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Abstract Low dimensional structures have demonstrated
improved thermoelectric (TE) performance because of a
drastic reduction in their thermal conductivity, κl . This has
been observed for a variety of materials, even for tradi-
tionally poor thermoelectrics such as silicon. Other than
the reduction in κl , further improvements in the TE figure
of merit ZT could potentially originate from the thermo-
electric power factor. In this work, we couple the ballis-
tic (Landauer) and diffusive linearized Boltzmann electron
transport theory to the atomistic sp3d5s*-spin-orbit-coupled
tight-binding (TB) electronic structure model. We calculate
the room temperature electrical conductivity, Seebeck coef-
ficient, and power factor of narrow 1D Si nanowires (NWs).
We describe the numerical formulation of coupling TB to
those transport formalisms, the approximations involved,
and explain the differences in the conclusions obtained from
each model. We investigate the effects of cross section size,
transport orientation and confinement orientation, and the
influence of the different scattering mechanisms. We show
that such methodology can provide robust results for struc-
tures including thousands of atoms in the simulation domain
and extending to length scales beyond 10 nm, and point to-
wards insightful design directions using the length scale and
geometry as a design degree of freedom. We find that the ef-
fect of low dimensionality on the thermoelectric power fac-
tor of Si NWs can be observed at diameters below ∼7 nm,
and that quantum confinement and different transport orien-
tations offer the possibility for power factor optimization.
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1 Introduction

The ability of a material to convert heat into electricity
is measured by the dimensionless figure of merit ZT =
σS2T/(κe + κl), where σ is the electrical conductivity, S

is the Seebeck coefficient, and κe and κl are the electronic
and lattice part of the thermal conductivity, respectively. The
interrelation between σ,S, and κe in bulk materials keeps
ZT low [1]. Some of the best thermoelectric materials are
compounds of Bi, Te, Pb, Sb, Ag, and exhibit ZT ∼ 1 [1, 2].
Recently, however, using low-dimensional structures, it was
demonstrated that ZT could be greatly increased compared
to their bulk counterparts, setting the stage for highly effi-
cient TE energy conversion.

It was initially suggested that thermoelectric efficiency
could be improved at the nanoscale because of two rea-
sons: (i) Low-dimensionality and quantum size effects could
improve the Seebeck coefficient [3], and (ii) Small fea-
ture sizes enhance phonon scattering on nanoscale interfaces
and reduce thermal conductivity [4]. Indeed, large improve-
ments of ZT in low-dimensional structures such as 0D quan-
tum dots, 1D nanowires (NWs), 2D superlattices and bulk
nanocomposites have recently been achieved [4–14]. This
was even achieved for common materials, and importantly
Si based systems such as Si, SiGe, and SiC [12–15]. Silicon,
the most common semiconductor with the most advanced in-
dustrial processes, is a poor TE material with ZTbulk ∼ 0.01.
Si NWs, on the other hand, have demonstrated ZT ∼ 1,
a 100× increase [12–15], and they are now considered as
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Fig. 1 Zincblende lattice of
cylindrical nanowires in the
[100], [110], and [111]
orientations

emerging candidates for high efficiency and large volume
production TE applications [16].

Most of the benefit to the measured ZT values of NWs
originates from a dramatic reduction in the lattice thermal
conductivity κl [15, 17–20]. It has very recently become ev-
ident, however, that benefits from κl reduction are reach-
ing their limits, and further increases of ZT can only be
achieved through improvements in the power factor σS2

[16, 21]. By nanostructuring, the electronic structure could
be engineered to tune the Seebeck coefficient [3, 7, 22] and
the electrical conductivity [23] independently, which could
maximize σS2. For example, Hicks and Dresselhaus sug-
gested that the sharp features in the low-dimensional den-
sity of states function DOS(E) can improve the Seebeck co-
efficient [3, 7]. Mahan and Sofo have further shown that
thermoelectric energy conversion through a single energy
level (0D channel) can reach the Carnot efficiency when κl

is zero [24]. Because of the strong interconnection between
σ and S, and their dependence on the geometrical features,
involved simulation capabilities that account for the atom-
istic nature over large length scales are necessary in order to
guide the design of such devices.

In this work the atomistic sp3d5s*-spin-orbit-coupled
(sp3d5s*-SO) tight-binding model [25–29] is used to cal-
culate the electronic structure of thin silicon NWs. Two
transport formalisms are employed to calculate the thermo-
electric coefficients σ,S, and the power factor σS2: (i) The
Landauer formalism [30–34], and linearized Boltzmann the-
ory [23, 24, 35]. We describe the numerical methodologies
and the approximations used, and demonstrate why such
methodology is appropriate and efficient for this purpose.
We consider different NW diameters, different transport ori-
entations ([100], [110], [111]), different cross section ge-
ometries and various relevant scattering mechanisms. Using
experimental values for κl in Si NWs, we estimate the ZT
figure of merit. Our results explore effects of bandstructure
features resulting from scaling the channel cross sections on
the TE coefficients. Design optimization directions based on
bandstructure engineering in low-dimensional channels are
identified.

The paper is organized as follows: In Sect. 2 we describe
the Landauer approach which is used to investigate the ef-
fect of the geometrical features on the electronic structures
and the thermoelectric coefficients of ultra-scaled Si NWs.
In Sect. 3 we describe the numerical approach to couple the
TB model and Boltzmann transport theory, and the approx-
imations used. In Sect. 4 we investigate the effects of NW
cross section size, orientation, and scattering mechanisms
on the thermoelectric coefficients. Finally, in Sect. 5 we con-
clude.

2 Ballistic Landauer approach for TE coefficients

The NW bandstructure is calculated using the 20 orbital
atomistic tight-binding sp3d5s*-SO model [25, 28], which
is sufficiently accurate and inherently includes the effects
of different transport and quantization orientations. We con-
sider infinitely long, uniform, silicon NWs in the [100],
[110] and [111] transport orientations as shown in Fig. 1,
with also different cross section shapes. We assume passi-
vated surfaces. The passivation technique details are pro-
vided in Appendix B [36]. These geometrical features have
an impact on the electronic structure and the transport prop-
erties. Figure 2 shows examples of n-type NW electronic
structures. The lowest subbands are shifted to the same ori-
gin E = 0 eV for comparison purposes. For brevity, only
half of the k-space is shown. Figures 2a and b show the dis-
persions of [100] NW with diameters of 3 nm and 12 nm,
respectively. As the diameter is reduced, the number of sub-
bands is reduced, and the relative shift between the � and
off-� valleys also changes. The degeneracies (η) of the �

and off-� valleys are η = 4 and η = 1, respectively. Fig-
ures 2c and d show the corresponding dispersions for the
[111] NW. The shape of the dispersion is different for dif-
ferent orientations. The degeneracy of this valley is η = 6.
For [110] NWs, Fig. 2e shows the dispersion of the 3 nm
wide and 12 nm tall rectangular NW (strong (1–10) surface
quantization), whereas Fig. 2f the dispersion of the 12 nm
wide and 3 nm tall NW (strong (001) surface quantization),
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Fig. 2 Dispersions of n-type NWs in various orientations and diam-
eters/side lengths. (a) [100], D = 3 nm. (b) [100], D = 12 nm. (c)
[111], D = 3 nm. (d) [111], D = 12 nm. (e–f) Dispersions of rectan-
gular NWs with widths (W ) and heights (H ): (e) [110] NW, W = 3 nm,
H = 12 nm. (f) [110] NW, W = 12 nm, H = 3 nm. a0, a′

0 and a′′
0 are

the unit cell lengths for the wires in the [100], [110], and [111] orienta-
tions, respectively. The filled rectangles indicate the NW cross section

which produce different electronic structures. The degener-
acy of both, the � and off-� valleys is η = 2. This depen-
dence of the dispersions on geometry will result in different
electronic and thermoelectric characteristics.

In this section, the ballistic Landauer formalism [30] is
used to extract the TE coefficients. Although ballistic trans-
port cannot be achieved in a realistic thermoelectric device,
the results in this section indicate the upper performance
limit, and it is a “fast” way to identify whether geometry
could have an effect on TE properties through bandstructure
engineering. The results from this method are compared to
the results from the diffusive Boltzmann transport method in
Sect. 3.

In the Landauer formalism the current is given by:

J = −q0

L

∑

k>0

vkf1 − q0

L

∑

k<0

vkf2 (1a)

= −q0

L

∑

k>0

vk (f1 − f2) , (1b)

where vk is the bandstructure velocity, and f1, f2 are the
Fermi functions of the left and right contacts, respectively.
Auxiliary functions R(α)(f1, f2, T ) can be defined as:

R(α) = − q0
L

∑
k>0 vk (f1 − f2) (Ek − μ1)

α

(μ1 − μ2)
, (2)

where μ1,μ2 are the contact Fermi levels, and Ek is the
subband dispersion relation. This formula is the same as the
one described in references [31, 37], where for small driv-
ing fields �V , the linearization f1 − f2 = −q0�V

∂f1
∂E

is
applied. Here, however, the computation is explicitly per-
formed in k-space rather than energy-space. From these
functions, the conductance G, the Seebeck coefficient S, and
the electronic part of the thermal conductivity κe , can be de-
rived as

G = R(0), (3a)

S = 1

T

R(1)

R(0)
, (3b)

κe = 1

T

[
R(2) − [R(1)]2

R(0)

]
. (3c)

Using this approach, the power factor (defined as σS2 =
G/Area · S2) has been calculated. It is shown in Fig. 3 as
a function of the one-dimensional carrier concentration, for
cylindrical n-type NWs in the three transport orientations
[100], [110] and [111] for two different diameters D = 3 nm
and D = 12 nm. Comparing the magnitude of the power
factor for D = 3 nm, the [111] NW with a 6-fold degen-
erate band has a higher power factor than the other NWs.
The [100] NW, with a 4-fold degenerate �-valley follows,
whereas the [110] NW with a 2-fold degenerate �-valley
has the lowest power factor. Subbands with higher degen-
eracies, or subbands with edges very close in energy, im-
prove the Seebeck coefficient which can be beneficial to the
power factor. We show in Sect. 3, however, that once scat-
tering is included in the calculation, the conductivity is de-
graded, which turns out to be a more dominant effect than
the increase in Seebeck coefficient. For D = 12 nm in Fig. 3,
the NW bandstructure becomes bulk-like, and any orienta-
tion effects that existed because of the bandstructure differ-
ences in lower diameters, are now smeared out. The interest-
ing observation, however, is that under ballistic conditions, it
seems that it is possible to improve the thermoelectric power
factor by feature size scaling, in agreement with other theo-
retical ballistic transport studies, [31–34]. The magnitude of
these benefits, however, is only within a factor of two.

To also emphasize the effect of the different confinement
orientations, Fig. 4a shows the power factor for n-type [100]
NWs, as a function of the carrier concentration for different
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confinement conditions for rectangular NWs. Starting from
the 12 nm × 12 nm “bulk-like” NW, we examine two cases:
(i) we reduce the size of one of the sides, i.e. the height
H is scaled to H = 3 nm, while the width W is kept at
W = 12 nm in decrements of 1 nm (red lines). This rep-

Fig. 3 (Color online) The thermoelectric power factor versus the 1D
carrier concentration under ballistic transport conditions for n-type
NWs of D = 3 nm and D = 12 nm in the [100] (blue), [110] (red),
and [111] (green) orientations

resents the case of scaling from bulk towards “thin-body”
devices. (ii) We scale both the width W and height H simul-
taneously down to W = H = 3 nm in decrements of 1 nm
(blue lines). In both cases, decreasing the feature size of ei-
ther side increases the peak of the power factor. The increase
is larger when both sides are scaled, noted (3,3). In this case,
cross section scaling is beneficial for the power factor. Those
benefits are ∼50%, and appear for side sizes below ∼7 nm
(for sizes above that the power factor saturates).

Figure 4b, shows the same features for the n-type [110]
NWs. The sides are [1–10] in the width and [001] in the
height directions. Two device families are shown: (i) De-
vices with constant width along [1–10] at W = 3 nm, while
the height along [001] varies from H = 3 nm to H = 12 nm
(thin and tall NWs—red lines). (ii) Devices with the reverse
aspect ratio, for which W varies from W = 3 nm to 12 nm,
while H is fixed at H = 3 nm (wide and thin NWs—blue
lines). The peaks of the power factors of the first device se-
ries (red lines) are higher than those of the second device
series (blue lines). Interestingly, they are even higher than
the peak of the fully scaled 3 nm × 3 nm NW, indicating
that cross section scaling is not always beneficial, even for
ballistic channels. The relative performance in these chan-
nels, as in the case of the ones described in Fig. 3, originate
from the higher Seebeck coefficient, which is a consequence
of the larger number of subbands/degeneracies in the elec-
tronic structure of this nanowire near the conduction band
edge. The 3 nm × 12 nm NW has a higher performance than

Fig. 4 (Color online) Thermoelectric features for n-type [100] (left
column) and [110] (right column) NWs versus the 1D carrier concen-
tration under ballistic transport conditions. (a, c) [100] NWs. Red lines:
NWs with cross section sizes W = 3 nm to 12 nm, while H = 3 nm
fixed (wide and thin NWs, approaching a thin-body). Blue lines: square
NWs with cross section sizes W = H = 3 nm to W = H = 12 nm. In-
crements in sizes are of 1 nm. (a) Power factor σS2. (c) ZT figure
of merit. (b, d) [110] NWs. Red lines: NWs with cross section sizes

W = 3 nm fixed, and H = 3 nm to 12 nm (thin and tall NWs, ap-
proaching a thin-body device). Blue lines: NWs with cross section
sizes W = 3 nm to 12 nm and H = 3 nm fixed (thin and wide NWs,
approaching a thin-body). Increments in sizes are of 1 nm. (b) Power
factor σS2. (d) The ZT figure of merit. The filled rectangles indicate
the NW cross section. κl = 2 W/mK is used for the thermal conductiv-
ity
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Fig. 5 The effect of gate field electrostatic potential on the elec-
tronic structure and the ballistic ZT figure of merit of the n-type [111]
D = 12 nm NW. (a) The bandstructure for a flat potential profile. (b)
The bandstructure under strong inversion, for VG −VT = 1.0 V. (c) The
ZT figure of merit for the NW versus carrier concentration under no
bias, and under large gate bias cases

the 12 nm × 3 nm because, as previously shown in Fig. 2e,
the band edges of the � and off-� valleys are nearby in en-
ergy. For the 12 nm × 3 nm NW in Fig. 2f, the off-� valleys
are higher in energy and do not participate in transport.

Figures 4c and d show the figure of merit ZT values of the
devices in Figs. 4a and b, respectively, using a single value
κl = 2W/mK for the lattice part of the thermal conductivity,
which was experimentally demonstrated for NWs [13, 15,
18]. ZT follows the shape and trends of the power factor. In-
terestingly, under ballistic assumptions, very high ZT values
up to 4 can be achieved. We emphasize that such a low value
for the thermal conductivity has experimentally only been
achieved in rough or distorted NWs. We still use it, how-
ever, although for electrons we consider ballistic transport.
Our intention here is to provide an idealized upper value for
the ZT in Si NWs. As we will describe later on in Sect. 4,
such values cannot be obtained once surface roughness scat-
tering is incorporated. On the other hand, other methods for
achieving very low thermal conductivity values have been
theoretically proposed, which do not rely on surface rough-
ness. Markussen et al., has proposed that Si nanowires, hav-
ing surfaces decorated with molecules could also signifi-
cantly reduce thermal conductivity, for which case our re-
sults are more relevant [38].

Another possibility to further improve thermoelectric
performance is by adjusting the band positioning through
gating. The gate electric field, similar to transistor devices,
could shift the bands and change the thermoelectric proper-
ties. Figure 5 demonstrates this effect. Figure 5a shows the
electronic structure of the D = 12 nm [111] n-type nanowire
under flat potential in the cross section, whereas Fig. 5b un-
der high gate inversion conditions. The separation of the
bands has changed, and this results in an improvement of
the thermoelectric ballistic ZT value by ∼40%, which is
a significant improvement. Careful design of the subband
placement is, therefore, needed for improved performance.
The nanostructure geometry enters the design through sub-
band engineering. The tight-binding (TB) model is particu-
larly suited for this, because the computational domain can
be extended beyond 10 nm, and the effect of length scale can
be properly investigated.

3 Linearized Boltzmann approach for TE coefficients

The ballistic Landauer approach emphasizes the effect of the
Seebeck coefficient through subband positioning, whereas
the conductivity of the channel is not affected by the oth-
erwise enhanced scattering in ultra-narrow channels. In this
section, we describe an approach to couple the TB model
to linearized Boltzmann transport theory in order to inves-
tigate thermoelectric (TE) properties in 1D Si NWs in the
diffusive transport regime. Several approximations are made
in order to make the computation more robust, without af-
fecting the essence of the conclusions. The entire procedure
is described in detail in our previous works [23, 39]. Here,
we only present the basic formalism, but we focus on the
numerical and computational details of the method.

In Linearized Boltzmann theory, the TE coefficients are
defined as:

σ = q2
0

∫ ∞

E0

dE

(
−∂f0

∂E

)
	(E) , (4a)

S = q0kB

σ

∫ ∞

E0

dE

(
−∂f0

∂E

)
	(E)

(
E − EF

kBT

)
, (4b)

κ0 = k2
BT

∫ ∞

E0

dE

(
−∂f0

∂E

)
	(E)

(
E − EF

kBT

)2

, (4c)

κe = κ0 − T σS2. (4d)

The transport distribution function 	(E) is defined as
[24, 35]:

	(E) = 1

A

∑

kx,n

v2
n (kx) τn (kx) δ (E − En (kx))

= 1

A

∑

n

v2
n (E) τn (E)gn

1D (E) . (5)
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where vn(E) = 1
�

∂En

∂kx
is the bandstructure velocity, τn(kx)

is the momentum relaxation time for a carrier with wave-
number kx in subband n, and

gn
1D

(En) = 1

2π�

1

|vn (E)| (6)

is the density of states for 1D subbands (per spin). The tran-
sition rate Sn,m(kx, k

′
x) for a carrier in an initial state kx in

subband n to a final state k′
x in subband m is extracted from

the atomistic dispersions using Fermi’s Golden Rule [40]:

Sn,m(kx, k
′
x) = 2π

�
|Hm,n

k′
x ,kx

|2δ(Em(k′
x)−En(kx)−�E). (7)

Usually, the momentum relaxation times are calculated by:

1

τn (kx)
=

∑

m,k′
x

Sn,m

(
kx, k

′
x

)
(

1 −
∣∣pm

(
k′
x

)∣∣
|pn (kx)| cosϑ

)
(8)

where in 1D the angle ϑ can take only two values ϑ = 0 and
ϑ = π [40, 41].

In this work, we calculate the relaxation times by:

1

τn (kx)
=

∑

m,k′
x

Sn,m

(
kx, k

′
x

)
(

1 − vm

(
k′
x

)

vn (kx)

)
. (9)

Both are simplifications of the actual expression that in-
volves an integral equation for τn [41–44]:

1

τn (kx)
=

∑

m,k′
x

Sn,m

(
kx, k

′
x

)

×
(

1 − vm

(
k′
x

)
τm

(
k′
x

)
fm

(
k′
x

)

vn (kx) τn (kx)fn (kx)

)
. (10)

While self-consistent solutions of this equation may be
found, this is computationally very expensive, especially for
atomistic calculations. Therefore, it is common practice in
the literature to simplify the problem [45–48], and often suf-
ficiently accurate results are obtained using the above ap-
proximations [42, 43]. For a parabolic dispersion, the use of
(8) and (9) is equivalent. For a generalized dispersion, how-
ever, where the effective mass of the subbands is not well
defined and the valleys appear in various places in the Bril-
louin zone, and the use of (9) is advantageous.

The matrix element between a carrier in an initial state kx

in subband n and a carrier in a final state k′
x in subband m is

defined as:

H
m,n
k′
x ,kx

= 1

�

∫ ∞

−∞

∫

R

Fm( �R)∗e−ik′
xxUS (�r)Fn( �R)

× eikxxd2Rdx, (11)

where the total wavefunction is decomposed into a plane
wave eikxx in the x-direction, and a bound state Fv( �R) in

the transverse, in-plane, with �R being the in-plane vector.
US(�r) is the scattering potential and � is the normalization
volume. We note here that (11), and later on (14a) and (14b)
and (20) involve integrals of the function Fm/n over the NW
in-plane R. However, Fm/n is only sampled on the atomic
sites. In the actual calculation the integrals over R are con-
verted to summations over the atomic sites. The procedure
is described in detail in Appendix A.

Elastic and inelastic scattering processes are taken into
account. We consider bulk phonons and following the same
rules when selecting the final states for scattering as in bulk
Si. For n-type nanowires (NWs), the elastic processes due to
elastic acoustic phonons, surface roughness (SRS), and im-
purity scattering are only treated as intra-valley processes,
whereas inelastic processes due to inelastic phonons are
only treated as inter-valley (IVS). An example of such tran-
sitions is shown in Fig. 6 for the D = 3 nm [110] NW. Al-
though all valleys from the bulk Si electronic structure col-
lapse from 3D to 1D k-space in our calculations, we care-
fully chose the final scattering states for each event by tak-
ing into account the degeneracies of the projected valleys
for each orientation differently, as also indicated in Fig. 6.
For inelastic transitions all six f - and g-type processes are
included [40, 49]. For p-type NWs we consider ADP (acous-
tic deformation potential) and ODP (optical deformation po-
tential) processes which can be intra-band and inter-band as
well as intra-valley and inter-valley.

For the scattering rate calculation, we extend the usual
approach for 3D and 2D thin-layer scattering commonly de-
scribed in the literature [40], to 1D electronic structures. For
phonon scattering, the relaxation rate of a carrier in a spe-
cific subband n as a function of energy is given by [23, 39]:

1

τn
ph(E)

= π

�

(Nω + 1
2 ∓ 1

2 )

ρ�ωph

(
1

Lx

∑

m,k′
x

|K�q |2
A

kxkx′
nm

δk′
x ,kx±qx

× δ(Em(k′
x) − En(kx) ± �ωph)

(
1 − vm(k′

x)

vn(kx)

))
,

(12)

where �ωph is the phonon energy, and we have used
� = ALx . For optical deformation potential scattering
(ODP for holes, IVS for electrons) it holds |K�q |2 = D2

O ,
whereas for acoustic deformation potential scattering (ADP
or IVS) it holds |K�q |2 = q2D2

ADP , where D0 and DADP

are the scattering deformation potential amplitudes. Specif-
ically for elastic acoustic deformation potential scattering
(ADP), after applying the equipartition approximation, the
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Fig. 6 Dispersions of the [110] NW of D = 3 nm with the scattering
mechanisms indicated. (a) n-type NW. Intra-valley elastic and inter-
valley inelastic (IVS) processes are considered (between the three val-
leys), following the bulk silicon scattering selection rules. For NWs in
different orientations the � and off-� valley degeneracies, and the bulk

valleys from where they originate are shown in the table. Following
the bulk scattering selection rules, however, each of the valleys is con-
sidered independently. (b) p-type NW. Elastic and inelastic processes
are considered within the entire bandstructure. Intra- and inter-valley
scattering is considered

relaxation rate becomes:

1

τn
ADP

(E)
= 2π

�

D2
ADP kBT

ρυ2
s

(
1

Lx

∑

m,k′
x

1

Anm
kxkx′

δk′
x ,kx±qx

×δ
(
Em

(
k′
x

) − En (kx)
)(

1 − vm

(
k′
x

)

vn (kx)

))
, (13)

where υs is the sound velocity in Si.
In the expressions above, the quantities in the right-hand-

side are all k-resolved when computed from the electronic
structure E(k), whereas the scattering rate in the left-hand-
side is a function of energy. The δ-function in (12) and (13)
states energy conservation. Numerically, the E(k) relation
needs to be discretized in energy. All states are sorted in
energy and at a particular energy, arrays with all relevant
k-states from all subbands are constructed.

One of the computationally most demanding steps in
terms of memory requirements is the calculation of Anm

kxkx′ ,
the wavefunction overlap between the final and initial states.
The calculation of this quantity involves an integral of the
form:
∫

R

ρ
m,n
k′
x ,kx

( �R)2d2R, (14a)

ρ
m,n
k′
x ,kx

( �R) = Fm,k′
x
( �R)∗Fn,kx (

�R). (14b)

For the larger NWs, this calculation of the matrix elements
imposes a huge computational burden. All wavefunctions
of every k-state for every subband need to be stored be-
cause it is not known a priori for each initial state which
are the corresponding final scattering k-states and at which

subbands when calculating the electronic structure, as indi-
cated in the scattering examples of Fig. 6. The D = 12 nm
structures that could include 5500 atoms each described by
20 orbitals, and a typical k-space grid of 200 points and con-
sidering 100 subbands, require several tens of Gbytes for
the storage of the wavefunctions alone. For computational
efficiency, therefore, we use the following scheme: on each
atom we add the probability density of the components of
each multi-orbital wavefunction, and afterwards perform the
final/initial state overlap multiplication. In such way, we ap-
proximate the form factor components of a lattice atom at a
specific location R0 by:

∣∣∣ρm,n
k′
x ,kx

∣∣∣
2 =

∑

α

Fα
n,kx

F α
m,k′

x

∗ ∑

β

F
β
n,kx

F
β

m,k′
x

∗

≈
∑

α,β

Fα
n,kx

F
β
n,kx

∗δα,β

∑

α,β

Fα
m,k′

x
F

β

m,k′
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where α,β run over the tight-binding orbitals of a specific
atom. With this the overlaps are computed using the proba-
bility density of each state, as in a single orbital (i.e. effective
mass) model, although we still keep the kx -dependence of
the wavefunctions. The approximation in (15) is important
because it reduces the memory needed in the computation by
20×, allowing simulations of large NW cross sections with
only minimal reduction in accuracy. Indeed, our numerical
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Fig. 7 The wavefunction overlap integral between a state at k = 0
in the first subband with (a) states of different k in the first subband,
and (b) with states at k = 0 but different subbands in units of 1/A,
where A is the area of the NW. Results for n-type [100] and [110]
NWs of D = 6 nm are shown. The analytical value for the integral is

9/4 for intra-band transitions, and 1 for inter-band transitions. Insets:
Schematics indicating the initial and final E(k) states (the dispersions
are of the D = 3 nm, [110] n-type NW, for which the transitions can
be more easily visualized)

overlaps agree with the analytical expressions for the wave-
function overlaps if one assumes sine or cosine wavefunc-
tions and parabolic bands, which can be derived to be 9/4A

for intra-band and 1/A for inter-band transitions, where A

is the cross section area of the NW [31, 40]. This is clearly
indicated in Fig. 7, where we show the wavefunction overlap
for the n-type [100] and [110] NWs with D = 6 nm between
the state k = 0, in subband n = 1, and several final states in
units of 1/A. In Fig. 7a, the intra-band transitions are shown
with final states in subband m = 1, and varying k-values.
The wavefunction overlaps are indeed very close to the ana-
lytical value of 9/4. In Fig. 7b, the inter-band transitions are
shown with final states in subbands m = 1,2, . . . ,12 and
k = 0. The first point, for m = 1 is the intraband transition
which gives ∼9/4, whereas for higher bands the overlaps
reduce to lower values around ∼1. The values are very close
to the analytical ones, do not have significant k-dependence,
and should not affect the qualitative nature of the results sig-
nificantly. The price to pay, however, is that with this sim-
plification the phase information for the wavefunctions is
lost, and the selection rules are incorporated into the scat-
tering rate calculation “by hand”. However, this treatment
is consistent with that for scattering in bulk and ultra-thin-
layer structures reported in the literature. Still, even after
this simplification, the storage of the probability density for
the larger diameter NWs still requires several Giga bytes of
memory.

For surface roughness (SR), we assume a 1D exponential
autocorrelation function [50] for the roughness given by:

〈
δ (ρ) δ

(
ρ′ − ρ

)〉 = �2
rmse

−√
2|ρ|/LC (16)

with �rms = 0.48 nm and LC = 1.3 nm [48]. We derive the
surface roughness matrix element assuming that SR only
causes a band edge shift. The scattering strength is given
by the shift in the subband edges with diameter scaling

�EC,V /�D [51, 52]. The transition rate is derived as:

SSRS
n,m

(
kx, k

′
x

) = 2π

�

(
q0�EC,V

�D

)2
(

2
√

2�2
rmsLC

2 + q2
xL2

C

)

× δ
(
Em

(
k′
x

) − En (kx)
)
, (17)

where qx = kx − k′
x . As described by various authors, the

band edge variation is the cause of the major impact of
SRS in ultra-scaled channels [48, 51–54]. In Refs. [48,
52] it was shown that the SRS limited low-field mobility
in ultra-thin nanostructures follows a L6 behavior, where L

is the confinement length scale, originating from this sub-
band shift due to the variation of L. This SRS model is
a simplified one, compared to the ones described in Refs.
[48, 55–57] that account for additional Coulomb effects, the
wavefunction deformation at the interface, and the position
of electrons in the channel. These effects are ignored here
since they only cause quantitative changes in our results,
whereas our focus is on qualitative trends that originate from
geometry-induced electronic structure variations.

Figures 8a and b show the shift in the band edges
�E/�D as a function of diameter for the conduction and
valence subbands, respectively. Indeed, the trends follow a
D−3 power law both for electrons and holes as expected,
with some minor deviations. For the n-type, the lowest val-
leys have slightly lower band edge shifts compared to the
upper valleys. In the calculation of the SRS, the � and off-
� valleys are taken separately into account when calculat-
ing the scattering rate. The orientation dependence is more
evident in the case of p-type NWs. The band edge shifts
are larger for the [100] NWs, whereas the band edges of
the [111] NW are affected the least by diameter variations.
The sensitivity of the band edges can be directly correlated
with a confinement effective mass m∗

C . Using the simple no-
tion of a particle in a box where the ground state energy is
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Fig. 8 (Color online) Change in band edges as a function of diameter.
Results for NWs in the [100] (diamond—blue), [110] (cross—red),
and [111] (square—green) transport orientations are shown. (a) Con-
duction band. Results for the lower valleys (solid), and upper valleys
(dashed) are shown. (b) Valence band. The dashed-black line indicates
the D−3 law. (c–d) The average confinement effective mass for NWs

in different orientations versus the diameter. This is calculated from
the change in the subband edges with confinement using the particle in
a box quantization picture. Results for [100] (diamond—blue), [110]
(triangle—red) and [111] (square—green) transport orientated NWs
are shown. (c) n-type NWs. (d) p-type NWs

E = π2
�

2/2m∗
CD2, approximate values for m∗

C can be ex-

tracted. These are shown in Fig. 8c and d. For n-type NWs,

the [110] orientation shows the largest m∗
C , whereas for p-

type NWs the [110] and [111] NWs have the largest m∗
C .

The slight deviation in the band edges from the D−3 law at

smaller diameters, which reduces the rate of increase in the

scattering matrix element, are also reflected as an increase

in the confinement effective mass. The value of m∗
C of the

n-type NWs lies between the longitudinal and transverse

bulk Si masses of ml = 0.9m0 and mt = 0.19m0. For p-type

NWs, the m∗
C values for the larger NW diameters are close

to the bulk Si heavy-hole mass mhh = 0.4m0. For the [100]

orientation they remain in that region for the smaller diam-

eters as well. For the [110] and [111] orientations on the

other hand, m∗
C increases as the diameter is reduced. This is

an important observation that indicates that the p-type [111]

and [110] NWs will be less sensitive to surface roughness

scattering (SRS). For thermoelectric materials this can be

especially important since SRS is needed for the reduction

in thermal conductivity κl . The fact that an intrinsic band-

structure mechanism makes the conductivity more tolerant

to SRS could help in power factor optimization in such chan-

nels in which rough boundaries are favored.

For ionized impurity scattering the scattering potential is
approximated by:

US (�r) = q2
0

4πκsε0

e−
√

( �R− �R′)2+x2/LD

√
( �R − �R′)2 + x2

, (18)

where �R is the position of an electron in the 2D cross section
at x = 0, influenced by an impurity at (x, �R′), and the x

direction is assumed to extend to infinity. The 3D screening
length LD is given by:

LD =
√

κsε0kBT

q2
0 n

�−1/2 (ηF )

�−3/2 (ηF )
. (19)

where �α(ηF ) is the Fermi-Dirac integral of order α, and n
is the carrier concentration. The matrix element for electron-
impurity scattering then becomes:
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Fig. 9 (Color online)
Low-field, phonon-limited
transport characteristics for
NWs in the [100] (blue), [110]
(red) and [111] (green)
orientations. (a) The transport
distribution function (TD) of the
D = 3 nm n-type NWs. (b) The
mobility of D = 3 nm n-type
NWs. (c) The transport
distribution function (TD) of
D = 12 nm p-type NWs.
(d) The mobility of D = 12 nm
p-type NWs

where the expression in the brackets is the Green’s func-
tion of the infinitely long channel device. For a cylindri-
cal channel, the expression in the parenthesis is the modi-
fied Bessel function of second kind of order zero, K0(q, �R′)
[48, 58–60].

The total transition rate due to impurity scattering is com-
puted after taking the square of the matrix element, multi-
plying by NILx , the number of impurities in the normal-
ized cross sectional area of the NW in the length of the unit
cell, and integrating over the distribution of impurities in the
cross sectional area (over �R′). The impurities are assumed
to be distributed uniformly in the volume considered.

The transport distribution function (TD) in (5) turns out
to be a very convenient means to understand the effect of the
electronic structure on the thermoelectric (TE) coefficients.
Figure 9a shows the phonon-limited TDs for n-type NWs
of D = 3 nm. The TDs for the three different orientations
[100], [110] and [111] are shown. There are two observa-
tions that determine the performance of the NWs. (i) The
low energy linear region, where only one subband partici-
pates in transport, with slope proportional to η/m∗, where
η is the degeneracy of the subband [39]. (ii) The separation
of the TD from the Fermi level, ηF . The closer the TD is
to the Fermi level for a particular carrier concentration and
the higher its slope, the larger the conductivity and mobility
will be. This is shown in Fig. 9b, where the orientation de-
pendence of the mobility correlates with the order the TDs
appear with respect to the Fermi level. It is important to note
that since the transport and density-of-states (DOS) effective
masses (m*) are the same for NWs, a reduction in m∗ will
not only reduce ηF in order to keep the carrier concentra-

tion fixed, but it will also increase the TD slope, finally hav-
ing a doubly positive impact on the conductivity [39, 61].
Figure 9c shows a different situation, regarding the TDs for
p-type NWs of D = 12 nm in the three orientations. As the
NW diameter increases, the DOS of the NWs approaches the
bulk DOS, and ηF is the same for all NWs. Their slope, how-
ever, is different, which is reflected in the large anisotropy
in the mobility in Fig. 9d. Note that there are more subbands
which result in more peaks in the TDs of the larger NWs
compared to the narrower ones.

As mentioned previously, one of the approximations used
is that of bulk phonons. Bulk phonons provide an ease of
modeling and allow the understanding of the bandstructure
effects on the TE coefficients, still with good qualitative ac-
curacy in the results. Confined phonons in NWs can have
very different dispersions and properties than bulk. How-
ever, the effect of phonon confinement for the thinnest NWs
examined in this work is not that strong; it can be of the
order of 10–20% (reduction in conductivity), and declines
fast as the diameter increases [45–47, 62]. In the litera-
ture it is common to employ higher than bulk deforma-
tion potential values to account for phonon confinement
[48, 63–65]. Here we use deformation potential parame-
ters Dholes

ODP = 13.24 × 1010 eV/m, Dholes
ADP = 5.34 eV, and

Delectrons
ADP = 9.5 eV from Refs. [45, 46, 61] which are more

suitable for NWs. All other electron-phonon coupling pa-
rameters are the bulk values taken from [40]. The qualita-
tive behavior of our results mostly depends on the shape
of the bandstructure and not on the strength of the phonon
scattering mechanisms. For a more quantitative description
of the results, phonon confinement has to be accounted for.
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Fig. 10 (Color online) The transport distribution function (TD) 	(E)

for n-type [100] NW of D = 3 nm under different scattering condi-
tions (i) ADP phonon-limited (blue dashed), (ii) ADP-IVS phonon-
limited (blue), (iii) SRS limited (red), and (iv) impurity limited (green).

(a) Carrier concentration n = 1018/cm3, �rms = 0.24 nm. (b) Carrier
concentration n = 1019/cm3, �rms = 0.48 nm. The impurity concen-
tration n0 is equal to the carrier concentration in each case

However, even in that case, phonon scattering is not the ma-
jor scattering mechanism in NW devices that are suited for
TE applications. This is clearly demonstrated in Fig. 10,
again using the TD features for ADP-limited (blue-dotted),
ADP-ODP-limited (blue-solid), SRS-limited (red), impurity
scattering-limited (green), and the TD including all scatter-
ing mechanisms (black). In Fig. 10a moderate values for sur-
face roughness (�rms = 0.24 nm) and impurity concentra-
tion (n0 = 1018/cm3) are used. Strong scattering will lower
the TD value and degrade conductivity. From the important
low energy region, we observe that both SRS and impu-
rity scattering mechanisms are stronger than phonon scatter-
ing. Figure 10b shows the same features, but with �rms =
0.48 nm and n0 = 1019/cm3, which are more relevant for
high performance thermoelectric devices (around the peak
of the power factor as it will be shown in Sect. 4). SRS and
impurity scattering are much stronger than phonon scatter-
ing. A calculation of the phonon contribution to the total
scattering rate shows that it is only 12% and 6% in the sit-
uations of Fig. 10a and b, respectively, even with the larger
than bulk deformation potentials values [23]. The strongest
mechanism is impurity scattering, which dominates the scat-
tering processes at such high concentrations. Indeed, this is
in agreement with impurity scattering in bulk Si which re-
duces the mobility by almost an order of magnitude from the
phonon-limited value at such high concentrations [66]. This
shows that the details of phonon scattering strength for NW
devices might not be of great importance to the total chan-
nel conductivity. This also demonstrates the importance of
modulation doping in achieving high thermoelectric perfor-
mance.

4 Si nanowire thermoelectric coefficients

Geometrical features such as diameter and orientation will
affect the electronic structure, and influence the electrical
conductivity and the Seebeck coefficient. If one considers

Fig. 11 The electrical conductivity (a) and Seebeck coefficient (b)
versus the distance of the conduction band from the Fermi level,
ηF = EF − EC . A simple parabolic band and scattering rates propor-
tional to the density of final states are assumed

a specific carrier concentration, the influence of geometry
shows up is two ways: (i) The band edges (or transport dis-
tribution functions TD) shift with respect to the Fermi level
as the geometry changes. (ii) The effective masses (or carrier
velocities) change. The changes will be different for differ-
ent NW cases. A change in ηF = EF − EC will affect both
the conductivity and the Seebeck coefficient. This effect is
shown in Figs. 11a and b, respectively, using a simple 1D
subband and effective mass approximation. Changes in ηF

affect the conductivity exponentially, but affect the Seebeck
coefficient only linearly, (and in an inverse way). The con-
ductivity, therefore, is affected much more than the Seebeck
coefficient. At a specific carrier concentration, changes in
ηF can happen as follows: (i) In a NW channel with only
a few subbands, once the diameter is reduced, ηF increases
in the negative direction in order to keep the carrier con-
centration constant as explained in detail in Refs. [23, 39].
This reduces the conductivity exponentially. (ii) The DOS
changes through electronic structure modifications and ηF

will adjust to keep the carrier concentration constant.
As a consequence, since the electronic structures of the

NWs in different orientations are different, ηF will differ as
well, resulting in orientation and geometry dependence of
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TE performance. Figure 12 shows the power factor for the
n-type (solid) and p-type (dashed) NWs with D = 10 nm,
in the [100] (blue), [110] (red), and [111] (green) transport
orientations. The Boltzmann transport formalism was used.
Some orientation dependence can be observed. Especially in
p-type NWs the [111] orientation gives almost ∼2× higher
power factor than the other two p-type NW orientations.
Note that p-type NWs perform lower than the n-type NWs
for this NW diameter, but this difference is less severe for
smaller diameters [23].

The conductivity usually degrades with diameter reduc-
tion because of the enhancement of scattering mechanisms

Fig. 12 (Color online) The phonon-limited thermoelectric power fac-
tor for D = 10 nm, n-type (solid) and p-type (dashed) NWs of different
transport orientations versus the carrier concentration. Orientations are
[100] (blue), [110] (red), and [111] (green)

such as phonon and surface roughness scattering (SRS) at
smaller feature sizes. Figure 13 shows the effect of the di-
ameter reduction on the TE coefficients for the [100] n-type
NW at room temperature. Phonon scattering and SRS are
considered. Figure 13a shows that the electrical conductiv-
ity decreases as the diameter of the NW is reduced. On the
other hand, the Seebeck coefficient in Fig. 13b increases for
the smaller diameters due to an ηF increase. Overall, the
power factor in Fig. 13c decreases with diameter, because
the conductivity is degraded much more than the Seebeck
coefficient is improved. Using an experimentally measured
value for the thermal conductivity κl = 2 W/mK [15, 18],
we compute the ZT figure of merit in Fig. 13d. ZT is re-
duced with diameter reduction, following the trend in the
power factor. Two important observations can be made at
this point: (i) The conclusions are different from what previ-
ously described in Figs. 3 and 4 for ballistic transport. The
increase in the power factor and ZT at reduced feature sizes
is not observed when scattering is incorporated. On the con-
trary, the performance is degraded, because of a reduction
in the conductivity. (ii) ZT ∼ 0.5–1 can be achieved in Si
NWs, in agreement with recent experimental measurements
[12, 13] (reduced from ZT ∼ 4 under ballistic considera-
tions in Fig. 4). On the other hand, the value κl = 2 W/mK
used for the calculation of ZT is measured for Si NWs of di-
ameters D = 15 nm [15, 18]. This might be even smaller
for smaller NW diameters or even orientation dependent
[67, 68]. The power factor and ZT could potentially change
and higher performance could be achieved. Nevertheless,
the magnitude of these results is in agreement with other re-
ports, both theoretical [37, 69] and experimental [12–14, 65].

The results in Fig. 13 only consider phonon scattering
and SRS. The peak of the power factor, however, appears at
carrier concentrations of 1019/cm3. In order to reach such

Fig. 13 (Color online)
Thermoelectric coefficients
versus carrier concentration for
n-type [100] NWs of D = 4 nm
(red), 8 nm (black) and 12 nm
(blue), at 300 K. Phonon
scattering plus SRS are
included. (a) The electrical
conductivity. (b) The Seebeck
coefficient. (c) The power factor.
(d) The ZT figure of merit
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Fig. 14 (Color online)
Thermoelectric coefficients
versus carrier concentration for
a D = 5 nm, n-type NW, in the
[100] transport orientation at
300 K. Different scattering
mechanisms are considered,
phonons (blue), phonons plus
SRS (black), and phonon plus
SRS plus impurity scattering
(red). For impurity scattering,
n0 = n3D is assumed. (a) The
electrical conductivity. (b) The
Seebeck coefficient. (c) The
power factor. (d) The ZT figure
of merit

concentration high doping levels are required and the effect
of impurity scattering thus cannot be excluded. In Fig. 14,
we demonstrate the effect of different scattering mecha-
nisms for the n-type [100] NW of diameters D = 5 nm.
The conductivity in Fig. 14a is strongly degraded from
the phonon-limited values (blue) once surface roughness
scattering-SRS (black) and most importantly impurity scat-
tering (red) are included in the calculation. The impurity
concentration used at each instance is equal to the carrier
concentration. The Seebeck coefficient in Fig. 14b does not
change significantly with the introduction of additional scat-
tering mechanisms because it is independent of scattering at
first order [31]. The conductivity dominates the power fac-
tor, which is drastically reduced due to SRS and mostly im-
purity scattering (Fig. 14c). This can also reduce the ZT as
shown in Fig. 14d from ZT ∼ 1 down to ZT ∼ 0.2. Since
impurity scattering is such a strong mechanism, for high
performance NW TEs alternative doping schemes need to
be employed such as modulation doping or charge transfer
techniques [65, 70–72].

5 Conclusions

We presented a methodology that couples the atomistic
sp3d5s∗-SO tight-binding model to two different transport
formalisms: (i) Landauer ballistic and (ii) Linearized Boltz-
mann theory for calculating the thermoelectric power fac-
tor in ultra-thin Si nanowires. We introduced some approxi-
mations needed to make such methodology robust and effi-
cient, and explained the differences in the conclusions ob-
tained from these two different transport methods. Using
this formalism the computational domain can be extended

to “large” feature sizes (>10 nm) still accounting for all
atomistic effects, so that the length scale degree of free-
dom can be properly used as a design parameter. We show
that geometrical features such as cross section and orienta-
tions could potentially provide optimization directions for
the thermoelectric power factor in NWs. In the Si NWs in-
vestigated, low-dimensionality and geometrical features af-
fect the electrical conductivity much more than the See-
beck coefficient. The conductivity is, therefore, the quan-
tity that controls the behavior of the power factor and the
figure of merit ZT , in contrast to the current view that the
low-dimensional features could provide benefits through im-
provements in the Seebeck coefficient. We finally show that
impurity scattering is the strongest scattering mechanism in
nanowire thermoelectric channels, and ways that allow high
carrier concentration without direct doping could largely im-
prove the performance.

Acknowledgements This work was supported by the Austrian Cli-
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Appendix A: Wavefunction overlap integral/numerical
calculation of the sum

The wavefunctions in tight-binding are sampled on the
atomic sites. Equations (11) and (20) involve integrations
over the in-plane R perpendicular to the nanowire axis. In
the calculation the integrals over R are performed by trans-
forming the integrals to summations over the atomic sites N .
Below we demonstrate how this is performed for the calcu-
lation of the wavefunction overlaps in the case of phonon
scattering. The matrix element needs to be squared in the
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calculation of the scattering rates. What is required is inte-
gration of the type:
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and 1/A2 originates from wavefunction normalization.
We convert the integral to a sum by
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where �A = A/N , and N is the number of atomic sites in
the unit cell of the NW.

Therefore,
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In the wavefunction normalization, the usual expression in
integral or summation form is:
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Numerically, however, the wavefunctions provided by the
eigenvalue solvers are already normalized and give:
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The expression in (A.3) then becomes:
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sions given by the eigenvalue solver, and: ρ
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Appendix B: Bond passivation (sp3-hybridization) in
tight-binding, following from Ref. [36]

The passivation of the bonds that reside outside the domain
of the NW, is done using a sp3 hybridized scheme. The con-
struction of the Hamiltonian assumes sums of couplings be-
tween atomic basis orbitals (orbital-space). This means that
each on-site element represents a specific orbital and has
contributions from four bonds (couplings). In order to passi-
vate a specific bond, a transformation to the hybridized sp3

space is performed. This means that the transformed ma-
trix reside in the hybridized “bond-space”, in which all hy-
bridized orbitals are aligned along the four bond directions.
The on-side element of the hybridized orbital along the dan-
gling bond direction that is to be passivated is then raised to
a large value (30 eV), in order to be placed away from the
energies of interest and not to affect the bandstructure calcu-
lation. The bonds from an anion to the four cations and vice
versa, are formed primarily by sp3-hybridization as a linear
combination of only the s and p orbitals. The sp3 hybridized
orbitals from an anion to the cations are:

|sp3〉a→c
[111] = 1

2 (|s〉 + |px〉 + |py〉 + |pz〉)
|sp3〉a→c

[1̄1̄1] = 1
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[11̄1̄] = 1
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whereas the sp3 hybridized orbitals from a cation to the four
anions are:

|sp3〉c→a

[1̄1̄1̄] = 1
2 (|s〉 − |px〉 − |py〉 − |pz〉)

|sp3〉c→a

[111̄] = 1
2 (|s〉 + |px〉 + |py〉 − |pz〉)

|sp3〉c→a

[1̄11] = 1
2 (|s〉 − |px〉 + |py〉 + |pz〉)

|sp3〉c→a

[11̄1] = 1
2 (|s〉 + |px〉 − |py〉 + |pz〉)

⇒

⎡

⎢⎢⎢⎢⎢⎣

|sp3〉c→a

[1̄1̄1̄]
|sp3〉c→a

[111̄]
|sp3〉c→a

[1̄11]
|sp3〉c→a

[11̄1]

⎤

⎥⎥⎥⎥⎥⎦
= 1

2

⎡

⎢⎢⎣

1 −1 −1 −1
1 1 1 −1
1 −1 1 1
1 1 −1 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

|s〉
|px〉
|py〉
|pz〉

⎤

⎥⎥⎦

= V c→a
sp3 (B.2)
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The passivation is then achieved by a transformation as fol-
lows:

[H ]Hybrid = Vsp3 [HE(sp)]V †
sp3 , (B.3)

where:

HE(sp) =

⎡

⎢⎢⎣

Es

Epx

Epy

Epz

⎤

⎥⎥⎦ ,

is the on-site matrix consisting only of the s and p orbitals.
Once the transformation takes place, the on-site elements of
the hybridized space matrix along the bonds to be passivated
are raised by (hsp3)i,i = 30 eV. Finally, a back transforma-
tion into the orbital space will give the passivated matrix
elements:

[H ]Passiv. = V
†
sp3[HHybrid + hsp3 ]Vsp3,

where hsp3 =

⎡

⎢⎢⎣

a1

a2

a3

a4

⎤

⎥⎥⎦ , (B.4)

with ai been 30 eV or zero, depending on whether the bond
i is passivated or not.
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