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Abstract The thermal properties of graphene-based materi-
als are theoretically investigated. The fourth-nearest neigh-
bor force constant method for phonon properties is used in
conjunction with both the Landauer ballistic and the non-
equilibrium Green’s function techniques for transport. Bal-
listic phonon transport is investigated for different structures
including graphene, graphene antidot lattices, and graphene
nanoribbons. We demonstrate that this particular method-
ology is suitable for robust and efficient investigation of
phonon transport in graphene-based devices. This methodol-
ogy is especially useful for investigations of thermoelectric
and heat transport applications.
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1 Introduction

Graphene, a recently discovered form of carbon, has re-
ceived significant attention over the last few years due to its
excellent electrical [1–5], optical [6–8], and thermal prop-
erties [9–12]. The electrical conductivity of graphene is as
high as that of copper [13] and the ability of graphene
to conduct heat is an order of magnitude higher than that
of copper [9]. In addition, a large scale method to pro-
duce graphene sheets has been reported [14] which sets the
stage for graphene usage in large scale applications. The
high thermal conductivity of graphene is mostly due to the
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lattice contribution, whereas the electronic contribution is
much weaker [9, 15]. Due to its high thermal conductivity,
graphene can be especially useful for thermal management
applications. On the other hand, graphene-based materials
such as roughened nanoribbons [16, 17], graphene antidots
[18, 19], and defected graphene lattices [20–24] have been
demonstrated to have an extremely low thermal conductivity
because of the strong sensitivity of phonon transport to dis-
order and geometrical imperfections in these channels. The
thermal conductivity in non-uniform graphene-based mate-
rials is shown to be orders of magnitude below the value of
pristine graphene. Such materials would be excellent candi-
dates for thermoelectric applications that require very low
values of thermal conductivity.

Recent studies on the thermal conductivity of graphene
nanoribbons have shown that edge roughness can strongly
degrade the thermal conductivity. The results indicate that
in the presence of edge disorder, phonon transport can be
driven into the diffusive, the phonon-glass, and even the lo-
calized regimes [16]. Furthermore, vacancies, defects, and
isotope doping have dramatic effects on phonon transmis-
sion [11, 25]. Antidot meta-materials could also be em-
ployed to design the graphene-based phononic-crystal lat-
tices to achieve specific properties. In such structures, ther-
mal properties such as the phonon density-of-states, group
velocity, and heat capacity could be engineered to some ex-
tent in a controlled manner [26]. For this goal to be achieved,
proper simulation tools and methodologies, accounting for
the relevant nanoscale physics are necessary.

In this work, we use the force constant method (FCM) to
describe the dynamics of graphene antidot systems, nanorib-
bons, and nanoribbons with embedded antidots. To calcu-
late the transport properties we use two methods: (i) The
Landauer approach [27] for the 2D periodic antidot sys-
tems, and (ii) the non-equilibrium Green’s function (NEGF)
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technique [28] for the 1D nanoribbon systems. The NEGF
method is usually used for electron transport, however, in
this work it is extended to the phonon system [29]. We show
that such methodology is suitable for robust and efficient in-
vestigation of phonon transport in graphene-based devices.
We find that the thermal conductivity is a strong function
of the geometrical features of the channels. Even very small
size defects could have a large impact on the thermal con-
ductance. The dependence on the size of the antidots, or their
positions in the lattice can be used to design their phonon
transport properties with control over a large range of ther-
mal conductivity values.

The paper is organized as follows. In Sect. 2 we present
the FCM and evaluate the phononic bandstructure and bal-
listic lattice thermal conductance of the antidot graphene-
based structures. In Sect. 3 we use the FCM and the NEGF
formalism to investigate thermal transport in nanoribbons
and nanoribbon antidot channels. Finally, in Sect. 4 we con-
clude.

2 Phonon bandstructure and ballistic phonon transport

In this section we present the geometry of the graphene-
based antidot structure investigated. Then, the FCM for
graphene-based structures is introduced. Using this method
along with the Landauer formalism, we evaluate the pho-
nonic bandstructure and the lattice thermal conductance.

2.1 Graphene and graphene antidot lattices

Low dimensional thermoelectric materials have recently at-
tracted significant attention [30–32] because they provide
the possibility of independently controlling their electronic
and phononic properties. Thermoelectric materials must si-
multaneously have a high Seebeck coefficient, a high elec-
trical conductance, and a low thermal conductance [33].
A large Seebeck coefficient is achieved in semiconductors
with large bandgap. Pristine graphene, on the other hand,
is a semi-metal or zero-gap semiconductor and has a low
Seebeck value [34]. Several studies have been conducted
on methods to open a bandgap in this material. It has been
demonstrated that a bandgap can be introduced by appropri-
ate patterning of the graphene sheet [35, 36].

One such example of a graphene-based patterned struc-
ture is the graphene antidot lattice (GAL) as shown in Fig. 1.
In this structure, a direct bandgap is obtained depending
on the geometrical details of the antidots. In addition, such
structure allows for engineering the phonon properties of the
material. In the case of thermoelectric materials, the ther-
mal conductivity needs to be drastically reduced. The over-
all design goal is to identify appropriate geometries that de-
grade the thermal conductivity and simultaneously improve

Fig. 1 Atomistic geometrical structures of the antidot with N = 7, and
L = 3, which forms the lattice GAL(7,3)

the power factor, or at least degrade the electronic conduc-
tivity much less. In this work we focus on the thermal con-
ductivity part, whereas the electronic part was discussed in
our previous work [19].

The unit cell of a GAL can be described by two param-
eters L and N , where L is the side length of the hexago-
nal unit cell (outer boundary) and N is the side length of
the antidot (inner boundary) as shown in Fig. 1. Both pa-
rameters are described in terms of the graphene lattice con-
stant (a = 2.46Å). Figure 1 shows a hexagonal antidot with
L = 7 and N = 3, formed by removing 54 carbon atoms
from a cell. This is usually represented using the convention
GAL(7,3) as introduced in Ref. [36].

Here, we consider antidots of hexagonal shape, period-
ically repeated in the entire 2D plane. In the first step, the
dynamic matrix is constructed using the outer hexagonal
structure as shown in Fig. 1, which is kept fixed. For the
antidots of different sizes, we remove the relevant atoms
from the cell. For every atom removed, its corresponding
column and row are removed from the dynamic matrix. In
this work the type of the antidot’s boundary edge is zigzag
as shown in Fig. 1. Other shapes of antidots can have dif-
ferent edge types and circumferential shapes, that can have
some effect on the phononic properties as discussed in our
previous works [19, 37]. Here, however, we consider only
the zigzag edge structures and focus on the computational
aspects of the method.

2.2 Model and method

Among all the models used to describe the phonon bands,
such as first principle models [23, 38], the valence force field
(VFF) method [39, 40], and the FCM, the latter has the low-
est computation time requirements. In this model, the dy-
namics of atoms are simply described by a few force springs
connecting an atom to its surroundings up to given num-
bers of neighbors. In contrast, the VFF method is based on
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Fig. 2 Schematic
representation of the nearest
neighbors of the ith carbon
atom. Up to four
nearest-neighbors are included

Table 1 The fitting parameters of the force constant tensor in
N/m [43]

N �r �ti �to

1 365.0 245.0 98.2

2 88.0 −32.3 −4.0

3 30.0 −52.5 1.5

4 −19.2 22.9 −5.8

the evaluation of the force constants, which requires a much
larger computational times. The FCM uses a small set of em-
pirical fitting parameters and can be easily calibrated to ex-
perimental measurements. Despite its simplicity, it can pro-
vide accurate and transferable results [41, 42]. Thus, it is a
convenient and robust method to investigate thermal proper-
ties of crystals and in particular of graphene nanostructures.

The FCM model we employ involves a fourth nearest-
neighbor approximation (see Fig. 2). The force constant ten-
sor describing the coupling between the ith and the j th car-
bon atom, which are the N th nearest-neighbor of each other,
is given by:

K
(ij)

0 =
⎛
⎜⎝

�
(N)
r 0 0

0 �
(N)
ti 0

0 0 �
(N)
to

⎞
⎟⎠ (1)

where, �r , �ti and �to are the radial, the in-plane trans-
verse, and the out-of-plane transverse components of the
force constant tensor, respectively. Their values are pre-
sented in Table 1 [43].

The motion of the atoms can be described by a dynamic
matrix as:

D = [D(ij)

3×3] =
[

1√
MiMj

×
{

K
(ij)
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l �=i K
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where Mi is the atomic mass of the ith carbon atom, and
Kij is a 3 × 3 force constant tensor describing the coupling
between the ith and the j th carbon atom. In Cartesian coor-

dinates it is given by:

K(ij) = U−1
m K

(ij)

0 Um (3)

where Um is a unitary matrix defined as:

Um =
⎛
⎝

cos�ij sin�ij 0
− sin�ij cos�ij 0

0 0 1

⎞
⎠ (4)

Here, we assume that the graphene sheet is located in
the x–y plane and that �ij represents the angle between the
x-axes and the bond between the ith and j th carbon atom.
The phononic bandstructure can be calculated by solving the
eigen-value problem described by:

(∑
l

K(il) − ω2(k)I

)
δij −

∑
l

K(il) exp (ik · �ril) = 0

(5)

where �rij = ri − rj is the distance between the ith and the
j th carbon atom, and k is the wave vector. Equivalently, af-
ter setting up the dynamic matrix, one can use the following
eigen-value problem:

D +
∑

l

Dl exp (ik · �Rl) − ω2(k)I = 0 (6)

where Dl is the dynamic matrix representing the interaction
between the unit cell and its neighboring unit cells separated
by �Rl .

Using the phononic bandstructures, the density of modes
M(E) is calculated, and from this the ballistic transmission
T ph(E) is extracted. In the ballistic limit, T ph(E) can be
extracted from the density of modes M(E):

T ph(E)|Ballistic = Mph(E)

=
∑

k

δ(E − εph(k))�k⊥
∂εph(k)

∂k‖
(7)

where δ is the delta function, k⊥ refers to the wave vector
component perpendicular to the transport direction and k‖
to the wave vector component parallel to the transport di-
rection [28, 44]. In our calculations, we broadened the delta
function by 1 meV. This helps smoothen the numerical re-
sults without affecting the results for the thermal conduc-
tance. Once the transmission is obtained, the transport coef-
ficient is calculated within the framework of the Landauer
theory as [45]:

Kph = 1

h

∫ +∞

0
T ph(ω)�ω

(
∂n(ω)

∂T

)
d(�ω) (8)

where n(ω) denotes the Bose-Einstein distribution function.
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2.3 Computational results

The phononic bandstructure of graphene shown in Fig. 3 is
evaluated using the fourth nearest-neighbor FCM with force
constants given in Table. 1. This method relies on twelve
fitting parameters that determine the force constants, which
are extracted from experiments. To validate the model, we
present the experimental phonon bandstructure results from
Refs. [41, 46]. As expected, the result is in good agreement
with the experimental data (see Fig. 3), especially for the
low phonon frequencies, which are the most important ones
in determining the thermal conductivity.

Because the model relies on empirical parameters fitted
to experiments, it is much more computationally efficient

Fig. 3 Phononic bandstructure of graphene (solid) evaluated using the
fourth nearest-neighbor FCM. Experimental results (dots) are taken
from Refs. [41, 46]

compared to other atomistic formalisms, such as the valence
force field (VFF) method. In the VFF method, for example,
the force constants for each atom in the unit cell are cal-
culated, and the simulation time is dominated by dynamic
matrix construction [26]. The approximation in that method
comes from the parameters used in the evaluation of the po-
tential energy. For FCM, since force constants are empirical
parameters, the construction time of the dynamic matrix is
negligible, which makes the computation much more effi-
cient. The simulation time is determined by the solution of
the eigen-value problem. The price to pay for improving the
accuracy and transferability of the FCM, is that four nearest
neighbors need to be included, in contrast to just the next
nearest-neighbor in the VFF method. In the graphene lattice
this results in 18 neighbors for each atom as shown in Fig. 2.
In FCM we assume that there is a spring between each car-
bon atom and its 18 neighbors. We note that this number
is reduced in the case of boundary atoms with less nearest-
neighbors.

In Fig. 4 we show two examples of dynamic matrices.
Figure 4a shows the dynamic matrix for the GAL(3,0) and
Fig. 4b for the GAL(4,0). The sparsity pattern of the dy-
namic matrix depends on the ordering of the atoms in the
physical structure. However, there are specific characteris-
tics associated with the FCM model employed. Since each
atom interacts with 18 neighbors, the dynamic matrix has 19
(3 × 3) blocks filled in each column and row (including the
on-site block).

Our investigation considers the variation in the thermal
conductivity of the GALs upon changes of the geometrical
features L and N . In Fig. 5 we show the phonon transmis-
sion of GALs with L = 7 and different values of N . The
black-solid line with N = 0 is the phonon transmission of
pristine graphene. The transmission increases almost lin-
early until ∼ 50 meV, where it drops in agreement with
other reports in the literature [47]. This can be easily ex-
plained by looking at Fig. 3, which shows the lowest phonon

Fig. 4 Sparsity pattern of the
dynamic matrix of
(a) GAL(3,0) and
(b) GAL(4,0)
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Fig. 5 (Color online) The transmissions of pristine graphene (black)
and hexagonal GALs of different antidot sizes

mode to extend up to ∼ 50 meV before it reaches the zone
boundary. We gradually increase the size of the antidot, and
compute the corresponding transmission. As the size of the
antidot increases, the phonon transmission is significantly
reduced. The total number of atoms in the pristine supercell
we consider is 294. In the case of the GAL(7,1) structure, 6
atoms are removed, which is just 2% of the total number of
atoms. Even with such a small number of atoms removed,
the transmission is reduced considerably as shown by the
green line in Fig. 5. As the number of removed atoms in-
creases, i.e. the antidot size increases, the transmission re-
duces even further. For the GAL(7,3), with 54 atoms re-
moved, which is ∼ 20% of the total number, and for the
GAL(7,5) in which 150 atoms are removed (∼ 50%), the
transmission monotonically decreases.

The important observation, however, is that the largest
degradation in the transmission appears in the first step,
where only 6 atoms are removed. After that, the detrimental
effect of the antidot size weakens. These results show that
the thermal properties of pristine graphene are extremely
sensitive even to very small geometrical perturbations.

When atoms are removed from the lattice, the number
of phonon modes could also possibly be reduced. There-
fore, a reduction in the transmission would be expected. On
the other hand, the drastic reduction in the phonon trans-
mission by small changes in the geometry of the antidots
indicates that most of the reduction in the thermal conduc-
tance originates from the phononic properties of the lattice,
that are changed significantly. The phononic modes are al-
tered, which changes the phonon DOS, their group velocity
and possibly introduces strong mode localization as well.
To demonstrate this, Fig. 6 shows the lattice thermal con-
ductance of different GALs normalized to the thermal con-
ductance of pristine graphene (solid-square line). The re-
sult indicates that the conductance is reduced below 60% as

Fig. 6 Thermal conductance of GALs of different areas as a function
of the antidot filled-factor

the smallest GAL(7,1) antidots are introduced to form the
GAL(7,1). As the size of the antidots increases, the conduc-
tance is further reduced, but the rate of decrease weakens.
For the GAL(7,5) structure with a fill factor of 50% the con-
ductance decreases to one-fifth of that of pristine graphene.
This strong reduction could have important consequences
in the use of such materials for thermoelectric applications,
where heat conductivity needs to be minimized.

To illustrate that this effect results from phononic band-
structure engineering, and is not just an effect of a reduced
number of modes due to fewer atoms, the dashed-circled line
in Fig. 6 shows the thermal conductance, but scaled upwards
with the filled-factor (FF) as Kph/FF. In this way, we com-
pare the conductance of pristine graphene with that of an
antidot lattice with the same number of atoms. The smaller
the difference between the two curves, the larger the impor-
tance of phononic bandstructure engineering is. It is obvi-
ous, that the large reduction in the conductivity introduced
by the smaller antidots originates from phononic band modi-
fications. For larger antidots, the reduction of phonon modes
because of the reduced number of atoms might also have
some influence.

3 Coupling FCM to NEGF

In this section we couple the FCM and NEGF methods
to calculate the thermal conductivity in graphene nanorib-
bons and graphene nanoribbon antidot channels. Graphene
nanoribbons (GNRs) are thin strips of graphene, in which
a bandgap forms depending on the chirality of the edges
and the width of the ribbon. Electronically, zigzag GNRs
(ZGNRs) show metallic behavior, whereas armchair GNRs
(AGNRs) are semiconductors with a bandgap inversely pro-
portional to the width. In terms of thermal conductivity,
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Fig. 7 Geometrical structures
of nanoribbons with embedded
antidots. With respect to the
width of the ribbon, the antidots
are situated at (a) Center,
(b) Center + 1 atomic layer, and
(c) Center + 2 atomic layers.
M is the number of antidots in
the channel. C1 and C2
represent the two contacts

the two configurations show some differences in the order
of 30% [17]. The phonon transport properties of nanorib-
bons have been investigated in the past for pristine [48–50],
rough [51], impurity doped [23, 52], or disordered channels
[20, 22].

Here, we investigate the phonon transport properties in
nanoribbons that include antidots. We demonstrate that the
FCM can also be effectively coupled to NEGF for the in-
vestigation of coherent phonon transport in low dimensional
systems. NEGF can be advantageous when it comes to sim-
ulating phonon transport in disordered and non-periodic sys-
tems. The method has been traditionally employed for elec-
tronic transport studies, but has been extended to phonon
studies as well [53].

The system geometry consists of two semi-infinite con-
tacts made of pristine graphene and the device channel in-
cluding the antidots. The channel length is indicated by M ,
as shown in Fig. 7, which is determined by the number of an-
tidots placed in the channel. The device is formed by AGNR
and the antidots are introduced in the channel part only. The
contacts are assumed to be semi-infinite pristine ribbons. In
such structure, the calculated thermal properties arise from
the channel part of the device only, which breaks the period-
icity of the material.

The device Green’s function is obtained by

G(E) = (EI − D − 	1 − 	1)
−1 (9)

where D is device dynamic matrix and E = �ω is the
phonon energy. The contact self-energy matrices 	1,2 are
calculated using the Sancho-Rubio iterative scheme [54].
The effective transmission probability through the channel
can be obtained using the relation:

T ph(E) = Trace[
1G
2G
†] (10)

where 
1 and 
2 are the broadening functions of the two
contacts [28]. The dynamic matrices are constructed using
the FCM as explained in Sect. 2.2.

We extract the phonon transmission of the three different
structures shown in Fig. 7. In these structures we place anti-
dots in different positions along the width of the ribbon. For
the antidots we consider, we remove 6 atoms, similarly to the
GAL(7,1) configuration described in Fig. 1. We keep the
width of the ribbons constant and introduce antidots in three
different places: Center, Center + 1 atomic layer, Center + 2
atomic layers. Schematics of these structures are shown in
Fig. 7. For each of these structures, we increase the number
of antidots (M) from one to 10 in a periodic fashion.

The phonon transmission function for the structure in
which the antidots are placed in the center of the ribbon is
shown in Fig. 8. The black line shows the transmission func-
tion of the pristine ribbon, whereas the red and blue lines
are the transmissions of the ribbons that include 1 and 10
antidots, respectively. As with the periodic 2D antidot lat-
tices, by introducing the antidots in the ribbon’s channel, the
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Fig. 8 (Color online) Phonon transmission of ribbons with antidots
located at the center of ribbons’ channel. Black line: No antidots. Red
line: One antidot in the channel only. Blue line: 10 antidots in the chan-
nel

phonon transmission decreases. By introducing antidots the
mismatch between the modes in the channel and the contacts
increases and thus the transmission and the thermal conduc-
tance degrade.

In Fig. 9 we show the lattice thermal conductance nor-
malized with respect to the pristine ribbon thermal conduc-
tance for the three structures in Fig. 7. The number of an-
tidots in each structure is increased from 1 to 10. Similarly
to what was observed in the case of the 2D antidot lattices,
the introduction of the first couple of antidots is responsi-
ble for most of the thermal conductance degradation. As
the number of antidots increases, the rate of degradation de-
creases. If 10 antidots are introduced the conductance drops
to ∼ 40%.

Although for a small number of antidots the conductance
is not very sensitive to the antidot placement, as the number
of antidots increases, i.e. the channel length increases, some
sensitivity of the order of ±10% is observed. The maximum
decrease in lattice thermal conductance appears for the case
where the antidots are located closer to the ribbon’s edge.
Other theoretical studies have also concluded that edge de-
fects suppress thermal conductivity significantly [51]. We
note here that randomly placed edge antidots or defects
might have a larger degrading effect on thermal conductance
than the one observed here for periodic structures since they
could drive phonons into localized regimes. Although such
studies are not in the focus of this paper, the NEGF tech-
nique, applied to phonons using the FCM is perfectly suit-
able to capture these localization effects.

4 Summary

We have introduced the fourth nearest-neighbor force con-
stant method to evaluate the phononic properties of graphene

Fig. 9 Thermal conductance of ribbons with antidots placed as de-
scribed in Fig. 7 versus the number of antidots in the channel

antidot lattices. This technique is coupled to the Landauer
and the NEGF quantum ballistic transport formalisms. We
present the numerical formulation of the method. For the
graphene lattice, the ballistic lattice thermal conductance
can decrease five times by introducing antidots. Even small
size antidots, that reduce the fill factor to only ∼ 98%, can
have a significant impact. Similar sensitivity to antidots is
also observed for nanoribbons. Our results show that the
thermal conductivity in armchair graphene-nanoribbons can
be significantly reduced in the presence of antidots, which
could provide the means for such channels to be efficient
thermoelectric materials.
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