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Abstract—The role of line-edge roughness scattering on the elec-
tronic properties of graphene nanoribbons is numerically investi-
gated. The nonequilibrium Green function formalism, along with
an atomistic tight-binding model, is employed. Our results indicate
that, depending on the geometrical and roughness parameters, the
transport of carriers can be in the diffusive or localization regime.
We extract the mean free path and the localization length, which
characterize the diffusive and localization regimes, respectively.
In the diffusive regime, the conductance linearly decreases with
length, whereas in the localization regime, it exponentially de-
creases with length. However, as the localization length depends on
the carrier energy, an effective transport gap in this regime can be
defined. This gap is evaluated as a function of the geometrical and
roughness parameters, and its impact on the device performance
is discussed.

Index Terms—Conductance, diffusive transport, effective band
gap, graphene, localization, quantum transport.

I. INTRODUCTION

THE CONTINUED scaling of complementary metal–
oxide–semiconductor transistors is limited due to various

physical shortcomings such as short-channel effects, dielectric
scaling, and leakage currents [1], [2]. To overcome these lim-
itations, the introduction of novel materials such as compound
semiconductors, carbon nanotubes, and graphene is investi-
gated. Nowadays, single-layer graphene discovered in 2004 [3]
has been identified as an ideal channel material in electronic
applications [4]. High mobility at room temperature and at high
doping concentrations [5], high thermal conductivity [6], and a
width-dependent band gap [7] are some of the interesting prop-
erties of single-layer graphene. One of the problems that limit
the application of graphene in electronic devices is the absence
of an intrinsic band gap. In order to overcome this problem,
graphene nanoribbons (GNRs) have been introduced, where
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Fig. 1. Structure of a GNR with armchair edges.

graphene sheets are patterned into narrow ribbons [8]. With
respect to the crystallographic direction, GNRs can be catego-
rized as armchair, zigzag, or a combination of these two [9]. In
this paper, we focus on armchair GNRs (see Fig. 1). The width
of an armchair GNR is given by W = (N + 1)(

√
3/2)acc,

where N is the number of carbon atoms along the width direc-
tion and acc = 1.42Å is the distance between nearest-neighbor
carbon atoms. In armchair GNRs, the band gap is inversely
proportional to the width. A band gap suitable for electronic
applications can be achieved by making sufficiently narrow
GNRs [7]. The electronic transport properties of GNRs have
been recently studied in several experimental works [7], [8],
[10]. The results indicate that line-edge roughness scattering
is the dominant scattering mechanism in narrow GNRs [11].
The effect of line-edge roughness on transport in GNRs has
been numerically studied in [12]–[15] where the electronic
band structure is described using a first-nearest-neighbor tight-
binding model and edge roughness is modeled by assuming that
atoms at the edges are randomly removed with uniform prob-
ability, neglecting the correlation between edges. First-nearest-
neighbor tight-binding calculations predict that one third of all
armchair GNR configurations are metallic [16], [17]. However,
both experimental data [7], [8], [10] and ab initio calculations
[18]–[20] show that all narrow armchair GNRs have a finite
band gap. A tight-binding model can accurately describe the
electronic band structure of GNRs only if the interaction up
to third nearest neighbors are considered [20], [21]. Therefore,
in this paper, a three-nearest-neighbor tight-binding model is
employed. To model line-edge roughness in a more realistic
way [22], we assume an exponential autocorrelation between
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edge disorders [23], [24]. Employing the nonequilibrium Green
function (NEGF) formalism, the conductance of GNRs is
studied in both the diffusive and localization regimes. The
effect of localization is investigated in terms of an effective
transport gap, which is strongly affected by the geometrical and
roughness parameters. This paper is organized as follows: In
Section II the tight-binding model, the NEGF formalism, the
line-edge roughness model, and the diffusive and localization
regimes are discussed. The role of geometrical and roughness
parameters are investigated in Section III. Finally, concluding
remarks are presented in Section IV.

II. MODEL AND METHODS

A. Tight-Binding Model

GNRs can be considered as a graphene sheet tailored along
a certain direction and can be accordingly classified as of
armchair or zigzag shape, or a combination of these two. The
GNR lattice consists of two sublattices A and B (see Fig. 1).
The unit cell of an armchair GNR contains n A-type and
n B-type carbon atoms. A first-nearest-neighbor tight-binding
model is commonly used to model the band structure of GNRs
[25]. However, in this paper, a third-nearest-neighbor tight-
binding model has been employed [21], [26], which yields a
more accurate dispersion relation and predicts a nonzero band
gap for all armchair edge GNRs [21], i.e.,

H = H1 + H3. (1)

Here, H1 and H3 represent the first- and third-nearest-
neighbor Hamiltonians, respectively. These Hamiltonians can
be expressed in terms of creation and annihilation operators a†

and a, respectively, which act on the π state on each site, i.e.,

H1 =
∑
〈i,j〉

ti,ja
†
iaj (2)

H3 =
∑
〈i,m〉

ti,ma†
iak. (3)

Here, ti,j ≈ −3.2 eV and ti,m ≈ −0.3 eV are the hopping
parameters between the first and third nearest neighbors, re-
spectively. The summation of i runs over the entire nanoribbon
lattice, whereas j and m are restricted to the first and third
nearest neighbors to site i, respectively.

B. Line-Edge Roughness

Both experimental data [11] and theoretical predictions [15],
[27]–[29] indicate that the line-edge roughness is the dominant
source of scattering in narrow GNRs. Line-edge roughness is
a statistical phenomenon that can be well described by means
of an autocorrelation function [23]. Commonly, a Gaussian or
exponential autocorrelation is assumed to describe line-edge
roughness. The exponential correlation function gives a rougher
edge than the Gaussian correlation function with the same
parameter values [23]. Short wavelength fluctuations of the
edge arise from the high frequency tail of the exponential power

spectrum [30]. In this paper, an exponential autocorrelation is
applied, i.e.,

R(x) = ΔW 2 exp
(
− |x|

ΔL

)
, x = nΔx (4)

where ΔW is the root mean square of the fluctuation amplitude,
ΔL is the roughness correlation length that is a measure of
smoothness, and Δx is the sampling interval chosen equal to
acc/2. To create line-edge roughness in real space, we first
evaluate the Fourier transform of the autocorrelation, which
gives the power spectrum of the roughness. By applying a
random phase to the power spectrum followed by an inverse
Fourier transform, roughness in real space is achieved [24]. We
create many samples with the same roughness parameters and
evaluate their electronic properties. Finally, statistical averaging
on these samples is performed.

C. NEGF Formalism

NEGFs provide a powerful technique for the analysis of
nanoscale devices [31]–[33]. The system under consideration
is composed of a channel that is connected to two leads. The
retarded Green function GD of the channel can be obtained as

GD = [(E + iη)I − HD − ΣL − ΣR]−1 (5)

where η is an infinitesimally small quantity and HD is the
Hamiltonian of the device, which can be evaluated using a tight-
binding model as explained before. ΣL and ΣR are the contact
self-energy functions describing the broadening and the shift of
the energy levels due to the interaction with the left and right
contacts, respectively, and can be obtained as

ΣL = β†
LgLβL ΣR = βRgRβ†

R. (6)

Here, gL and gR are the surface Green functions of the left
and right contacts, respectively, and βL and βR are the cou-
pling matrices between the device and the respective contact.
The surface Green functions of the contacts can be efficiently
calculated using an iterative scheme [34]. The transmission
probability of carriers through the device can be evaluated
as [35]

T (E) = Trace
[
ΓLGDΓRG†

D

]
. (7)

Γ is the contact-broadening function defined as

ΓL,R = i
[
ΣL,R − Σ†

L,R

]
. (8)

Finally, in the linear response regime, the conductance of a
nanoribbon can be calculated as

G(E) = G0T (E)
(
− ∂f

∂E

)
(9)

with G0 = 2q2/h.



YAZDANPANAH et al.: LINE-EDGE ROUGHNESS SCATTERING IN GNRs 435

D. Diffusive and Localization Regimes

In the absence of scattering, the carrier transport is in the
ballistic regime where the conductance is independent of the
device length. In the presence of scattering, the transport of
carriers is in the diffusive regime, where the transmission can
be written as

〈T (E)〉 =
Nch

1 + L/λ(E)
. (10)

Here, λ(E) is the mean free path, Nch is the number of
active conduction channels, and L is the length of the ribbon.
Therefore, the conductance in the diffusive regime is inversely
proportional to the device length, i.e.,

G(E) ≈ G0
Nch

1 + L/λ(E)

(
− ∂f

∂E

)
. (11)

For phase-coherent transport, in the presence of disorder, the
carrier wave function can be scattered back and forth between
potential barriers, and standing waves along the device form. In
this regime, referred to as the localization regime, the transport
of carriers is due to tunneling between localized states, and the
average transmission probability exponentially decreases with
the device length [36], i.e.,

〈ln T (E)〉 ≈ −L/ξ(E) (12)

where ξ(E) is the localization length. In the localization
regime, the conductance can be obtained as [37]

G(E) ≈ G0 exp
[
− L

ξ(E)

](
− ∂f

∂E

)
. (13)

In this paper, the carrier mean free path and localization
length are evaluated from numerical simulations. The mean
free path can be obtained by fitting a linear function to the
inverse of the average transmission in the diffusive regime, i.e.,
1/〈T (E)〉 = 1/Nch + L/(Nchλ). In the localization regime,
the transmission probability exponentially decreases with the
length. Therefore, the slope of the transmission probability
as a function of length in the logarithmic scale is inversely
proportional to the localization length.

III. NUMERICAL RESULTS

Here, the effect of the geometrical and roughness parameters
on the transmission probability, the conductance, and the effec-
tive transport gap of GNRs is investigated. The mean free path
and the localization length as a function of the geometrical and
roughness parameters are extracted. Finally, the performance of
GNR field-effect transistors (FETs) in the presence of line-edge
roughness is investigated.

A. Role of the Device Length

The transmission probability for many samples and the aver-
age transmission probability for different lengths are shown in
Fig. 2. With increasing the ribbon’s length, the average trans-
mission probability is reduced. Furthermore, as the length in-

Fig. 2. (a) (Solid-black line) The average transmission probability over dif-
ferent samples and (gray lines) the transmission probability of each sample as a
function of energy at L = 2 nm and L = 10 nm. (b) Comparison between the
average transmission probabilities as a function of energy at various lengths.
For all devices, ΔL = 3 nm, and ΔW/W = 2%.

Fig. 3. (a) The average transmission probability as a function of length.
(b) The average of the logarithm of the transmission probability as a function
of length. W = 5 nm, ΔW/W = 2%, and ΔL = 3 nm. The solid lines
show the fitted curves to the average transmission probability and logarithm
of the transmission probability. According to fitted data, the mean free path
is λ ≈ 10 nm, and the localization length is ξ ≈ 30 nm. The ratio of the
localization length and the mean free path is equal to the number of available
channels at this energy (Nchannel = 3).

creases, the steps in the transmission probability are smoothed
out. To discriminate the diffusive and localization transport
regimes, the average transmission probabilities 〈T (E)〉 and
〈ln(T (E)〉 as a function of length at E = 0.6 eV are shown in
Fig. 3. In short ribbons, the average transmission is inversely
proportional to the length (diffusive regime), but for longer
ribbons, the transmission probability exponentially decreases
with the length. In the diffusive regime, one can obtain the mean
free path λ(E) by fitting a curve similar to (10) to the average
transmission probability [see Fig. 3(a)]. If L � λ, the transport
is ballistic. In the localization regime where the transmission
probability exponentially decreases with the length, one can
obtain the localization length ξ(E) by fitting a curve similar to
(12) [see Fig. 3(b)]. For L � ξ, the transport will be diffusive.
At E = 0.6 eV, the mean free path can be estimated as λ ≈
10 nm, and the localization length is ξ ≈ 30 nm. It can be shown
that the ratio of the localization length to the mean free path is
proportional to the number of available subbands [38], i.e.,

ξ

λ
∝ Nch(E). (14)

For the discussed sample at E = 0.6 eV, this ratio is 3, which
is exactly the number of available subbands at this energy. Fig. 4
shows the estimated mean free path and the localization length
as a function of energy for W = 5 nm and W = 7.5 nm. The
elastic mean free path in the energy interval of each subband
increases, but it decreases at the beginning of the next subband
because the scattering rate increases at the edge of subbands
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Fig. 4. (Solid-black line) Mean free path and (dashed-red line) ballistic transmission probability as a function of energy for (a) W = 5 nm and (b) W = 7.5 nm.
Localization length as a function of energy at (c) W = 5 nm and (d) W = 7.5 nm. ΔL = 3 nm, and ΔW/W = 2%.

Fig. 5. (Solid-black line) Ratio of the localization length and the mean free
path as a function of energy. (Dashed-red line) Available conducting channel at
each energy. ΔL = 3 nm, and ΔW/W = 2%.

as result of the Van Hove singularities in the density of states.
According to this figure, we find that the localization length
becomes shorter, as the width of the ribbon decreases. This
width dependence of the localization length suggests that edge
disorder plays an important role on the carrier localization in
narrow GNRs.

Fig. 5 shows that ratio (14) is more or less equal to the
number of the conducting channels at the respective energies.
Fig. 6(a) shows the transmission probability as a function of
length and energy. Due to a shorter localization length at low
energies, the transmission probability is strongly suppressed,
particularly at long channel lengths. To quantify the role of
localization on the transport properties, we define an effective
transport gap (EGeff = ΔEG + EG), where the transmission
probability drops to values below 10−2, indicated by the white
dashed lines in Fig. 6(a). The effective transport gap for a 5-nm-
wide GNR as a function of length is compared with the band
structure gap in Fig. 6(b). Apparently, the effective transport
gap increases with the length of the sample, where transport

Fig. 6. (a) Average transmission probability as a function of energy and
length. (Dashed lines) Border of the region where the transmission is smaller
than 10−2, where we defined it as the effective band gap in presence of edge
roughness. (b) Comparison between (rectangles) the effective transport band
gap and (circles) the band structure gap. (Dashed line) Scaling of the effective
band gap versus length. ΔL = 3 nm, and ΔW/W = 2%.

takes place in the localization regime (L ≥ 20 nm). In this
regime, the effective transport gap is proportional to L1/2,
which is consistent with the analytical model proposed in [39]
[see (15) in the Appendix].

The conductance of nanoribbons versus the length for differ-
ent widths but with the same roughness percentage is plotted
in Fig. 7 in logarithmic scale. As the device length becomes
larger than the localization length, one gets into the localization
regime, where the conductance exponentially decreases with
the length. This figure shows that, by increasing the width,
localization occurs at longer lengths. As the width of the ribbon
increases, the number of available channels and, as a result, the
localization length increase [see (14)].

B. Role of the Width

Fig. 8(a) compares the transmission probabilities of perfect
and rough GNRs for different widths. Apparently, the steps of
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Fig. 7. Logarithm of average conductance as a function of length at various
widths but with the same roughness amplitude percent. (Dashed lines) Fitted
exponential curves to the simulation results. ΔL = 3 nm.

Fig. 8. (a) Comparison between the average transmission probabilities of
rough GNRs with that of GNRs with perfect edges. (b) The average transmis-
sion probability as a function of energy and width. (Dashed lines) Border of the
region where the transmission is smaller than 10−2. (c) The effective transport
gap and the corresponding fitted curves are compared with the band structure
gap as a function of width. For all devices, ΔL = 3 nm, ΔW/W = 2%, and
L = 50 nm.

the transmission probability of GNRs with perfect edges are
smoothed out in the presence of line-edge roughness.

Fig. 8(b) shows the average transmission probability as a
function of width and energy for GNRs with L = 50 nm. In
the absence of disorder, the band gap of the ribbons increases
as the width decreases, but in the presence of edge disorder, the

Fig. 9. (a) Comparison between the average conductance as a function of
width employing quantum–mechanical simulations (QM) and semiclassical
calculations (SC). EC is the energy difference between the conduction-band
edge and the Dirac point of the underlying graphene band structure.

transport gap is even more increased due to the localization of
carriers, particularly at low energies. This can be better under-
stood by considering the region where the average transmission
probability is smaller than 10−2 [dark blue region in Fig. 8(b)].
The effective transport gap (rectangles) and the band structure
gap (circles) as a function of the width are shown in Fig. 8(c).
For narrow ribbons, there are only few available conducting
channels so that the localization length will be shorter and the
effective transport gap will be larger. The effective transport
gap scales with the width as aW−2/3 + bW−1 (dash-dot line)
for narrow ribbons and with cW−3/2 + dW−1 (dashed line)
for wider ribbons. These results are in agreement with the
analytical model that we derived in [39]. It can be shown
that the effective transport gap will be proportional to ΔEG ∝
(m∗E2

G)1/2 for wide ribbons and ΔEG ∝ (EG)2/3 for narrow
ribbons. As the effective mass and the band structure gap of the
ribbon are inversely proportional to the width, ΔEG is expected
to scale with W−3/2 for wide ribbons and with W−2/3 for
narrow ribbons.

Fig. 9(a) compares the conductance obtained from the semi-
classical model derived in [39] with the quantum–mechanical
simulations that we performed in this paper. Both methods
predict that the conductance linearly scales with W ; however,
the conductance obtained from the quantum–mechanical simu-
lations is about a factor of two smaller than that obtained from
the semiclassical model. This is due to a lager transmission
obtained from the perturbation method in comparison with the
atomistic model, where the carbon atoms removed from the
edges are treated by setting the appropriate hopping elements
of the Hamiltonian to zero.

C. Role of the Roughness Amplitude

As roughness increases, the average transmission probability
of GNRs can be significantly reduced, and the transport regime
changes from the diffusive regime to the localization regime.
For a better comparison, the average transmission probability
as a function of energy and roughness amplitude is shown
in Fig. 10(a). A comparison between the effective transport
gap and the band structure gap is shown in Fig. 10(b). The
figure shows that the effective transport gap significantly in-
creases with roughness amplitudes larger than 0.5%, due to
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Fig. 10. (a) Average transmission probability as a function of energy and
roughness amplitude. (Dashed lines) Effective transport gap. (b) The effective
transport gap and the band structure gap as a function of roughness amplitude.
ΔL = 3 nm.

Fig. 11. Logarithm of the average conductance as a function of the roughness
amplitude at L = 20 nm and L = 50 nm.

the formation of localized states across the ribbon. With the
further increase in the line-edge roughness, localized states get
extended over the entire width and thus block the conductive
paths. Therefore, the transmission probability decreases, and
the effective transport gap increases. Fig. 10(b) shows that
the effective transport gap scales with ΔW 2/3 and ΔW 1 for
smooth and rough edges, respectively. These results are in
agreement with the analytical model in (15). As a result of the
effective transport gap increase, the conductance exponentially
decreases (see Fig. 11).

D. Role of the Correlation Length

The average transmission probability as a function of energy
and correlation length is plotted in Fig. 12(a). The results
indicate that the average transmission probability increases as
the correlation length increases and that the respective effective
transport gap decreases. At longer correlation lengths, the line-
edge roughness becomes smoother, which results in a longer
mean free path and localization length. For the given structure,
the effective transport gap and the energy gap are shown in
Fig. 12(b). With increasing correlation length, the effective
transport gap increases first and then decreases. The length
dependences of the effective transport gap are ΔL1/2 and
ΔL−1/3, respectively [see (15)]. This behavior can be under-
stood by considering the de Broglie wavelength of electrons.
When it becomes comparable with the roughness correlation
length of the ribbon, the scattering rate will be maximized [39].
As a result, the effective transport gap peaks at this point.

Fig. 12. (a) Average transmission probability as a function of energy and
roughness amplitude. (Dashed lines) Effective transport gap. (b) The effective
transport gap and the band structure gap as a function of the correlation length.
ΔW/W = 2%.

Fig. 13. Ensemble average of the transfer characteristics in (a) logarithmic
and (b) linear scales. W = 1.6 nm, L = 20 nm, and ΔL = 10 nm.

E. Device Performance

Here, we investigate the role of roughness on the transfer
characteristics of GNR-FETs. The length and the width of the
simulated structure are chosen to be L = 20 nm and W =
1.6 nm, respectively. A top gate geometry, along with a 1.5-nm
Al2O3 gate dielectric are assumed. We simulated 200 different
samples with the same geometrical and roughness parame-
ters and took an ensemble average over their characteristics.
Fig. 13(a) and (b) compare the transfer characteristics at various
roughness amplitudes in logarithmic and linear scales, respec-
tively. At small roughness, the off-current increases with the
roughness amplitude. This behavior is related to the formation
of some localized states in the band gap [40]. The band-to-band
tunneling of carriers is strongly enhanced in the presence of
such states, and as a result, the off-current increases. With the
increase in the off-current, the device performance in terms of
the Ion/Ioff ratio and the subthreshold slope is degraded. As
roughness further increases, however, the off-current decreases.
This behavior is due to the increase in the transport band gap.
As we mentioned before, the effective transport gap increases
with the roughness amplitude, and as result, the current de-
creases. In the case of strong roughness, the increase in the
transport gap dominates of the effects of gap states, and both
the on- and off-currents decrease.

IV. CONCLUSION

Using a three-nearest-neighbor tight-binding model, along
with a realistic model for edge disorder, we have investigated
the electronic properties of armchair edge GNRs in the presence
of line-edge roughness. We have studied the transport prop-
erties of GNRs in both the diffusive and localization regimes
and extracted the mean free path and the localization length.
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Line-edge roughness can induce quasi-localized states, particu-
larly in narrow ribbons. The localization of carriers reduces the
transmission probability at energies close to the band edge, and
the effective transport gap in such devices increases. The nu-
merical results presented in this paper verify the accuracy of the
analytical model that we derived before, which is useful for a
better understanding of the transport properties of nanoribbons
and for the design of graphene-based devices.

APPENDIX

In our previous work [39], we showed that ΔEG induced
by the localization of carriers due to the presence of line-edge
roughness can be approximated by

ΔEG =

⎧⎪⎨
⎪⎩

2
(

kBTL
C

)1/2
D �

(
C

kBTL

)1/2

2
(

2kBTL
CD

)1/3
D 


(
C

2kBTL

)1/2 (15)

with

C =
(

W

ΔW

)2
�

2

2m∗ΔLE2
G

(16)

D =
8m∗ΔL2

�2
. (17)

For wide ribbons, the first condition is satisfied, and the
second one is satisfied for narrow ribbons. In (16) and (17),
m∗, EG, and L are the effective mass, the band structure gap,
and the device length, respectively.
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