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We study the transport properties of the Datta–Das spin field-effect transistor built on InAs and Si. First,
we demonstrate that the amplitude of the magnetoresistance oscillations as a function of the band mis-
match between the ferromagnetic contacts and the semiconductor channel made of InAs decreases dra-
matically with increasing temperature. A shorter InAs channel is needed to create an InAs-based SpinFET
which will operate at higher temperatures. Second, we show that the [100] orientation of the fin is pref-
erable for silicon SpinFETs due to stronger modulation of the conductance as a function of spin–orbit
interaction and magnetic field. Short silicon fins can be used for current modulation as a function of
the conduction band mismatch between the channel and the ferromagnetic contacts only at relatively
low temperatures. In contrast, longer silicon channels allow a TMR modulation at room temperature
by changing the strength of the spin–orbit interaction through the gate bias.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Utilizing spin properties of electrons for future microelectronic
devices opens great opportunities to reduce device power con-
sumption. In recent years spintronic devices, where the spin of
the electron is used as additional degree of freedom to tune their
properties, have received much attention. The spin field-effect
transistor (SpinFET) is a future semiconductor spintronic device
promising to deliver a performance superior to that achieved with
present transistor technology. SpinFETs are composed of two
ferromagnetic contacts (source and drain), which sandwich the
semiconductor region. Ferromagnetic contacts contain mostly
spin-polarized electrons and play the role of polarizer and analyzer
as described by Datta and Das [1]. The ferromagnetic source con-
tact injects spin-polarized electrons into the semiconductor region.
Because of the non-zero spin–orbit interaction the electron spin
precesses during the propagation through the channel. At the drain
contact only the electrons with spin aligned to the drain magneti-
zation can easily leave the channel and contribute most to the cur-
rent. Thus, the total current through the device depends on the
relative angle between the magnetization direction of the drain
contact and the electron spin polarization at the end of the semi-
conductor channel. Current modulation is achieved by tuning the
strength of the spin–orbit interaction in the semiconductor region
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and thus the degree of the spin precession. Importantly, the
strength of the spin–orbit interaction in the channel depends on
the effective electric field and can be controlled by the voltage ap-
plied to the gate.

The spin precession angle Dh defined as the difference between
the orientation of the spin of the electron at the end and at the
beginning of the semiconductor region is [2]

Dh ¼ 2am�

�h2 L; ð1Þ

where a is the strength of the spin–orbit interaction, m� is the
effective mass of the electron, �h is the reduced Planck constant,
and L is the length of the semiconductor channel. In the absence
of spin–orbit interaction and external magnetic field the electrons
propagate with their spin orientation conserved. The strength of
the spin–orbit interaction determines the minimum length of the
semiconductor channel, which will be sufficient to change the ori-
entation of the spin to opposite. In case of a material with a strong
spin–orbit interaction such as InAs the semiconductor channel will
be shorter than for a material with the weaker spin–orbit interac-
tion such as silicon.

The spin–orbit coupling is usually taken in the Rashba form [3],
with the corresponding effective Hamiltonian

HR ¼
aR

�h
ðpxry � pyrxÞ; ð2Þ

where aR is the effective electric field-dependent parameter of the
spin–orbit interaction, px and py are the electron momentum projec-
tions, rx and ry are the Pauli matrices. The Rashba form of the
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spin–orbit coupling will be used when analyzing transport proper-
ties in InAs channels in §3.1 below.

Silicon is characterized by a weak spin–orbit interaction and, as
a consequence, it has a long spin life time. It is therefore an attrac-
tive material for spin current propagation. However, because of its
weak spin–orbit interaction, silicon was not considered as a candi-
date for the SpinFET channel material. Recently, however, it was
shown [4] that thin silicon films inside SiGe/Si/SiGe structures
may have relatively large values of spin–orbit interaction. Interest-
ingly, the strength of the Rashba spin–orbit interaction is relatively
small and is approximately ten times smaller than the value of the
dominant contribution which is of the Dresselhaus type with a cor-
responding effective Hamiltonian in the form

HD ¼
b
�h
ðpxrx � pyryÞ: ð3Þ

This major contribution to the spin–orbit interaction is due to inter-
facial disorder induced inversion symmetry breaking and depends
almost linearly on the effective electric field [5]. For a built-in field
of 50 kV/cm, the strength of the Dresselhaus spin–orbit interaction
is found to be b � 2 leV nm, which is in agreement with the value
found experimentally [6], while aR � 0.1 leV nm. This value of the
spin–orbit interaction in confined silicon systems is sufficient for
their applications as SpinFET channels.

The stronger spin–orbit interaction leads to an increased spin
relaxation. The Dyakonov–Perel mechanism is the main spin
relaxation mechanism in systems, where the electron dispersion
curves for the two spin projections are non-degenerate. In quasi-
one-dimensional electron structures, however, a suppression of
this spin relaxation mechanism is expected [7]. Indeed, in case of
elastic scattering only back-scattering is allowed. Reversal of the
electron momentum results in the inversion of the effective mag-
netic field direction. Therefore, the precession angle does not de-
pend on the number of scattering events along the carrier
trajectory in the channel, but is a function of the channel length
alone. Thus, the spin-independent elastic scattering does not result
in additional spin decoherence. In the presence of an external mag-
netic field, however, spin-flip processes become possible, and the
Elliott–Yafet spin relaxation mechanism is likely relevant [8].
2. Model

To calculate the transport properties of a ballistic spin field-ef-
fect transistor we consider a model similar to [8,9]. The Hamilto-
nian in the ferromagnetic regions has the following form in the
one-band effective mass approximation

bHL
F ¼

p̂2
x

2m�f
þ h0r̂z; x < 0; ð4Þ

bHR
F ¼

p̂2
x

2m�f
� h0r̂z; x > L; ð5Þ

where m�f is the effective mass in the contacts, h0 = 2PEF/(P2 + 1) is
the exchange splitting energy with P defined as the spin polariza-
tion in the ferromagnetic regions, EF is the Fermi energy, and r̂z is
the Pauli matrix; ± in (5) stands for the parallel and anti-parallel
configuration of the contact magnetization. For the semiconductor
channel region the Hamiltonian reads [8,9]

bHS ¼
p̂2

x

2m�s
þ dEc �

aR

�h
r̂yp̂x þ

1
2

glBBr̂�; ð6Þ

where m�s is the subband effective mass, dEc is the band mismatch be-
tween the ferromagnetic and the semiconductor region, aR is the
strength of the spin–orbit interaction, g is the Landé factor, lB is the
Bohr magneton, B is the magnetic field, and r̂� � r̂x cos cþ r̂y sin c
with c defined as the angle between the magnetic field and the trans-
port direction.

To calculate the dependence of the transport properties on the
spin–orbit interaction we need the electron eigenfunctions in the
various regions. For the ferromagnetic regions spin-up and spin-
down eigenstates have the form (1,0)� and (0,1)�, respectively.
The wave function in the left contact has the following form [8,9]

WL"ðxÞ ¼ ðeik"x þ R"e�ik"xÞ
1
0

� �
þ R#e�ik#x

0
1

� �
; ð7Þ

WL#ðxÞ ¼ R"e�ik"x
1
0

� �
þ ðeik#x þ R#e�ik#xÞ

0
1

� �
; ð8Þ

where (7) represents the incoming spin-up electrons and (8) the
incoming spin-down electrons, correspondingly,

k"ð#Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�f ðE� h0Þ=�h2

q
is the wave vector of the spin-up (spin-

down) electron and R"(;) is the amplitude of the reflected wave.
For the right contact the wave function is given by [8,9]

WRðxÞ ¼ C"eik"x
1
0

� �
þ C#eik#x

0
1

� �
: ð9Þ

For the semiconductor region the wave function can be written
as [8,9]

WSðxÞ¼AþeikðþÞ
x1 x k1

1

� �
þBþeikðþÞ

x2 x k2

1

� �
þA�eikð�Þ

x1 x k3

�1

� �
þB�eikð�Þ

x2 x k4

�1;

� �
ð10Þ

where kðþÞx1ðx2Þ and kð�Þx1ðx2Þ are the wave vectors obtained by solving the

equations �h2k2

2m�s
þ dEc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BglB cosðcÞ

2

� �2
þ BglB sinðcÞ

2 � aRk
� �2

r
¼ E, respec-

tively. The coefficients k1, k2, k3, k4 are calculated as [8,9]

k1 ¼ �
i BglB sinðcÞ � 2aRkðþÞx1

� �
� BglB cosðcÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BglB cosðcÞ

2

� �2
þ BglB sinðcÞ

2 � aRkðþÞx1

� �2
r ; ð11Þ

k2 ¼ �
i BglB sinðcÞ � 2aRkðþÞx2

� �
� BglB cosðcÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BglB cosðcÞ

2

� �2
þ BglB sinðcÞ

2 � aRkðþÞx2

� �2
r ; ð12Þ

k3 ¼
i BglB sinðcÞ � 2aRkð�Þx1

� �
� BglB cosðcÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BglB cosðcÞ

2

� �2
þ BglB sinðcÞ

2 � aRkð�Þx1

� �2
r ; ð13Þ

k4 ¼
i BglB sinðcÞ � 2aRkð�Þx2

� �
� BglB cosðcÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BglB cosðcÞ

2

� �2
þ BglB sinðcÞ

2 � aRkð�Þx2

� �2
r : ð14Þ

The reflection and transmission coefficients are determined by
applying the boundary conditions at the ferromagnet/semiconduc-
tor interfaces.

We compute the current through the device as [14,15]

IPðAPÞðVÞ ¼ e
h

�
Z 1

dE
TPðAPÞ
" ðEÞ þ TPðAPÞ

# ðEÞ
h i 1

1þ e
E�EF
kBT

� 1

1þ e
E�EFþeV

kBT

( )
dE;

ð15Þ

where kB is the Boltzmann constant, T is the temperature, and V is
the voltage. The spin-up TP

"

� �
and spin-down TP

#

� �
transmission

probabilities for the parallel configuration of the contact magnetiza-
tion are defined as
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TP
" ¼ jC"j

2 þ k#
k"
jC#j2; ð16Þ

TP
# ¼

k"
k#
jC"j2 þ jC#j2: ð17Þ

For the anti-parallel configuration of the contact magnetization the
transmission probabilities are given by

TAP
" ¼

k#
k"
jC"j2 þ jC#j2; ð18Þ

TAP
# ¼ jC"j

2 þ k"
k#
jC#j2: ð19Þ

The conductance is defined as

GPðAPÞ ¼ lim
V!0

IPðAPÞ

V
: ð20Þ

In the limit of low temperature the conductance must coincide with
the one obtained from the Laudauer–Büttiker formula [15,16]

GPðAPÞ ¼ e2

h
TPðAPÞ
" ðEFÞ þ TPðAPÞ

# ðEFÞ
� �

: ð21Þ

Finally, the tunneling magnetoresistance (TMR) is defined as
[8,9]

TMR � GP � GAP

GAP : ð22Þ
3. Results and discussion

In our calculations we use two types of material for the semi-
conductor region: InAs, which is characterized by a strong value
of the spin–orbit interaction, and silicon, which is characterized
by a moderate value of the spin–orbit interaction.

3.1. InAs channels

For all calculations for the InAs semiconductor channel we as-
sume the dominant mechanism of the spin–orbit coupling is due
to the geometry-induced inversion symmetry breaking (Rashba
type). Common simulation parameters are as follows: the effective
mass for the ferromagnetic region m�f ¼ m0 and for the semicon-
ductor region m�s ¼ 0:036 m0, where m0 is the electron rest mass.
Fig. 1 shows the dependence of the TMR on the value of the band
mismatch dEc between the ferromagnetic source contact and the
semiconductor channel. The TMR oscillates between positive and
negative values. As the length of the semiconductor channel
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Fig. 1. TMR dependence on the value of dEc, for EF = 2.47 eV, P = 0.4, B = 0T, z = 0,
aR = 42.3 meV nm, T = 0 K.
decreases, the period of the oscillations increases roughly propor-
tionally to the inverse length of the semiconductor channel.

Temperature exerts a significant influence on the device charac-
teristics as shown in Fig. 2. For a channel length L = 0.05 lm the
oscillatory amplitude of the TMR decreases for T = 77 K and com-
pletely vanishes for T = 180 K. The reason for the oscillatory behav-
ior to disappear at T = 180 K is a relatively short period of the
conductance oscillations (and correspondingly TMR oscillation
shown in Fig. 1) with respect to dEc. Thus one can expect that for
the shorter channel the amplitude of oscillations is sufficient to
modulate the current in the SpinFET at higher temperatures.

To facilitate the injection of the spin-polarized current into the
channel we introduce, following [8] and [9], delta-function barriers

of strength z ¼ 2m�f U=h2kF , where kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�f EF=�h

2
q

, at the inter-

faces between the contacts and the channel. The current depen-
dence on the value of the drain-source voltage is shown in Fig. 3.
A clear S-like shape of the curves is observed at T = 10 K. This is a
manifestation of the conductance oscillations as a function of dEc,
which have a large amplitude due to the presence of the delta-
function barriers at the interfaces between the contact and the
channel (z = 3). A large amplitude of the conductance oscillations
guarantees the different slopes of the IV curves corresponding to
different dEc. Although the S-like non-linearity is not well pro-
nounced at higher temperatures, the difference in the slopes at
small voltages is not completely washed out, even at room
temperature.
3.2. Silicon channels

We consider square silicon fins with [100] or [110] orientation,
with (001) horizontal faces. The parabolic band approximation for
the band structure in silicon is not sufficient to accurately obtain
the subband structure in thin and narrow silicon fins. We employ
the two-band k 	 p model proposed in [10], which has been shown
to be accurate up to 0.5 eV above the conduction band edge in sil-
icon [11]. The resulting Schrödinger differential equation, with the
confinement potential appropriately added to the Hamiltonian
[10], is discretized using the box integration method and solved
for each value of the conserved momentum px along the current
direction using efficient numerical algorithms available through
the Vienna Schrödinger-Poisson framework (VSP) [12].

Fig. 4 demonstrates the dependence of the subband minima as
function of the fin thickness t for the lowest four subbands; the fin
orientation is along the [110] direction. The dependence of the
splitting between the unprimed subbands with decreasing t, which
are perfectly degenerate in the effective mass approximation, is
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Fig. 2. TMR dependence on the value of dEc, for aR = 31.7meV nm, EF = 2.47 eV, P =
0.4, B = 0T, z = 0, L = 0.05 lm.
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clearly seen. Splitting between valleys in a [100] fin is negligible
[13]. In contrast to that, the dependence of the effective mass of
the ground subband in [100] fins on t is more pronounced as com-
pared to [110] fins. Results of density-functional calculations [13]
confirm the mass dependences obtained from the k 	 p model
(Fig. 5).

With the values of the effective masses and subband offsets ob-
tained, we study the conductance properties for the parallel and
anti-parallel configurations of the contact magnetization. The
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Fig. 5. Ground subband effective mass dependence on t in [100] and [110] fins.
Open symbols are from [13].
spin–orbit interaction is treated in the Dresselhaus form Eq. (3).
The Hamiltonian in the channel for [100] oriented fins reads

bHS ¼
X

n

p̂2
x

2m�n
þ dEn �

b
�h
r̂xp̂x þ

1
2

glBBr̂�; ð23Þ

and

bHS ¼
X

n

p̂2
x

2m�n
þ dEn �

b
�h
r̂yp̂x þ

1
2

glBBr̂�; ð24Þ

for [110] oriented fins. Here m�n is the subband effective mass, dEn is
the subband mismatch between the ferromagnetic region and the
channel, and b is the strength of the spin–orbit interaction.

Fig. 6 shows the dependence of the TMR for [100] and [110]
oriented fins with t = 1.5 nm on the value of the spin–orbit interac-
tion. Fins with [100] orientation show a stronger dependence on b
compared to [110] oriented fins. Thus [100] oriented fins are pre-
ferred for silicon SpinFETs. The reason of the stronger dependence
is that the characteristic length on which the spin–orbit interaction
produces the full spin precession is defined by the inverse of the
wave vector kD ¼ m�nb=�h

2. As shown in Fig. 5, the effective mass va-
lue for the [110] oriented fins is smaller compared to the [100]
oriented fins, hence for the same variation of kD in case of the
[110] oriented fins a larger variation of b is required to achieve
the same TMR value modulation.

Fig. 7 shows the dependence of the oscillations of the TMR on
the value of the conduction band mismatch dEc. The period of the
oscillations is roughly inversely proportional to the length of
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Fig. 7. TMR dependence on the value of the dEc for EF = 2.47 eV, P = 0.4, z = 3,
b = 42.3leV nm, T = 0 K.
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the semiconductor channel as also shown in Fig. 1. The presence of
the delta-function barriers at the interfaces between the contact
and the channel exerts a significant influence on the oscillation
shape. For higher and thicker barriers, the TMR, although being a
periodic function of the conductance band mismatch, stops oscil-
lating around zero and becomes positive (or negative) in a broad
range of the conduction band mismatch. This sign definitiveness
leads to the complete absence of the oscillations of the TMR at
T = 77 K as shown in Fig. 8. It is important that, although reduced,
the TMR is not zero at 77 K. Therefore, the TMR modulation as a
function of the spin–orbit interaction strength is preserved even
at high temperatures as shown in Fig. 9. This opens the possibility
to modulate the TMR by changing the value of b even at room
temperature.
4. Summary and conclusion

A short semiconductor channel length provides a possibility to
create an InAs-based SpinFET which will operate at room
temperature. Silicon fins of [100] orientation are best suited for
silicon-based SpinFETs. Short silicon fins can be used for current
modulation as a function of the conduction band mismatch be-
tween the channel and the ferromagnetic contacts only at rela-
tively low temperatures. In contrast, longer silicon channels
allow a TMR modulation at room temperature by changing the
strength of the spin–orbit interaction through the gate bias.
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