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We analyze the effect of low dimensionality on the electrical conductivity (r)
and Seebeck coefficient (S) in ultra-narrow Si nanowires (NWs) by employing
atomistic considerations for the electronic structures and linearized Boltz-
mann transport theory. We show that changes in the geometrical features of
the NWs such as diameter and orientation mostly affect r and S in two ways:
(i) the distance of the band edges from the Fermi level (gF) changes, and (ii)
quantum confinement in some cases strongly affects the effective mass of the
subbands, which influences the conductivity of the NWs and gF. Changes in gF

cause exponential changes in r but linear changes in S. S seems to be only
weakly dependent on the curvature of the bands, the strength of the scattering
mechanisms, and the shape of the density of states function DOS(E), contrary
to current view. Our results indicate that low dimensionality has a stronger
influence on r than on S due to the greater sensitivity of r to gF. We identify
cases where bandstructure engineering through confinement can improve
r without significantly affecting S, which can result in power factor
improvements.

Key words: Thermoelectric, electrical conductivity, Seebeck coefficient, tight
binding, atomistic, sp3d5s*, Boltzmann transport, silicon,
nanowire

INTRODUCTION

The ability of a material to convert heat into
electricity is measured by the dimensionless figure
of merit ZT = rS2T/(je + jl), where r is the electri-
cal conductivity, S is the Seebeck coefficient, and je

and jl are the electronic and lattice parts of the
thermal conductivity, respectively. Some of the best
thermoelectric materials are based on rare-earth or
toxic elements and exhibit ZT � 1. Recent break-
through experiments on nanostructured thermo-
electrics, however, have demonstrated that jl can be
significantly suppressed, offering large improve-
ments in ZT compared with the raw materials’
values. Such effects have been observed for one-
dimensional (1D) nanowires (NWs),1,2 two-dimen-
sional (2D) thin films, 1D/2D superlattices,3,4 as

well as materials with embedded nanostructuring.5

More importantly, this has been achieved for com-
mon materials such as Si, SiGe, and InGaAs. In
silicon, although the bulk material has ZTbulk �
0.01, the ZT of silicon NWs with side lengths scaled
down to 10–50 nm was experimentally demon-
strated to be ZTNW � 0.5.1,2

On the other hand, it has been suggested by Hicks
and Dresselhaus6 that low dimensionality can be
beneficial to the power factor rS2 as well. The sharp
features in the low-dimensional density of states,
DOS(E), can improve S, as this quantity is pro-
portional to the energy derivative of DOS(E).7 This
was actually the initial drive towards low-dimen-
sional thermoelectrics. Although S and r are
inversely proportional, it was suggested that low-
dimensional DOS(E) could potentially improve S
without reducing r. This effect, however, has not yet
been experimentally confirmed because the sharp
features in DOS(E) disappear in the presence of
nonidealities.(Received July 15, 2011; accepted December 22, 2011)
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In this work, we discuss the influence of low
dimensionality on the Seebeck coefficient, and the
interplay between the Seebeck coefficient and the
electrical conductivity in ultra-narrow NWs of
diameters below D = 12 nm. We couple the 20
orbital atomistic sp3d5s* spin–orbit-coupled (SO)
tight-binding (TB) model8 to linearized Boltzmann
transport theory.9–11 Our analysis shows that low
dimensionality affects the electronic conductivity
more strongly than the Seebeck coefficient. The
Seebeck coefficient is weakly dependent on the
curvature of the bands, the strength of the scatter-
ing mechanisms, and even the shape of the DOS(E)
function. It is mostly dependent on the distance of
the subband edges from the Fermi level (gF). This
dependence of S on gF is close to linear, but the
dependence of r on gF is exponential. We then
indicate bandstructure engineering cases for which
r is improved with quantum confinement without
significant reductions in S, situations which can
result in power factor improvements.

APPROACH

The sp3d5s* SO tight-binding model8 accurately
captures the electronic structures and inherently
includes the effects of quantum confinement. It
represents a compromise between computationally
expensive fully ab initio methods and numerically
inexpensive but less accurate effective-mass models.
Our calculations can include up to 5500 atoms, a
challenging but achievable computational task
within this model. We consider infinitely long,
cylindrical NWs with hydrogen-passivated sur-
faces.12 No lattice relaxation is assumed for the NW
surfaces.

The electrical conductivity and Seebeck coeffi-
cient follow from linearized Boltzmann theory as

r ¼ q2
0

Z1

E0

dE � @f0

@E

� �
N Eð Þ; (1a)

S ¼ q0kB

r

Z1

E0

dE � @f0

@E

� �
N Eð Þ E� EF

kBT

� �
; (1b)

where the transport distribution function N Eð Þ is
defined as13,14

N Eð Þ ¼
X
kx;n

v2
n kxð Þsn kxð Þd E� En kxð Þð Þ

¼
X

n

v2
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1D Eð Þ;
(2)

where vn Eð Þ ¼ @En=�h@kx is the bandstructure
velocity, gn

1D
Eð Þ ¼ 1= 2p�hvn Eð Þð Þ is the density of

states for the 1D subbands (per spin), and sn kxð Þ is
the momentum relaxation time for a state with kx in
subband n. For this calculation we use the velocity

vi kxð Þ instead of the momentum kx in the definition
of the relaxation time as

1
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The two are equivalent for parabolic bands, and
both are valid approximations resulting from more
complicated integral equations as described in Refs.
15,16. The transition rate Sn;m kx; k

0
x

� �
for a carrier

in an initial state kx in subband n to a final state k0x
in subband m is extracted from the electronic dis-
persions and the atomistically extracted wave form
overlaps using Fermi’s Golden Rule. The entire
procedure is described in detail in Ref. 14.

We include phonon and surface roughness scat-
tering (SRS). For phonon scattering we include all
relevant mechanisms of bulk silicon.17 Although we
still employ bulk phonons, this should not affect our
conclusions significantly, as discussed in Refs.
9,11,18. All deformation potential values and pho-
non energies used are from Ref. 17 with the excep-
tions of Dhole

ODP ¼ 13:24� 1010 eV=m; Dhole
ADP ¼ 5:34 eV;

and Delectron
ADP ¼ 9:5 eV from Refs. 9,11,18, which are

more relevant for NWs.
For SRS we assume a 1D exponential autocor-

relation function19 for the roughness with Drms =
0.48 nm and LC = 1.3 nm.20 The momentum relax-
ation rate is derived from the shift in the band edges
with quantization, as described by Uchida and
Takagi21 and Fang et al.22 as

1

sn
SRS

¼ 2p
�h

2D2
rmsLC

1þ q2L2
C

 !
q0DE0

DD

� �2X
m

gm
1D
ðEÞ; (4)

where q ¼ kx � k
0
x: As discussed in Ref. 21, this is a

valid approach for describing SRS in ultra-thin
channels of a few nanometers in thickness.

RESULTS AND DISCUSSION

To illustrate the diameter dependence of electrical
conductivity and Seebeck coefficient, Fig. 1 shows
these quantities for the n-type [100]-oriented NW
versus diameter for carrier concentration n = 1019/cm3

(close to where the peak of the power factor
appears23). The dashed lines indicate the phonon-
limited results, whereas the solid lines include
phonons and SRS. Figure 1a shows the electrical
conductivity. Comparing at the same carrier con-
centration, the conductivity is degraded by �49 as
the diameter is reduced. The effect of SRS causes an
additional �29 degradation (for the lower diame-
ters). This degradation does not appear in the case
of ballistic transport where the ballistic conductance
G (normalized by the NW’s area in nm2) is almost
unchanged as the diameter is reduced (inset of
Fig. 1a).24

The Seebeck coefficient in Fig. 1b increases as the
diameter is reduced, especially for diameters below
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D = 7 nm, following the inverse trend compared
with conductivity, since these quantities are
inversely proportional. The increase is �70% and
can be observed under scattering as well as ballistic
conditions (smaller for ballistic). Including SRS
causes only a slight additional increase from the
phonon-limited result and ballistic results, indicat-
ing that S is to first order independent of scattering.

The explanation for these trends originates from
the placement of the subband edges in energy with
respect to the Fermi level for each NW. The carrier
concentration is given by

n3D ¼
M

A

Z

E0

g1D Eð Þf ðE� EFÞdE; (5)

where M is the number of subbands, A is the nor-
malization cross-section area, and EF is the Fermi
level. As the area is reduced, the number of sub-
bands M decreases, usually linearly for the thicker
NWs such that the ratio M/A remains constant. At
some point, only a few or even only one subband
participates in transport. Usually for Si at room
temperature this happens at D< 10 nm. Further
reduction of the NW area will not be linearly com-
pensated by reduction in M, and the ratio M/A will
increase following �1/A as M approaches closer to 1.

To keep the carrier concentration n3D constant, the
energy integral has to be reduced, which is achieved
when the distance of the subband edges E0 from the
Fermi level gF ¼ E0 � EF is increased. This is dem-
onstrated in Fig. 2, which compares the position of
the Fermi level for n-type [100] NWs with
D = 12 nm and D = 3 nm at the same carrier con-
centration. Figure 2a and b show the dispersion
relations for the two NWs, respectively, for n = 1019/cm3.
The dispersions are shifted to E0 = 0 eV, and the
position of the Fermi level is indicated. gF is larger
for the D = 3 nm NW. Figure 2c shows gF for the
two NWs versus carrier concentration. At carrier
concentrations from 1018/cm3 to 1020/cm3, where the
power factor in Si is the highest, the difference in gF

between the two NWs is �40 meV. It is also
important to note the dependence of the shift of gF

on changes of the ratio M/A. Using gn
1D Eð Þ /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

meff= ~E
q

(valid for 1D and parabolic bands), where

~E ¼ E� E0, and meff is the effective mass of the
subband,

n3D ¼ meff
M

A

� � Z1

E0

~E�1=2f ðE� EFÞdE: (6)

Fig. 1. Electrical conductivity (a) and Seebeck coefficient (b) for
n-type NWs in the [100] transport orientation at n = 1019/cm3 versus
diameter. Dashed lines with squares: Only phonon scattering is
considered. Solid lines with squares: Phonons and SRS are con-
sidered. Solid lines: Ballistic conditions. Inset of (a) shows the bal-
listic conductance per unit area (normalized by the nanowire area in
nm2) versus diameter.

Fig. 2. Electronic structures for n-type [100] NWs: (a) D = 12 nm,
and (b) D = 3 nm. The position of the Fermi level for carrier con-
centrations n = 1019/cm3 is shown for each case. (c) The difference
of the dispersion band edges from the Fermi level (gF) for NWs with
D = 12 nm (dashed) and D = 3 nm (solid) versus the carrier con-
centration. Inset of (c) shows gF versus ln(A/M), where A is the NW
area. For M we use the density of states up to 0.2 eV from the edge
of the conduction band edge.
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The energy integral is an exponential function of gF

through the Fermi distribution (under non-degener-
ate conditions, for gF > 0). In order to keep the same
carrier concentration under changes in M/A (assum-
ing constant meff),gF changes, but it needs to do so only
logarithmically. From Eq. 6, therefore, one can ob-
serve that, to first order, DgF / ln M=Að Þ. The inset of
Fig. 2c shows gF = EC � EF versus ln(A/M). We have
flipped the numerator and denominator to have the
narrowest NWs to the left. Here, for M we use the
density of states below a cutoff energy of 0.2 eV above
the conduction band edge. For larger diameters, A/M
and ln(A/M) are almost constant (right side of inset),
and gF shifts little. Most of the change in ln(A/M) and
gF comes at lower diameters, as expected, where gF

follows a more or less linear trend.
When gF increases, the conductivity decreases.

For a rough qualitative understanding of how the
conductivity is affected, we substitute Eq. 2 into
Eq. 1a. We assume that sn(E) follows a simple
relation (at least for elastic isotropic processes, such
as acoustic phonon scattering) as

sn Eð Þ / A

Mgn
1D Eð Þ ; (7)

which just means that the scattering rates are
proportional to the density of states into which a
carrier can scatter. Now we substitute these rela-
tions into Eq. 1a to obtain (after performing the
summation over the subbands in Eq. 2)

r /
Z

E0

v2
n Eð Þ A

Mgn
1D Eð Þ

Mgn
1D Eð Þ
A

� @f ðE� EFÞ
@E

� �
dE

¼
Z

E0

v2
n Eð Þ � @f ðE� EFÞ

@E

� �
dE:

(8)

Using gn
1D Eð Þ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff= ~E

q
and vn Eð Þ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E=meff

q
,

then

r /
Z1

E0

~E=meff �
@f ðE� EFÞ

@E

� �
dE ¼ 1

meff

~F gFð Þ; (9)

where ~F gFð Þ is a function of gF, independent of band
structure to first order, and exponentially decreas-
ing with increasing gF (again under non-degenerate
conditions, for gF > 0). As described earlier, when
the NW area is reduced, the ratio M/A increases,
forcing gF to also increase logarithmically (as M
approaches to 1) in order to keep a constant carrier
concentration. This results in a �1/A decrease in the
function ~F gFð Þ (D ~F gFð Þ) with cross-section area
scaling. Following the ~F gFð Þ trend, the conductivity
decrease (Dr) also follows �1/A to first order (or 1/D2

as indicated in the phonon-limited results in Fig. 1a).

Similarly, the Seebeck coefficient can be shown to
follow

S /

R1
E0

F gFð Þ E�EF

kBT

� �
dER1

E0
F gFð ÞdE

; (10)

where F gFð Þ ¼ ~E � @f ðE�EFÞ
@E

� �
. The Seebeck coeffi-

cient is therefore first order independent of band
structure, and reduces linearly as the energy devi-
ates from the Fermi level as expected [F(gF) is found
in both numerator and denominator]. As shown in
Fig. 1b, at larger NW diameters where gF is small
and does not vary significantly, S is constant. As the
NW diameter is reduced and gF increases logarith-
mically, S also increases logarithmically. The mag-
nitude of this logarithmic increase in S with A (or D)
scaling, however, is smaller compared with the
magnitude of the decrease in r, which follows 1/A (or
1/D2).

It is important, however, to stress that the trend
presented in Fig. 1 is at constant carrier concen-
tration. Alternatively, the diameter behavior can be
presented in terms of constant gF. Figure 3 shows
the phonon-limited electrical conductivity and See-
beck coefficient versus the NW diameter for the
cases: (i) constant carrier concentration (same as in
Fig. 1), and (ii) constant gF = kBT. The behavior
under constant gF is different. The electrical con-
ductivity (Fig. 3a) is almost constant (also indicated
from Eq. 9), with a slight increase as the diameter is
reduced because of the reduction in the available
subbands and states into which the carriers can
scatter. The Seebeck coefficient (Fig. 3b) is also
almost constant with diameter, as can be under-
stood from Eq. 10. This is an interesting observa-
tion, which shows that it is the distance of the band
edges from the Fermi level that controls S, whereas
the shape of DOS(E) does not affect S significantly.
Indeed, DOS(E) for the D = 3 nm NW shows 1D-like
behavior, whereas that of the D = 12 nm NW is
different, with many more closely packed subband
peaks. This is in agreement with the results by Kim
et al.25 for 1D, 2D, and three-dimensional (3D)
channels. However, no matter how one presents the
diameter dependence, at either constant concen-
tration or constant gF, the effect of reducing the
diameter from D = 12 nm (almost bulk-like) to
D = 3 nm (1D), does not improve the power factor
significantly, as shown in Fig. 3c. There is only a
moderate improvement for smaller diameters if gF is
held constant as the diameter is reduced.

There are situations, however, where the effective
mass of the subbands reduces as the NW diameter is
reduced. As we have shown in our previous works,
this is the case for p-type [110] and [111] NWs,11,26

and to a smaller degree for n-type [110] NWs.27 This
is shown in Fig. 4a and b for the p-type [110]
D = 12 nm and D = 3 nm NWs, respectively. The
curvature of the subbands of the D = 3 nm NW is
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larger than for D = 12 nm, indicating a smaller meff

and DOS compared with the D = 12 nm NW. The
reason behind the effective mass reduction with
diameter scaling is related to the strongly aniso-
tropic warped shape of the heavy-hole valence band
as shown in the inset of Fig. 4a. For bulk materials,
the effective mass is determined by the curvature of
the E(k) relation along the dashed line passing
though the center of the Brillouin zone. Upon con-
finement, the low-dimensional subbands are formed
from energy subbands away from the center (direc-
tion of the arrow) as indicated by the solid line in
the inset of Fig. 4a, similar to the ‘‘particle in a box’’
quantization picture. Since the heavy-hole is highly
anisotropic, the curvature of the bands increases
significantly, and the effective mass is reduced. We
note that the lines shown represent confinement
along the (110) surface and transport along the
[110] orientation, which are the relevant orienta-
tions for the [110] NW. In the case of n-type NWs,

because the conduction band is mostly isotropic
along a specific direction, much smaller mass vari-
ations are observed.27

For the p-type [110] case, gF will not increase with
diameter scaling, in contrast to the n-type [100]
NWs in Fig. 2a, b. The Fermi level calculated for
carrier concentration p = 1019/cm3 is almost at the
same position for both NWs. Figure 4c shows that gF

is almost the same for both NWs for a large range of
carrier concentrations, except at very high ones.
This is a result of two counteracting mechanisms: (i)
as the diameter is reduced, gF tends to increase, but
(ii) as the effective mass reduces, in order to main-
tain the same carrier concentration, gF is reduced
again. These two counteracting effects finally leave
gF almost unchanged. In other words, the increase
in M/A in Eq. 6 is compensated by the reduction in
meff, and gF remains unchanged. The trend of the
conductivity and the Seebeck coefficient as a func-
tion of diameter will therefore be the same, at either
constant concentration or constant gF.

Figure 5 shows r and S for p-type [110] NWs as a
function of NW diameter at constant carrier con-
centration of p = 1019/cm3. In all cases, gF is very
similar, gF ¼ 0:018� 0:001 eV. Phonon-limited

Fig. 4. Electronic structures for p-type [110] NWs: (a) D = 12 nm,
and (b) D = 3 nm. The position of the Fermi level for carrier con-
centrations p = 1019/cm3 is shown for each case. (c) The difference
of the dispersion band edges from the Fermi level (gF) for the NWs
with D = 12 nm (dashed) and D = 3 nm (solid) versus the carrier
concentration. Inset of (a) shows a schematic of the heavy-hole band
of bulk Si. The dotted line indicates the relevant bulk energy bands.
Confinement shifts the relevant bands in the direction of the arrow
towards the solid line.

Fig. 3. Thermoelectric coefficients for n-type NWs in [100] transport
orientation versus diameter. Two conditions are shown: (i) constant
carrier concentration n = 1019/cm3 (black lines with squares), and (ii)
constant gF ¼ kBT (blue lines with triangles). (a) Electrical conduc-
tivity. (b) Seebeck coefficient. (c) Power factor.
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(dashed lines with circles) and phonon- plus SRS-
limited (solid line with triangles) results are shown.
The electrical conductivity in Fig. 5a increases as
the diameter is reduced, because the effective mass
of the subbands decreases.11 As indicated in Eq. 9,
at constant gF the only contribution to r is from meff.
SRS degrades the conductivity for the small-diam-
eter NWs, but in this case the improvement due to
the reduction in meff is large enough to compensate
for this detrimental effect. On the other hand, the
Seebeck coefficient in Fig. 5b does not change sig-
nificantly with diameter since gF is constant, as can
also be deduced from Eq. 10. This results in a
slightly reducing trend for most of the diameter
range, a reverse trend compared with r. At diame-
ters below D = 5 nm, some increase is observed,
which is again a result of the trend of gF as shown in
the inset of Fig. 5b. Another important observation
is that the introduction of SRS in the calculation
only slightly affects S. Unlike r, S to first order only
depends on gF and not on the bandstructure;
therefore, the introduction of more scattering
mechanisms does not have a significant influence
on it. The large increase in r and the almost
invariant S diameter trend in this p-type [110] NW
case allow for improvements in the power factor of
the channel.

CONCLUSIONS

The interplay between the electrical conductivity
(r) and the Seebeck coefficient (S) in narrow Si NWs
of diameters below 12 nm is investigated. The
sp3d5s* atomistic tight-binding model and linear-
ized Boltzmann theory are employed. We show that,
for a specific carrier concentration, as the diameter
of the NWs is reduced, the band edges shift further
with respect to the Fermi level (gF increases) to first
order logarithmically as a function of the NW’s
cross-section area. An increase in gF reduces r
exponentially and increases S linearly. Due to the
exponential dependence, r is the quantity with the
greatest influence on the power factor of NWs. As a
function of diameter, the logarithmic increase of gF

to first order decreases r as D2 and increases S
logarithmically. The curvature of the bands, the
strength of the scattering mechanisms, and the
shape of the DOS(E) function do not seem to affect S
significantly as the diameter changes from
D = 3 nm to D = 12 nm, in agreement with other
reports.25 We show that, in cases where the effective
mass of the dispersion becomes lighter with con-
finement (i.e., p-type [110] NWs), gF is less suscep-
tible to NW diameter changes. In such case
r increases because of the meff reduction, whereas
S changes only slightly because gF changes
only slightly, enabling improvements in the power
factor.
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