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Transition rules and optical properties of armchair graphene nanoribbons embedded in hexagonal

boron nitride lattices are studied for the first time. Based on tight binding calculations considering

first and second nearest neighbors, we show that the optical transition rules of such structures are

completely different from that of conventional graphene nanoribbons. These rules are explained by

the symmetry properties of the subband wave functions. The optical spectrum, the quantum

efficiency, and the photoresponsivity of different nanoribbons are evaluated and their application

in photodetector devices is investigated. The results are verified with first principles calculations.

VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4710988]

I. INTRODUCTION

Graphene, a single layer carbon sheet with a honeycomb

structure, has become a major topic in many areas of

research including condensed matter, material physics,

chemistry, and device physics. One-dimensional graphene

nanoribbons (GNRs) have recently attracted much interest as

they are recognized as promising building blocks for nano-

electronic devices.1 Armchair GNRs (AGNRs), a type of

GNRs with armchair edges, introduce a tunable bandgap

which is suitable for electronic and optical applications.2

Recently, single-layer hexagonal boron nitride (h-BN),

which is a wide-bandgap semiconductor,3 and boron nitride

nanoribbons (BNNRs) have been studied.3,4 BNNRs are

expected to be produced using a single-layer h-BN as the start-

ing material.3 The properties of BNNRs are qualitatively dif-

ferent from that of hydrogen-passivated AGNRs (H-AGNRs)

because of the relatively large ionicities of B and N atoms and

the larger energy-gaps of h-BN.3 Carbon atoms incorporated in

a BN lattice have a stable hexagonal configuration and can

form a one-dimensional nanoribbon under suitable chemical

potential conditions.4 It has been shown that AGNRs embed-

ded in BN sheets (AGNRs/BN) are semiconductors.4 In Ref. 5,

the electronic band-structure of AGNRs/BN is investigated. It

is shown that AGNRs/BN exhibit a larger bandgap compared

to H-AGNRs. The bandgap opening in these structures is pri-

marily due to the perturbation of the on-site potentials of the

edge atoms.5 A relatively large bandgap of AGNRs/BN ren-

ders them as suitable candidates for opto-electronic applica-

tions. Structures composed of GNRs and BNNRs introduce

more flexibility for electronic and opto-electronic applications.

In this work, we report for the first time a theoretical study of

the optical properties of AGNRs/BN.

The paper is organized as follows. Tight binding model

and first principle simulation parameters employed in this

study are presented in Sec. II. In Sec. III, the transition rules,

dielectric function, quantum efficiency, and photoresponsiv-

ity of AGNRs/BN are discussed. Finally, Sec. IV provides

concluding remarks.

II. METHODOLOGY

The electronic transport and optical properties of gra-

phene based structures are mostly determined by the p orbi-

tals.6 A first nearest neighbor tight-binding (TB)

approximation has been widely used to model the electronic

properties of such structures.7,8 To study AGNR/BN, how-

ever, a TB model incorporating at least two nearest neigh-

bors is required.5 Reference 5 has shown that the band

structure of AGNRs/BN can be calculated within the desired

precision assuming the orthogonality of atomic orbitals and

considering the effect of more nearest neighbors for each

atom. Therefore, the Hamiltonian can be written as5

H ¼
X

i

eiðcic
†

i Þ þ
X

i;j

tijðcic
†

j þ cjc
†

i Þ; (1)

where the operator ci(c
†

i ) creates (annihilates) an electron at

some site i and the indices i and j run over all of the atoms in

the unit cell, ei is the on-site energy for i-th atom, and tij is the

hopping parameter between i-th and j-th atoms. Reference 9

shows that taking the effect of the first three neighboring atoms

into consideration results in a good agreement with first princi-

ple calculations. Also, considering the second nearest neighbor

carbon atoms in TB calculations shifts the dispersion relation

by a constant value,9 thereby affecting the optical transition

rules. Therefore, up to second nearest neighbors are included

in our work employing the parameters reported in Ref. 5.

To investigate the optical response of AGNRs/BN, the

incident light is assumed to be polarized along the transport

direction (x-axis). Particularly, it is shown that the photocurrent

is maximized for photons polarized along the longitudinala)Electronic mail: h.nematian@ieee.org.
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direction of the structure,10 which are the main source for

interband transitions.11–13

We compare our TB results with first principles calcula-

tions employing SIESTA14 with the following parameters:

double-f basis set with additional orbitals of polarization for

total energies and electronic band-structures calculations, the

generalized gradient approximation method, Perdew-Burke-

Ernzerhof (PBE) as the exchange-correlation function, and

the Troullier-Martins scheme for the norm-conserving pseu-

dopotential calculations.5 A grid cutoff of 210 Ry is used

and the Brillouin zone sampling is performed by the Mon-

khost pack mesh of k-points. A mesh of ð128Â 8Â 1Þ has
been adopted for discretization of k-points and a broadening

factor of 0:1eV is assumed for the joint density of states

(JDOS) calculation. The optical polarization vector is

assumed to be along the transport direction similar to the

assumption made in the TB calculation.

III. RESULTS AND DISCUSSIONS

A. Transition rules

The interband optical matrix element for a transition

from an eigenstate in the valance subband jw
v
i to another

eigenstate in the conduction subband jwci is given by

ðe=m0ÞhwcjA Á pjw
v
i,15 where e is the elementary charge, m0

is the electron mass, A ¼ Aê is the vector potential, ê is a

unit vector parallel to A, and p is the linear momentum oper-

ator. The vector potential can be taken out of the expectation

value assuming dipole approximation.15 As a result, by eval-

uating momentum matrix elements, hwcjê Á pjwv
i, optical

transition rates can be achieved. Since the electromagnetic

field is assumed to be parallel along the x direction, therefore

pn;m ¼ hwcjpxjwv
i: (2)

These matrix elements determine the selection rules for opti-

cal transitions.16 A zero matrix element means a forbidden

transition. To determine a transition rule, it is sufficient to

determine the symmetry of the transition matrix element. If

the symmetry of this element spans the totally symmetric rep-

resentation of the point group to which the unit cell belongs

then its value is not zero and the transition is allowed. Other-

wise, the transition is forbidden. Assuming a uniform potential

profile across the ribbon’s width, the subband’s wave func-

tions are either symmetric or anti-symmetric along the y-axis

direction (hÀyjwc=vi ¼ 6hyjwc=vi). Therefore, the momentum

matrix elements are non-zero for interband-transitions from

the symmetric (anti-symmetric) to the symmetric (anti-sym-

metric) wave functions. This transition rule results in transi-

tions from subbands with odd (even) to odd (even) indices in

AGNRs/BN, which is described later.

Figure 1 shows the structure of an AGNR/BN which is

represented by AGNRncc BNmbn, where ncc is the number of

carbon dimers in the unit cell of the AGNR and mbn ¼
mbnu þ mbnl is the summation of the upper and lower BNNRs

dimers.

The wave functions at the sublattices A and B of an

AGNR20BN40 at kx ¼ 0 are shown in Fig. 2. CA=B, NA=B, and

BA=B represent the components of the wave functions at

carbon, nitrogen, and boron atoms at some sublattice A or B.

The wave function of each subband is the summation of the

wave functions at these two sublattices. For example, the

wave functions for the subband indices nv ¼ 60 (Figs. 2(g)

and 2(h)), nc ¼ 2 (Figs. 2(i) and 2(j)), and nc ¼ 60 (Figs.

2(a) and 2(b)) are anti-symmetric. Therefore, as discussed

before, the matrix elements are non-zero for transitions from

nv ¼ 60 to nc ¼ 2 and nc ¼ 60. The transitions from nv ¼ 59

to nc ¼ 1 and nc ¼ 59 are also possible as their respective

wave functions are symmetric. With the same analysis, a

transition from the highest valence subband to the lowest

conduction subband (nv ¼ 1 to nc ¼ 1) is possible in

AGNRs/BN (see Figs. 2(m), 2(n), 2(k), and 2(l)).

One can approximate the wave functions of an H-

AGNR at pth atomic site with sinðnhpÞ functions, where n is
the subband index and h ¼ p=ðN þ 1Þ (see Appendix A).

Considering such wave functions, one can calculate the mo-

mentum matrix elements using

pn;mðkxÞ ¼
1

ðN þ 1Þ
im0

�h
tacc

XN

p¼1

sinðnhpÞsinðmhpÞ
" #

Fn;mðkxÞ:

(3)

FIG. 1. The structure of an AGNRncc BNmbn. The incident light is assumed

to be polarized along the x-direction. CA=B;NA=B, and BA=B represent a car-

bon, a nitrogen, and a boron atom at the sublattice A or B.

FIG. 2. The wave functions of a AGNR20BN40 at CA (red circles), NA (red

squares), CB (black circles), and BB (black squares). nc ¼ 1 (nv ¼ 1) repre-

sents the lowest conduction (highest valence) subband.
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According to this equation, only transitions between valence

and conduction subbands with the same band-index are

allowed (shown in Appendix B). As shown in Fig. 2, the

wave functions for AGNRs/BN are not necessarily a single

sinusoidal function. The Fourier series of these wave func-

tions contain sinusoidal functions with different arguments

and coefficients, which results in more allowed interband-

transitions compared to H-AGNRs. Non-zero terms and the

symmetry properties of the AGNR/BN wave functions indi-

cate that the interband-transitions between subbands with the

same parity are allowed (odd to odd and even to even). This

transition rule is more restricted for conventional H-AGNRs

where the wave functions consist of complete sine terms (see

Eq. (B6).17 The rules are also different from that of ZGNRs

where interband-transitions from subbands with odd (even)

indices to subbands with even (odd) indices are allowed.18

B. Dielectric function

In the linear response regime, the imaginary part of the

dielectric function is given by15

eiðxÞ ¼
1

4pe0

2pe

mx

� �2X

kx

jpc;vj2d
�

EcðkxÞ À EvðkxÞ À �hx
�

Â f
�

EvðkxÞ
�

À f
�

EcðkxÞ
�h i

; (4)

where �hx is the energy of the incident photons. The Dirac

delta is approximated by a Gaussian function with a broaden-

ing factor of 0.1 eV.

The summation in Eq. (4) can be converted into a energy

integration by introducing the JDOS defined as

Djð�hxÞ ¼
1

p

ð

Skx

dS
�
�
�rkx

�

EcðkxÞ À EvðkxÞ
��
�
�

; (5)

where Skx is the constant energy surface defined by EcðkxÞ
ÀEvðkxÞ ¼ �hx.

The real part of the dielectric function erðxÞ can be eval-
uated from the imaginary part using the Kramers-Kronig

relation.15 The interband dielectric function is related to

the optical conductivity by eðxÞ ¼ 1þ 4pirðxÞ=x.11 In

Fig. 3(a), eiðxÞ and the JDOS of AGNR20BN40 are plotted.

In the energy range. 0 < �hx < 2eV, the JDOS has maxima

at �hx ¼ 0:3019; 0:62214; 0:92657; 0:91883; 1:2289; 1:5256;
and 1:7349eV. However, only four of these maxima

(�hx ¼ 0:3019; 0:91883; 0:92657; and 1:5256eV) appear in

eiðxÞ. From the electronic band-structure in Fig. 3(b), it can

be shown that the peaks in eiðxÞ are related to transitions

from nv ¼ 1 to nc ¼ 1 (A), nv ¼ 1 to nc ¼ 3 (B), nv ¼ 2 to

nc ¼ 2 (C), and nv ¼ 2 to nc ¼ 4 (D). Disappeared peaks in

eiðxÞ are due to zero momentum matrix elements in Eq. (4).

This transition rule confirms previous results which are

explained by the symmetry properties of the wave functions.

Figure 3(a) compares the dielectric functions of an

AGNR20BN40 obtained from TB and first principle calcula-

tions. Excellent agreement between these results confirms the

transition rules obtained from TB calculations. The energy of

the first peak matches well, however, the discrepancies

increase for higher peaks. This behavior is related to the

differences between the predicted energy-gaps obtained from

SIESTA and TB at higher energies, see Fig. 3(b).

C. Quantum efficiency

In order to investigate AGNRs/BN for photodetection

application, we study the quantum efficiency defined as

a ¼ ðIph=qÞ=ðPop=�hxÞ, where Iph is the photo current and Pop
is the incident optical power. We assumed that all absorbed

photons contribute to the photo current, such that the quantum

efficiency can be calculated from the dielectric function

(Eq. (4)). A quantum efficiency of 6À 16% for graphene is

reported in Ref. 19 and a maximum quantum efficiency rang-

ing from 9% to 11% is reported for H-AGNRs in Ref. 20.

Figure 4 shows the calculated quantum efficiency as a function

of the incident photon energy at various GNR widths. The effi-

ciency is maximized when the photon energy matches the

bandgap of the nanoribbon (the first peak for each structure).

Our results indicate a peak of quantum efficiency in the range

of 14À 15% for AGNRs/BN. The quantum efficiencies of

photodetectors based on AGNRs/BN and H-AGNRs are com-

pared in Fig. 4. Due to the presence of more allowed transi-

tions, a wider absorption spectrum is achieved in AGNRs/BN

compared to H-AGNRs. As a H-AGNR with index 8 is metal-

lic, the first peak is related to the second energy-gap and

appears at 2:88eV whereas the AGNR8BN30 shows three peaks

below that energy due to energy-gap opening, see Fig. 4(a). In

Fig. 4, the quantum efficiency decreases for the first energies,

but increases at higher energies, see for example, the sixth

peak for AGNR33BN30. This is due to different effective

masses of different subbands which affect the JDOS. Accord-

ing to Eq. (4), a larger JDOS leads to a larger absorption of

photons and a higher quantum efficiency.

We also investigate the photoresponsivity given by

ðIph=PopÞ. Our calculations give an upper limit for the photo-

responsivities of 0:336 A/W, 0.239A/W, and 0.202A/W for

photon energies near the bandgaps of AGNR8BN30,

AGNR16BN30, and AGNR33BN30, respectively. Due to the

higher quantum efficiency of AGNRs/BN compared to

AGNRs, a higher photoresponsivity is obtained for the same

input optical power of 107 W/m2.

FIG. 3. (a) The dielectric function of an AGNR20BN40 based on TB (solid line)

and first principle calculations (dashed line). The inset shows the related JDOS

using the TB model. (b) The electronic band-structure of an AGNR20BN40 from

TB (solid line) and first principle calculations (red dotted line).
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IV. CONCLUSIONS

In summary, we theoretically studied the optical proper-

ties of AGNRs/BN, employing TB calculations. We demon-

strate that in AGNRs/BN only optical transitions from

subbands with odd (even) indices to subbands with odd

(even) indices are allowed. This transition rule is more re-

stricted for AGNRs and completely different from that of

ZGNRs. Our TB results are in agreement with first principle

calculations which verify the accuracy of our model. The

applicability of AGNRs/BN as photodetectors is investi-

gated. Our results indicate that due to more allowed transi-

tions compared to conventional GNRs a larger photo current

in AGNR/BN structures can be achieved. The results render

AGNRs/BN as suitable candidates for infrared photodetec-

tors and future optoelectronic applications.

APPENDIX A: SUBBANDWAVE FUNCTIONS

The total wave function of the system is given by21

jwi ¼ CAjwAi þ CBjwBi: (A1)

The Bloch wave functions jwAi and jwBi can be expressed as

a linear combination of atomic wave functions of 2pz orbitals

jApi and jBqi. Due to translational invariance along the x

direction, one obtains

jwAi ¼
1
ffiffiffiffiffiffi
XA

p
XN

p¼1

eikxx
A
p/pjApi;

jwBi ¼
1
ffiffiffiffiffiffi
XB

p
XN

p¼1

eikxx
B
p/pjBpi;

(A2)

where XA=B are the normalization factors, N is the number of A

and B sublattices in the unit-cell of the GNR, xA=Bp are the x-

positions of the pth A=B-type carbon atom, /p is the y direction

component of the wave functions at the p th lattice site. We

impose hard-wall boundary conditions22 at the edges, /0 ¼ 0

and /Nþ1 ¼ 0. Therefore, one can assume that the component

of the wave functions in the y direction form standing waves,

/p ¼ sin
pn

N þ 1
p

� �

¼ sinðnhpÞ; n ¼ 1; 2;…;N; (A3)

where n is the band index. For convenience, the notation

h ¼ p=ðN þ 1Þ is introduced. Assuming the normalization

condition hwAjwAi ¼ hwBjwBi ¼ 1,22 the prefactors are

obtained as XA ¼ XB ¼ NxðN þ 1Þ=2, where Nx is the

number of unit cells along the x direction. For a perfect

and uniform ribbon we just need to perform the calcula-

tions over one unit-cell, therefore, from here on we

assume Nx ¼ 1. Finally, the coefficients CA and CB in

Eq. (1) are found by solving the Schrödinger equation,

Hjwi ¼ Ejwi, resulting in CB ¼ 6CAeÀiunðkxÞ, where

unðkxÞ is defined as

eiunðkxÞ ¼ fnðkxÞ
jfnðkxÞj

; (A4)

in which fnðkxÞ ¼ eikxacc þ 2eÀikxacc=2cosðnhÞ. To satisfy the

normalization condition, jCAj2 þ jCBj2 ¼ 1, one can choose

CA ¼ 1=
ffiffiffi
2

p
and CB ¼ 6eÀunðkxÞ=

ffiffiffi
2

p
. The wave function is

given by

j6; n; kxi ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN þ 1Þ
p

�
XN

p¼1

�

eikxx
A
p sinðnhpÞjApi

Ç eÀiunðkxÞeikxxBp sinðnhpÞjBpi
��

; (A5)

where the notation j6; n; kxi � jw6n ðkxÞi is introduced and

6 denote the conduction and the valence bands,

respectively.

APPENDIX B: OPTICALTRANSITION RULES

To obtain the momentum matrix elements (pc;v) in

Eq. (4), the gradient approximation is employed. By using

the operator relation p ¼ ðim0=�hÞ½H; r�, Eq. (2) can be writ-

ten as pc;v ¼ ðim0=�hÞhcjHxÀ xHjvi. By neglecting intra-

atomic transitions the momentum matrix elements can be

approximated as23

pc;v ¼ ðxv À xcÞ
im0

�h
hcjHjvi: (B1)

Using this approximation and the wave function Eq. (A5)

momentum matrix elements are obtained as

FIG. 4. The quantum efficiency of an (a) AGNR8BN30, (b) AGNR16BN30, and (c) AGNR33BN30 compared to a H-AGNRs with the same indices.
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pn;mðkxÞ ¼
1

ðN þ 1Þ
im0

�h

XN

p¼1

XN

q¼1

h

þ ðxBq À xAp Þeikxðx
B
qÀxAp ÞsinðnhpÞsinðmhqÞhApjHjBqieÀiumðkxÞ

À ðxAq À xBp Þeikxðx
A
qÀxBp ÞsinðnhpÞsinðmhqÞhBpjHjAqieþiunðkxÞ

i

; (B2)

where hApjHjBqi ¼ hBpjHjAqi ¼ t for p ¼ q and p ¼ q61, otherwise the matrix elements are zero. Therefore, Eq. (B2) can be

written as

pn;mðkxÞ ¼
1

ðN þ 1Þ
im0

�h
tacc

XN

p¼1

sinðnhpÞ
�

þ eÀiumðkxÞ þ eþikxacc sinðmhpÞ À 1

2
eÀikxacc=2

�

sin
�

mhðpÀ 1Þ
�

þ sin
�

mhðpþ 1Þ
��� �

À eþiunðkxÞ ÀeÀikxacc sinðmhpÞ þ 1

2
eþikxacc=2

�

sin
�

mhðpÀ 1Þ
�

þ sin
�

mhðpþ 1Þ
��� ��

:

¼ 1

ðN þ 1Þ
im0

�h
tacc

�
XN

p¼1

sinðnhpÞsinðmhpÞ
�

Â
�

þ eÀiumðkxÞ
�

eþikxacc À eÀikxacc=2cosðmhÞ
�

þ eþiunðkxÞ
�

eÀikxacc À eþikxacc=2cosðmhÞ
��

: (B3)

Here, the relation sinðxÞ þ sinðyÞ ¼ 2sin
�

ðxþ yÞ=2
�

cos
�

ðxÀ yÞ=2
�

is employed. Using Eq. (A4), Eq. (B3) can be written as

pn;mðkxÞ ¼ 1

ðN þ 1Þ
im0

�h
tacc

"
XN

p¼1

sinðnhpÞ sinðmhpÞ
#

Â
 

þ 1

jfmðkxÞj
�

1À 2 cos2ðmhÞ þ 2eþi3kxacc=2 cosðmhÞ À eÀi3kxacc=2 cosðmhÞ
�

þ 1

jfnðkxÞj
�

1À 2 cosðmhÞ sinðnhÞ þ 2eÀi3kxacc=2 cosðnhÞ À eþi3kxacc=2 cosðmhÞ
�
!

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fn;mðkxÞ

:

¼ 1

ðN þ 1Þ
im0

�h
tacc

"
XN

p¼1

sinðnhpÞ sinðmhpÞ
#

Fn;mðkxÞ:

(B4)

The summation over sine functions in Eq. (B4) determines

the transition rules. Using some trigonometric identities one

can write this summation as

XN

p¼1

sinðnhpÞsinðmhpÞ ¼ 1

2

"

þ cos
ðnÀ mÞp

2
sin

ðnÀ mÞpN
2ðN þ 1Þ

Â sin
ðnÀ mÞp
2ðN þ 1Þ

� �À1

À cos
ðnþ mÞp

2

Â sin
ðnþ mÞpN
2ðN þ 1Þ sin

ðnþ mÞp
2ðN þ 1Þ

� �À1
#

:

(B5)

If n6m ¼ 2k þ 1, where k is a non-zero integer, both terms

in the bracket of Eq. (5) will be zero. In the case of

n6m ¼ 2k, both terms in the bracket will be equal to À1,

therefore, the summation will be again zero. However, if

n ¼ m, the fist term in will be equal to N and the second

term will be equal to À1. Therefore, only transitions between

valence and conduction subbands with the same band-index

are allowed

XN

p¼1

sinðnhpÞsinðmhpÞ ¼
N þ 1

2
; n ¼ m

0 ; n 6¼ m
:

8

<

:
(B6)
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