the deformation
potentials Nu and Nu0 . In the rotated Hamiltonian the contributions
due to strain are summed up in the third term of (5). The relevant
strain components eng and eff are given in the coordinate system of
the k � p expansion, en, eg, ef, and are related to the stress tensor r
via the stiffness tensor,

r ¼ Ce; rij ¼ Cijklekl; i; j; k; l 2 fn;g; fg; ð6Þ

which for silicon reads (in engineering notation)

C ¼

C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44

0
BBBBBBBB@

1
CCCCCCCCA
; ð7Þ

C11 = 166.0 GPa, C12 = 64.0 GPa, C44 = 79.6 GPa [6].
Note, that the strains eng and eff influence only one of the three

valley pairs. Since the Hamiltonians for the other two valley pairs
are obtained by rotating the basis vectors, the basis of the strain
tensors is rotated as well. Therefore, the relevant strain components
for the other two valley pairs are egf, enn and enf, egg, respectively.

In this work we are mainly interested in axial stresses in nano-
wires. The stress is therefore conveniently given as the stress scalar
along the nanowire axis, rk. The stress tensor in the crystallo-
graphic coordinate system of the k � p expansion is constructed as

r ¼ U
0 0 0
0 0 0
0 0 rk

0
B@

1
CAUT : ð8Þ

From this the strain tensor is obtained by using (6).

2.4. Discretization and numerical solution

The Hamiltonian now has to be discretized in two dimensions
(x and y) using an appropriate discretization scheme. In this work
we chose box integration because it inherently ensures probability
current conservation which is crucial when simulating quantum
mechanical systems. It should be noted that the different parts of
(5) contribute derivatives of first and second order as well as con-
stant terms. Looking at the symmetric matrices D, C and the vector d

; ð9Þ
-type silicon nanowires using strain and confinement. Solid State Electron
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we note that the coefficients marked by a solid line are from second
order contributions and the coefficients marked by a dashed line are
from first order contributions; Dzz, Czz, and dz are due to constant
terms.

For each value of the kk-parameter, discretizing the Hamiltonian
produces a system matrix A, the eigenvalues of which are the ener-
gies of the subband structure at this particular kk value. To obtain a
good approximation of the subband structure the Hamiltonian is
discretized for a few hundred values of kk. The tasks of diagonaliz-
ing the Hamiltonian for different kk values are mutually indepen-
dent and can therefore be parallelized easily. An example of a
calculated subband structure can be seen in Figs. 1 and 2.

Since we are interested in subbands within the energy range of
several kBT above the valley minimum, computational speed can be
further improved if we restrict the calculation of the eigenenergies
to the lowest few subbands. The implicitly restarted Arnoldi meth-
od (IRAM) provided by the ARPACK library [7] makes use of this
Fig. 1. Unprimed subbands in a [110] nanowire; black lines – unstrained, colored
lines – tensile axial stresses up to 1 GPa (shown for the four lowest subbands only).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Primed subbands in a [110] nanowire; black lines – unstrained, red lines –
tensile axial stresses up to 1 GPa; plot is centered around the X point at the edge of
the Brillouin zone. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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restriction and gives sufficiently short computation times to allow
the efficient simulation of nanowires up to 7 nm diameter. For lar-
ger diameters the energy spacing between the subbands becomes
so small that an energy interval of a few kBT may already contain
hundreds of subbands. On the one hand, including more subbands
results in a higher computational effort per Arnoldi iteration. On
the other hand, closer spaced eigenvalues have a negative impact
on convergence speed resulting in more Arnoldi iterations required
to find them. This problem can be resolved using a spectral trans-
formation on the matrix called shift-invert [7]. Here a diagonally
shifted version of the original system matrix A needs to be factor-
ized, i.e. the system

ðA� rIÞx ¼ b ð10Þ

needs to be solved for different vectors b supplied by the IRAM pro-
cedure. The shift-invert transform increases the spacing between
the eigenvalues and thus reduces the number required Arnoldi iter-
ations. Also, using multiple shift-invert transformations the total
number of subbands to be calculated can be split in several blocks
where the number of subbands can be kept low enough for efficient
calculation (about twenty subbands per block). The overall compu-
tation time then scales linearly with the total number of subbands.
This allows us to simulate nanowires with 10 nm diameter and
beyond.

2.5. Group velocity and effective mass – postprocessing

In the final step we need to extract macroscopically relevant
quantities from the subband structure. These are the group veloc-
ities and effective masses of the confined electrons, which are re-
lated to the subband structure through the first and second
derivatives with respect to kk.

In principle it would be possible to calculate the velocities and
effective masses by numerical differentiation, i.e. by finite differ-
ences. However, this is not particularly advisable because a sub-
band tends to warp significantly especially when energetically
close to another subband. A finite difference scheme would require
a very fine kk-grid for a reasonably accurate result, especially for
the second order derivative.

There is a simple solution to this problem: The group velocity
can be calculated using a technique derived from perturbation the-
ory. From there, the effective mass can then be calculated by first
order finite differences with satisfactory accuracy. We shall briefly
explain the procedure of group velocity calculation in the
following.

Non-degenerate perturbation theory states that in presence of a
small perturbation dH the eigenenergy of a state will change
according to

dEi ¼ hwijdHjwii þ
X
j–i

jhwijdHjwjij
2

Ei � Ej
þOðkdHk3Þ: ð11Þ

We assume dH as the difference in the Hamiltonian between
some points kk

0 and kk
0 + dkk and approximate it using the kk-deriv-

ative of the Hamiltonian to get

dEi � wi
@H
@kk

����
����wi

� �
dkk; ð12Þ

and obtain the derivative of the eigenenergy,

@E
@kk
¼ �hvg ¼ wi

@H
@kk

����
����wi

� �
: ð13Þ

One could now proceed to obtain the second derivative by
including the second order term in (11). This is impractical, how-
ever, because calculating the second order term would require all
-type silicon nanowires using strain and confinement. Solid State Electron
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Fig. 3. Electron group velocities of the two lowest subbands in a [110] nanowire
(see Fig. 1); black lines – unstrained, red lines – tensile axial stresses up to 1 GPa.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Stress dependence of the effective mass in the unprimed (C) valley for [110]
nanowires of different thicknesses.
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the matrix elements, or a sufficiently large number of them to keep
the error low, whereas the first derivative needs only the diagonal
matrix elements, resulting in a much lower computational effort.

In the case of degeneracies in the subband structure the degen-
erate perturbation theory must be employed. Here we need to dis-
tinguish between subbands which are degenerate everywhere, i.e.
for all kk, and subbands which are degenerate only on a finite set of
kk-points. For the former (13) still holds because moving along kk
does not lift the degeneracy and therefore hwij@H/@ kkjwji vanishes
for two degenerate subbands i and j. For the latter this is not the
case and they need to be treated fully within the degenerate per-
turbation theory framework.

To obtain the matrix elements we need to calculate the operator
@H/@kk. This is done by analytically differentiating the transformed
Hamiltonian (5) with respect to kk or kz. This gives the matrix

@

@kk
H ¼

@
@kz

kT
qDkq

@
@kz

kT
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0 dz

� �
: ð14Þ

Using (9) the elements in (14) evaluate to
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The matrix elements are calculated by numerically computing
the integrals
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where the superscript in w1
i and w2

i denotes the index of the bulk
band. An example of group velocities calculated using this method
can be seen in Fig. 3.

3. Results and discussion

Using the model and procedure described in the previous sec-
tion, we simulated nanowires of various diameters assuming
square and rectangular cross-sections. The effect of axial stress
on the subband structure was mainly investigated in this work.
Please cite this article in press as: Stanojević Z et al. Subband engineering in n
(2011), doi:10.1016/j.sse.2011.11.022
Axial tensile stress is the most likely type of stress to be imple-
mented in a top-down nanowire process, as was demonstrated in
[1], and is also a promising technique for mobility enhancement.

Self-consistency was not considered in this work, since we are
attempting to isolate the effects of confinement and strain on the
subband structure. A positive gate bias would increase the splitting
between the unprimed and primed valleys for nanowires thicker
than 5 nm. This effect was already studied elsewhere [8] and is be-
yond the scope of this paper.
3.1. Stress behavior of [110] and [111] nanowires

Fig. 1 shows the unprimed subbands of a [110] oriented 5 nm
square nanowire. The shape of the subbands is highly non-para-
bolic which clearly justifies the use of band structure modeling
methods beyond the effective mass approximation, such as k � p.
Fig. 2 shows the primed subbands, which are due to valleys that
have a lighter quantization mass and therefore lie higher in energy
than the unprimed ones. Note, that for [110] oriented nanowires
confinement causes the unprimed subband minima to be folded
onto kk = 0, i.e. the C point of the one-dimensional Brillouin zone.
We shall, therefore, refer to these subbands also as C valley.

In both figures the colored lines show the trend of the subband
structure change as tensile stress increases up to 1 GPa. The un-
primed subbands in Fig. 1 have their valley minima shifted down-
wards in energy while at the same time their curvature increases.
Therefore, we can expect a significant effective mass reduction in
the unprimed subbands. In the primed subbands (Fig. 2) tensile
stress induces only an upward shift but no change in curvature.

Fig. 4 shows the overall behavior of the confined electrons’
effective mass as a function of axial stress for various nanowire
thicknesses. We note that both confinement and tensile stress re-
duces the unprimed subbands’ effective mass. Both, however, act
in a competitive way: An already low effective mass, due to con-
finement, undergoes a much smaller change when the nanowire
is stressed. For a 12 nm nanowire an axial stress of 1 GPa causes
a 22.2% reduction of the effective mass, while in a 3 nm nanowire
only 12.2% can be observed. Confinement and [110] stress both in-
crease the off-diagonal part of the Hamiltonian (1) which explains
the competitiveness. As can be seen for all curves in Fig. 4, the im-
pact on the effective mass saturates for high tensile stresses. This
saturation effect was already observed in ultra-thin films from cal-
culations using the same model [9]. Apparently the onset of the
-type silicon nanowires using strain and confinement. Solid State Electron
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Fig. 5. Energy of valley minima for varying axial stress and different thicknesses of
[110] nanowires.

Fig. 7. Same as Fig. 1 for a [111] nanowire; black lines – unstrained, colored lines –
tensile axial stresses up to 1 GPa (shown for the three lowest subbands only). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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saturation occurs at lower stresses for smaller diameters due to
quantization.

In Fig. 5 the behavior of the valley minima with respect to axial
stress is shown. The unprimed and primed valleys shift in energet-
ically opposite directions when stress is applied, as already men-
tioned. In this context, tensile stress also benefits the transport
properties because it causes a separation of the light unprimed
and the heavy primed subbands which effects a higher electron
population in the light subbands (see Fig. 6) and a lower intervalley
scattering rate due to the energetic remoteness of the primed sub-
bands. We note that for the 3 nm nanowire the unprimed and
primed subbands are already far apart due to confinement, so
strain will cause no significant improvement, while for the 12 nm
nanowire the subband minima almost coincide in energy, which
makes application of stress mandatory in order to observe any
mobility enhancement.

The situation is entirely different for [111] nanowires. Here, all
valleys have the same quantization mass, and thus no distinction
between unprimed and primed subbands is made. As can be seen
in Fig. 7, the axial stress merely deforms the subbands without
causing any significant shifts or curvature changes in the subband
Fig. 6. Relative population of unprimed and primed valleys for varying axial stress
and different thicknesses of [110] nanowires.
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(2011), doi:10.1016/j.sse.2011.11.022
minima. Both confinement and tensile stress cause a splitting of
the subbands a the C point; the splitting between the first and sec-
ond subband eventually becomes so large that the two minima
merge into a single heavy-effective-mass minimum; this indeed
happens for the 3 nm nanowire. The simulation results presented
in Figs. 8 and 9 confirm that axial stress is not beneficial for trans-
port properties in [111] nanowires.

3.2. Influence of the aspect ratio on stress behavior

We will now assume the cross-section shape of the nanowires
to be rectangular and look at the influence of the rectangle’s aspect
ratio on the subband structure. We performed several simulations
on n-type nanowires of rectangular cross-section while varying the
width of the cross-section from 5 nm to 15 nm and keeping the
height at 5 nm, similar to recent studies performed for p-type
nanowires [10,11]. Two sets of simulations were performed
assuming the varied surfaces to be (�110)-oriented in one case
and (001)-oriented in the other. Both sets of simulations showed
Fig. 8. Stress dependence of the effective mass for [111] nanowires of different
thicknesses.

-type silicon nanowires using strain and confinement. Solid State Electron
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Fig. 9. Energy of valley minima for varying axial stress and different thicknesses of
[111] nanowires.

Fig. 11. Energy of valley minima of [110] nanowires for varying axial stress and
different widths along ½�110�.
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significantly different results, which points out the strong influ-
ence of the cross-section shape on the transport properties.

In Figs. 10 and 11 the stress dependence of the effective mass
and valley minima is shown for different widths along the [�110]
axis. The confinement width along [�110] clearly affects the effec-
tive mass and the influence of axial stress upon it. This stems from
the fact that by changing the width along any of the h110i axes one
changes the quantization of the off-diagonal coupling elements in
(1); these elements are responsible for all the observed effective
mass variations. The valley minima also change with the width
variation; interestingly, the separation between the unprimed
and primed valleys becomes larger as the width increases.

In contrast, Fig. 12 shows no change of the effective mass or its
stress dependence when the width is changed along [001]. Since
for the C valley the width change along [001] changes the quanti-
zation only along the f axis in the Hamiltonian (1). The coupling
elements and therefore the effective mass remain almost unaf-
fected. The valley minima still respond to the width variations
(Fig. 13) but in a different way from what could be seen in
Fig. 10. Stress dependence of the effective mass in the unprimed (C) valley in [110]
slabs of different widths along ½�1 10�; widths: 5 nm, 7 nm, 9 nm, 11 nm; height:
5 nm; changing the slab thickness along ½�110� clearly affects the effective mass and
its dependence on axial strain.

Fig. 12. Same as in Fig. 10 but for varying widths along [001]; here, the curves are
on top of each other indicating that confinement along [001] has no influence on
the effective mass in the unprimed valley.

Fig. 13. Energy of valley minima of [110] nanowires for varying axial stress and
different widths along [001].

Please cite this article in press as: Stanojević Z et al. Subband engineering in n-type silicon nanowires using strain and confinement. Solid State Electron
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Fig. 11; here, the separation between unprimed and primed valleys
decreases as the width increases, and for large diameters the
primed bands move below the unprimed in the unstrained state.

This lets us conclude that the cross-section shape of [110]
nanowire can be used as an additional design parameter to tune
the transport characteristics of nanowires. The dimensions along
[�110] and [001] affect the subband structure in fundamentally dif-
ferent ways. While confinement along [�110] lets us adjust the
effective mass of the confined electrons, the confinement along
[001] allows us to define the energy separation between the un-
primed and primed valleys as well as among the subbands within
a particular valley, without affecting the transport mass. Therefore,
a device optimized for high currents would have a narrow [001]
dimension to keep the subbands well separated and a moderate
[�110] dimension which in combination with tensile axial stress
will give a light transport mass.

3.3. Comparison of nanowires with thin films

In [1] the authors have found that the on-current increase with
tensile stress in 11.2 nm [110] nanowire n-type FETs is about
twice as large as for a comparable ultra-thin body (UTB) transistor.
This can be attributed to electrons in a nanowire forming a
one-dimensional electron gas, whereas in a UTB they form a two-
dimensional electron gas. To explain this discrepancy we will
employ a simple Drude model to estimate the drift movement of
the electrons in nanowire and UTB channels.

hvi ¼ � q0hsi
meff

E ð18Þ

Here, hvi is the average electron velocity, q0 is the elementary
charge, hsi is the average momentum relaxation time, meff is the
effective mass, and E is the electric field. The model is, of course,
insufficient for an accurate description of the electron movement
because it assumes a single parabolic (sub)band. However, the main
point here is the dependence of hsi on the effective mass. In a one-
dimensional system the density-of-states mass is the same as the
transport mass meff. If we change the effective mass through con-
finement or mechanical stress, the electrons both become lighter
and scatter less often, since s(E) is inversely proportional to the
density of states g(E) which for one-dimensional systems is propor-
tional to

ffiffiffiffiffiffiffiffiffi
meff
p

, hence hsi / m�1=2
eff and hvi / m�3=2

eff . Indeed, inserting
our calculated masses for the 12 nm [110] nanowire gives a velocity
enhancement of 27.4% which agrees very well with the 30% found
experimentally [1].

In two-dimensional systems the simple relation derived before
does not hold because meff and mdos, the density-of-states mass, are
not equal. The density-of-states mass takes the transverse mass
into account, which for thin silicon films in [110] direction is in-
creased by tensile strain, as shown in [9]. The effect of strain on
the masses cancels out in the average free flight time and
hvi /meff

�1 resulting in a lower current enhancement due to stress.
4. Summary and conclusions

In this work we have used a two band k � p model for the
conduction band of bulk silicon and adapted it for n-type silicon
nanowires. The model provides us with an accurate description of
non-parabolicity in the silicon conduction band and includes a
treatment of strain effects on the band structure. In the course of
the work we have also developed computational methods for deal-
ing with a large number of medium to large-scale eigenvalue prob-
lems, i.e. the calculation of the subband structure. The necessary
algorithms were implemented within the Vienna Schrödinger Pois-
son solver framework [12], and allow all the calculations performed
Please cite this article in press as: Stanojević Z et al. Subband engineering in n
(2011), doi:10.1016/j.sse.2011.11.022
in this paper to be executed on a common workstation computer.
Furthermore, a method was presented to obtain the exact value of
the group velocities at a certain point in k-space without numerical
differentiation of the subband structure. Skipping one numerical
differentiation step improves the accuracy of the effective mass
extraction from the subband structure. Its usability is not restricted
to our calculations but can be used in other k � p models and can in
principle be extended to any (sub)band structure calculation meth-
od relying on the repeated diagonalization of a k-dependent Ham-
iltonian, such as tight binding or pseudopotential methods.

With the presented simulation framework we have studied the
behavior of axially stressed silicon nanowires of various thick-
nesses. We have shown how confinement and stress act on the
electron subband structure of nanowires and pointed out where
performance improvement can be expected. The effect of different
aspect ratios of the nanowire cross-section on the subband struc-
ture properties was investigated for [110] nanowires. It was found
that confinement along the [�110] and [001] axes has profoundly
different effects on the subband structure. It was made clear that
diameter, cross-section shape, and stress offer an additional design
space for future devices based on [110] nanowire channels. This
allows tuning the device for a particular application through geo-
metrical patterning and application of stress during the fabrication
process.

Finally, we addressed the question why the measured current
enhancement of stressed nanowires is significantly larger than in
thin films under the same stress conditions [1]. According to our re-
sults, the effect can be attributed to the one-dimensional nature of
the electrons confined in a nanowire. Using a simple transport mod-
el for the confined electrons we calculated a stress-induced current
enhancement figure close to the one obtained experimentally.
Acknowledgment

This work has been supported by the Austrian Science Fund,
special research program IR-ON (F2509).
References

[1] Bangsaruntip S, Majumdar A, Cohen G, Engelmann S, Zhang Y, Guillorn M, et al.
Gate-all-around silicon nanowire 25-stage CMOS ring oscillators with
diameter down to 3 nm. In: Symposium on VLSI technology, 2010 (VLSIT,
2010); 2010. p. 21–2. doi:10.1109/VLSIT.2010.5556136.

[2] Bangsaruntip S, Cohen G, Majumdar A, Zhang Y, Engelmann S, Fuller N, et al.
High performance and highly uniform gate-all-around silicon nanowire
MOSFETs with wire size dependent scaling. In: IEEE international electron
devices meeting (IEDM, 2009); 2009. p. 1–4. doi:10.1109/IEDM.2009.5424364.

[3] Hensel JC, Hasegawa H, Nakayama M. Cyclotron resonance in uniaxially
stressed silicon. II: nature of the covalent bond. Phys Rev
1965;138(1A):A225–38. doi:10.1103/PhysRev.138.A225.

[4] Sverdlov V, Karlowatz G, Dhar S, Kosina H, Selberherr S. Two-band k � p model
for the conduction band in silicon: impact of strain and confinement on band
structure and mobility. Solid-State Electron 2008;52(10):1563–8.

[5] Sverdlov VA, Windbacher T, Schanovsky F, Selberherr S. Mobility modeling in
advanced MOSFETs with ultra-thin silicon body under stress. J Integr Circ Syst
2009;4(2):55–60.

[6] Levinstein M, Rumyantsev S, Shur M. Handbook series on semiconductor
parameters. London: World Scientific; 1996. vol. 1. 2, 1999, 191.

[7] Lehoucq R, Sorensen D, Yang C. ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted arnoldi methods; 1998.

[8] Neophytou N, Paul A, Lundstrom MS, Klimeck G. Self-consistent simulations of
nanowire transistors using atomistic basis sets. In: Grasser T, Selberherr S,
editors. Simulation of semiconductor processes and devices
2007. Vienna: Springer; 2007. p. 217–20. doi:10.1007/978-3-211-72861-
1_51, URL http://dx.doi.org/10.1007/978-3-211-72861-1_51.

[9] Sverdlov V, Baumgartner O, Windbacher T, Schanovsky F, Selberherr S.
Thickness dependence of the effective masses in a strained thin silicon film.
In: International conference on Simulation of semiconductor processes and
devices, 2009 (SISPAD ’09); 2009. p. 1–4. doi:10.1109/SISPAD.2009.5290252.

[10] Neophytou N, Kosina H. Large enhancement in hole velocity and mobility in p-
type [110] and [111] silicon nanowires by cross section scaling: an atomistic
analysis. Nano Lett 2010;10(12):4913–9. doi:10.1021/nl102875k, http://
dx.doi.org/10.1021/nl102875k.
-type silicon nanowires using strain and confinement. Solid State Electron

http://dx.doi.org/10.1109/VLSIT.2010.5556136
http://dx.doi.org/10.1109/IEDM.2009.5424364
http://dx.doi.org/10.1103/PhysRev.138.A225
http://dx.doi.org/10.1007/978-3-211-72861-1_51
http://dx.doi.org/10.1109/SISPAD.2009.5290252
http://dx.doi.org/10.1021/nl102875k
http://dx.doi.org/10.1021/nl102875k
http://dx.doi.org/10.1016/j.sse.2011.11.022
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