
 Procedia Computer Science   9  ( 2012 )  1857 – 1866 

1877-0509 © 2012 Published by Elsevier Ltd. 
doi: 10.1016/j.procs.2012.04.204 

International Conference on Computational Science, ICCS 2012

High-Level Manipulation of OpenCL-Based

Subvectors and Submatrices

Karl Rupp

Institute for Analysis and Scientific Computing, TU Wien
Institute for Microelectronics, TU Wien

Abstract

High-level C++ proxies for the convenient manipulation of subvectors and submatrices on OpenCL-enabled de-

vices are introduced. It is demonstrated that the programming convenience of standard host-based code can be re-

tained using native C++ language features only, even if massively parallel computing architectures such as graphics

processing units are employed. The required modifications of the underlying OpenCL kernels are discussed and a

case study of an implementation of the QR-factorization is given. Benchmark results confirm that the convenience of

purely CPU-based libraries can be preserved without sacrificing performance of OpenCL-enabled devices, particularly

graphics processing units.
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1. Introduction

The continued miniaturization of semiconductor devices, which is commonly expressed by Moore’s law [1], has

shown validity for over four decades already. However, the clock frequency on central processing units (CPUs) has

essentially saturated in the early 2000s due to otherwise excessive power consumption, thus limiting a further scaling

of sequential processing speed. As a consequence, additional transistors have mostly been used for duplicating CPU

cores since then. The implications of this shift are a major concern for software development, since the efficient

utilization of all available computational resources on a given machine now requires to write parallel programs, while

formerly serial implementations have been sufficient. In contrast to a purely sequential processing, the challenges

are manifold: On the algorithmic level, sufficient parallelization needs to be ensured. In particular, well-established

sequential algorithms may be replaced by parallel variants, which may require additional floating point operations,

yet they lead to shorter execution times on the overall due to a better hardware utilization. From the programmer’s

point of view, additional effort and familiarity with the pitfalls of parallel programming are required in order to

synchronize threads and processes, and to avoid race conditions. This, in turn, typically leads to a larger code base,

which becomes harder to maintain. Furthermore, old serial implementations no longer automatically scale with the

increased computational power of newer hardware generations and may require a reimplementation if they are crucial

for the overall performance of an application.

Email address: rupp@iue.tuwien.ac.at (Karl Rupp)

Available online at www.sciencedirect.com



1858    Karl Rupp  /  Procedia Computer Science   9  ( 2012 )  1857 – 1866 

Classical parallel programming approaches on CPUs include the multi-process oriented message passing interface

(MPI), POSIX Threads for multi-threaded applications [2], and compiler-based techniques such as OpenMP [3] or

Cilk [4, 5]. Recently, general purpose computations on graphics processing units (GPUs) have gained a lot of attention.

Two frameworks for general purpose computations on GPUs are nowadays widely available: The compute unified

device architecture (CUDA) [6] is a proprietary toolkit provided by NVIDIA and targets GPUs only. OpenCL is

a royalty-free standard maintained by the Khronos Group [7] and supports both multi-core CPUs, GPUs and even

special-purpose hardware like field programmable gate arrays (FPGAs) from different vendors. Development kits and

runtime libraries are freely available from all major vendors. It is crucial to note at this point that CUDA relies on

a separate compilation step prior to the execution of the program, while OpenCL provides a just-in-time compiler

at run time for that purpose. Thus, OpenCL source code can in principle be generated on-the-fly during program

execution and tailored to the hardware of the target machine by the just-in-time compiler. However, since OpenCL

is designed for a wider range of hardware, several GPU-specific features (e.g. warps, available with CUDA) are not

natively provided, which may result in lower performance of OpenCL kernels when compared to CUDA kernels.

Since many algorithms rely, at least partially, on linear algebra operations, many libraries have been made available

over the years in various programming languages for CPUs. The most prominent example, LAPACK [8], is well

tuned, yet vendor-specific libraries such as ACML [9], ESSL [10] or MKL [11] may provide considerably better

performance for selected routines. While these libraries provide basic linear algebra subroutines (BLAS), high-level

interfaces using syntactic sugar such as operator overloads are often preferred. Examples of C++-based libraries

with such a high-level interface include Eigen [12], MTL [13] and Boost.uBLAS [14], which all rely on so-called

expression templates [15, 16] in order to avoid spurious temporary objects from operator overloads.

General purpose computations on GPUs have been introduced just recently, therefore a relatively small number

of libraries providing linear algebra operations on GPUs is available. MAGMA [17] is based on CUDA and provides

BLAS routines for NVIDIA GPUs. Commercial libraries provide functionality via predefined functions only. Sim-

ilarly, vendor-specific libraries (CUBLAS [18], APPML [19]) offering basic BLAS functionality are also available.

High-level programming interfaces are provided by the CUDA-based Cusp [20] and the OpenCL-based ViennaCL

[21], for which an overview is given in Sec. 2.

Thanks to powerful abstraction facilities, the high-level interface of CPU-based libraries hides internals of the

underlying data type. For example, a dense matrix type is able to abstract the underlying row- or column-major

memory layout, such that entries can be conveniently manipulated using the parentheses operator without runtime

penalty. For GPUs, however, compute kernel launch times are in the range of 10 to 100 microseconds due to PCI-

Express communication, thus abstraction facilities can only be applied to sufficiently large aggregates of operations.

Reconsidering the example of dense matrices, abstraction facilities need to be provided for operations such as matrix

addition or matrix multiplication rather than for individual matrix element access whenever reasonable performance

is required. Therefore, a reevaluation of established abstraction techniques for CPU-based libraries is required for

OpenCL-based applications.

Cusp and ViennaCL provide matrix types for which operators are overloaded suitably. However, objects are

so far limited to the representation of a whole vector or a whole matrix respectively. For algorithms requiring the

manipulation of subvectors and submatrices, representations of a whole vector or a whole matrix are inadequate.

Prominent examples of such algorithms are Cholesky-, LU- and QR-factorizations for the solution of systems of linear

equations, but also compression algorithms in e.g. image processing relying on singular value decompositions by

keeping only the largest singular values and their associated singular vectors [22]. The lack of a suitable addressing of

subvectors and submatrices consequently leads to unnecessary copies on the OpenCL device and may involve spurious

host-device communication, thus degrading performance. To overcome these limitations, this work presents a high-

level application programming interface (API) for manipulating subvectors and submatrices directly. The functionality

is released with ViennaCL 1.3.0 and introduced in Sec. 3, where implications on the underlying OpenCL kernel

sources and their performance are discussed. The new proxy objects are used in a case-study of QR-factorization

using panel factorizations in Sec. 4. Benchmark results quantifying the obtained performance are given in Sec. 5. For

the remainder of this work, OpenCL-enabled devices are identified with GPUs, even though also multi-core CPUs

and other accelerators can be used with OpenCL. This simplifies a distinction between code and resources for the host

and for OpenCL device.
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2. Abstraction Techniques in ViennaCL

Because proxy objects presented in Sec. 3 are based on the abstraction techniques employed in ViennaCL, a brief

overview of the library with focus on the abstraction techniques is given. Additional information including a full list

of features can be found on the project webpage [21].

Consider a simple program which creates two vectors v1 and v2 of size DIM, fills v1 with values, assigns v2 ← 2v1

and then prints both vectors. With typical CPU-based high-level linear algebra libraries, the necessary C++ code is in

most cases similar to the following:

1 vector <double > v1(DIM), v2(DIM); // instantiate

2 for (size_type i=0; i<DIM; ++i) v1[i] = i; // fill

3

4 v2 = 2.0 * v1; // compute

5

6 std::cout << "v1: " << v1 << std::endl << ", v2: " << v2 << std::endl; // print

Note that each code line fully reflects one of these steps; no bloat with initialization or memory allocation routines

occurs. From a user’s perspective, it is desirable to keep this level of abstraction even if GPUs are used. Consequently,

the API of ViennaCL is designed such that the code above is valid if directly placed inside the main() routine. Many

details are dealt with in the background and are discussed next.

As soon as the first vector is instantiated in line 1, the OpenCL backend is configured automatically using a

singleton pattern. Per default, a context consisting of the first device is created on the first platform returned by

the OpenCL library. These default selections can be customized by suitable API calls prior to the first instantiation

of a linear algebra object. Moreover, all OpenCL compute kernels related to pure vector operations (BLAS level

1) are compiled in a single program, because in all practical cases a vector object requests some of them at a later

point. In principle, each kernel could also be compiled separately at the first use. However, it turned out that repeatedly

launching the OpenCL just-in-time compiler introduces a lot of overhead, hence compiling all vector operation kernels

at once is still significantly faster than compiling a relevant subset (e.g. one quarter of these kernels) individually.

The vector v1 is filled with data in line 2 in the snippet above . The bracket operator is overloaded accordingly,

such that for each entry in v1 a separate data transfer is initiated. Compared to setting up a vector on the CPU, access to

individual entries using OpenCL is by several orders of magnitude slower, cf. Sec. 5. Nevertheless, such an overload

is handy for prototyping purposes or for the convenient manipulation of a few entries only.

Line 4 specifies the actual vector operation using operator overloads. Note that the high-level specification is not

only shorter than a corresponding for-loop over all entries, but at the same time also aggregates the manipulation

of all vector entries, thus one OpenCL kernel can be launched for the full operation rather than launching a kernel

for each entry of v1 and v2 respectively. One subtlety requires additional attention: Overloading the multiplication

operator for a scalar and a vector in a naive way, e.g.

1 vector <double > operator *( double val , vector <double > const & v) { ... }

recasts the statement v2 ← 2.0 ∗ v1 into two operations vtemp ← 2.0 ∗ v1 and v2 ← vtemp, where vtemp denotes a tem-

porary object. While temporary objects can be expensive on CPU-based programs, they are extremely detrimental to

performance on GPUs, since additional PCI-Express communication for the creation and the deletion of the temporary

object as well as one additional compute kernel launch are required. For this reason, operator* is overloaded such

that only a proxy object encoding the operation 2.0 ∗ v1 is returned, but no calculation is carried out. The assignment

operator for v2 is in addition overloaded with respect to these proxy objects, where the operation is unwrapped and

an OpenCL kernel for v2 ← 2.0 ∗ v1 without temporary vector objects is launched. The technique follows the idea of

expression templates [15], but requires some modifications due to the restricted set of available compute kernels. For

example, the operation v1 ← v2 + v3 + v4 is not directly mapped to a single compute kernel, because only OpenCL

kernels up to three vector operands including the result vector are provided. Thus, the expression template technique

is modified such that a temporary is introduced in order to map the full operation onto a sequence of the functional-

ity provided with the predefined OpenCL kernels. For the considered example, the operations vtemp ← v2 + v3 and

v1 ← vtemp+v4 with temporary vtemp are carried out. In principle, it is also possible to create OpenCL compute kernels

on-the-fly for arbitrarily complex vector operations [23], but this is beyond the scope of this discussion.
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In addition to the vector type, a dense matrix type matrix, several sparse matrix types, and structured matrix types

are provided by ViennaCL. Setting the entries of these types individually using the overloaded parenthesis operator is

too costly unless only a few entries are affected, therefore the transfer from CPU to GPU is accomplished by a generic

copy() function. The interface for the vector type mimics that of the C++ standard template library (STL) using the

iterator concept:

1 viennacl ::copy(input.begin (), input.end(), output.begin ());

where input and output are the source and the destination vector objects and begin() and end() return iterators or

pointers to the begin and the end of the underlying data container, respectively. For example, if input is a CPU-based

type and output is a ViennaCL vector, an OpenCL transfer to the GPU is initiated. It is worthwhile to mention that

the iterator-interface also allows for the transfer of partial data. For example, the line

1 viennacl ::copy(input.begin () + 2, input.end() + 6, output.begin() + 1);

copies four entries with an offset of two from the source vector to the destination vector with an offset of one. For

other ViennaCL types, an iterator-based copy() function is inadequate, because CPU-based types often do not provide

appropriate functionality. Therefore, overloads of copy() using two arguments are provided:

1 viennacl ::copy(input , output);

Since copy() is a free function, it can be overloaded with respect to its arguments, thus enabling generic wrappers

for linear algebra types from other libraries. Moreover, the approach is non-intrusive, because there are no changes

to the respective ViennaCL classes required, if wrappers for other libraries are to be added. In contrast to the iterator

approach used for vectors, partial updates to e.g. a dense matrix using the copy() function are not directly possible,

unless additional proxy types are introduced.

3. Proxy Objects

As has been discussed in the introduction, the manipulation of subvectors and submatrices is a frequent require-

ment in many linear algebra algorithms. With the functionality of ViennaCL presented in Sec. 2, only calculations

using full matrices and vectors can be carried out. In this section the necessary extensions to the user API as well as

the underlying OpenCL kernels are presented in order to enable calculations on subvectors and submatrices.

A first approach is to just provide conversion routines, which store subvectors and submatrices in new vector and

matrix objects respectively. Calculations are then performed using these temporary objects, and results are written

back to the original objects. As example, given matrices A = (A1,A2) and B = (B1,B2), adding B1 to A1 would thus

require temporary matrices m_A_1 and m_B_1. These two temporary objects are then processed, and the updated m_A_1

is written to the block A1.

The advantage of this first approach is that only little functionality needs to be added, thus the effort for the library

developers is small. However, library users are in such case required to first extract the subvectors and submatrices

and store them in new objects, then carry out the actual operation, and finally ensure that the computed results are

written back to the initial objects. Thus, instead of one single statement for the computation, up to three statements

are required. Besides usability concerns, the temporary objects involved result in memory overhead. The implications

on execution times can be considerable, if only simple operations such as matrix additions are performed, while the

overhead is negligible for computationally demanding operations such as matrix-matrix products.

The disadvantage of temporary objects holding copies of the subvectors and submatrices can be avoided with the

use of proxy objects. Here, proxy objects are objects which do not hold the actual data, but reference the respective

containers and carry additional selection information. In the C++ community such proxy objects are also referred to

as view objects [24]. First, two mechanisms for the specification of a subset of possible row- or column indices are

provided similarly to Boost.uBLAS:

1. A range(a,b) refers to the set of integers in the half-open interval [a, b) in ascending order, where the lower

bound a is included, but the upper bound b is not.

2. A slice(a,c,d) refers to a set of integers starting at a, with nonzero increment c, and consisting of d integers.
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Two examples demonstrate the use of these two types:

1 range r(3, 7); // indices 3, 4, 5, 6

2 slice s(4, -2, 3) // indices 4, 2, 0

Since every range can equivalently be written as a slice, it is sufficient to restrict the subsequent discussion to the

slice type. In addition to range and slice, one may also allow for any arbitrary set of admissible indices. For this

purpose a vector of integers can be used, therefore no additional type needs to be introduced. However, additional

care is required for write operations, which are not well defined if an index appears more than once in such an index

vector. As a consequence, the remaining discussion is mainly devoted to the handling of subvectors and submatrices

specified by the range and slice objects.

The next step is to define suitable proxy objects for encoding subvectors and submatrices. Again, types are

named in similarity to Boost.uBLAS: vector_slice<V> refers to a vector of type V (typically a viennacl::vector<>)

consisting of the entries identified by the indices in the provided slice. Similarly, matrix_slice<M> represents the

submatrix of a matrix of type M given by the entries obtained with a slice for the row indices and a slice for the column

indices. As an example, the following code prints the first and the third entry of a vector and the first and the third row

and column entries of a matrix:

1 slice s(0, 2, 2); // instantiate the slice

2

3 vector_slice < vector <double > > vs(v, s); // proxy for entries v_0 and v_2

4 std::cout << vs << std::endl; // print

5

6 matrix_slice < matrix <double > > ms(m, s, s); // proxy: m_00 , m_02; m_20 , m_22

7 std::cout << ms << std::endl; // print

The proxies vs and ms do not store their own entries, they rather hold references to the original objects v and m.

Consequently, the proxy objects are only created on the CPU and no additional communication with the GPU is

required at each instantiation.

Proxies can be manipulated in the same way as vectors and matrices. For example, the matrix-vector product of

the above proxies can be computed using the straight-forward function overloads including expression templates for

the elimination of spurious temporaries as

1 vector <double > result = prod(ms , vs);

The proxies can also serve as a left hand side operand in an assignment statement (lvalue):

1 vs = prod(ms, b); //b is another vector or vector_slice

From a usability point of view, the separate instantiation of the proxy objects vs and ms can be tedious. A more

compact notation is enabled by the free function project(), which is also included in Boost.uBLAS and takes the

vector (or matrix) object as first argument and the proxy object(s) as second (and third) argument. This allows for a

more compact representation of the previous snippets:

1 slice s(0, 2, 2);

2 vector <double > result = prod( project(m, s, s), project(v, s) );

3 project(v, s) = prod( project(m, s, s), b);

In addition to encoding linear algebra operations, which is analogous to the purely CPU-based Boost.uBLAS

library, proxy objects can also be used for transfers between CPU host and OpenCL device. For example, copying the

submatrix represented by the matrix slice ms back to CPU then reads

1 copy(ms , cpu_m);

where cpu_m is any CPU matrix of suitable dimensions and providing access to its entries using the parenthesis

operator. In a similar fashion, selected entries of a matrix on the GPU can be filled with new values from a CPU-based

matrix.
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(a) Row major, one r/w transfer

per affected row.

(b) Row major, one blocked r/w

transfer.

(c) Column major, one r/w trans-

fer per affected column.

(d) Column major, one blocked

r/w transfer.

Figure 1: Four different memory transfer patterns for writing four entries (filled circles) in a 5×5-matrix with row or column-major memory layout.

In general, a slice does not cover all row and column indices of a matrix, therefore it is not possible to write all

entries using a single memory transfer only. As already mentioned in Sec. 2, the transfer of individual entries between

CPU and GPU is orders of magnitude slower than setting a single entry on the CPU, cf. Sec. 5. Consequently, it can

be more appropriate to first copy a full row or column of a matrix from GPU to the CPU, update the entries there,

and then copy the full row or column back to GPU. Moreover, for a slice with indices between a and b, where |a − b|
is small compared to the matrix dimensions, it can be even appropriate to use a single read transfer for all rows or

columns with index between a and b, update the entries on the CPU and copy all data back to the GPU in one write

transfer. The contiguous block of memory for the transfer is chosen with minimum size such that the first and the last

entry are modified. An overview of these update patterns for row- and column-major matrices is given in Fig. 1, while

benchmark results are postponed to Sec. 5.

Next, the implications of introducing proxy objects for the manipulation of subvectors and submatrices on OpenCL

kernels are investigated. As an introductory example, one possible OpenCL kernel for the operation v1 ← v1 + v2 is

considered:

1 __kernel void add(__global double * v1,

2 __global const double * v2, uint size){

3 for (uint i = get_global_id (0); i < size; i += get_global_size (0))

4 v1[i] += v2[i]; }

The OpenCL function get_global_id(0) returns the global identifier of each thread, while get_global_size(0)

returns the total number of threads [7]. In this example, only a one-dimensional execution model is chosen, to which

the function arguments 0 for the two OpenCL functions refer. Despite the fact that the kernel fits its intended purpose,

it is not sufficiently general to cover the case of subvectors v1 and v2. Therefore, the additional parameters required

for the specification of a slice are now passed for each memory buffer to the kernel:

1 __kernel void add(__global double * v1, uint start1 , uint stride1 , uint size1 ,

2 __global const double * v2, uint start2 , uint stride2 , uint size2){

3 for (uint i = get_global_id (0); i < size1; i += get_global_size (0))

4 v1[start1 + stride1 * i] += v2[start2 + stride2 * i]; }

The additional parameters start1, stride1 and size1 refer to the slice specification for v1, and similarly for the other

parameters on v2. Note that in this case size1 and size2 hold the same value, since v1 and v2 need to be of the same

size. Even though one of the two parameters could thus be dropped, the use of a unified parameter set is beneficial

for the maintainability of the kernels and simplifies an automatic creation of OpenCL kernels considerably [23]. A

fifth parameter is used for a vector in ViennaCL in addition, namely the internal buffer length. It denotes the actual

memory buffer size, which may be larger than the vector size specified by the user due to an optional internal padding

with zeros in order to enable the use of vector data types in compute kernels. For example, a vector of length 30 may

reside in a buffer of length 32 in order to enable the use of vector data types representing four entries. The following

mapping is thus suggested: A vector is always mapped to a set of five parameters: The pointer to the raw memory, a

start index, the stride, the vector length and the internal buffer size. Similarly, a matrix is mapped to nine parameters:

The raw memory and four integers for the row and the column index specification, respectively. These parameters are

again the start index, the stride, the number of elements, and the internal buffer length per row or column.
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If arbitrary index vectors are used for addressing subvectors or submatrices, these vectors also need to be passed

to OpenCL kernels. Since each of the indices of an index vector needs to be loaded from the GPU RAM, additional

memory bandwidth is required. Thus, simple operations such as vector additions, which are commonly memory band-

width limited, suffer from reduced performance. This is in contrast to the use of slices, where all index calculations

are performed on-chip and no additional memory bandwidth is required. Similar reasoning applies to BLAS level 2

operations such as matrix-vector operations, which are typically memory bandwidth limited as well. Consequently,

the use of slices does not have a notable impact on performance, while the use of index vectors leads to reduced

performance due to the higher memory bandwidth requirements. For the compute-bound BLAS level 3 operations

such as matrix-matrix multiplications, additional memory bandwidth requirements are less a concern. Instead, the

increased set of OpenCL kernel parameters occupies additional shared memory, hence crucial cache block sizes may

need to be reduced [25].

4. Case Study: QR Factorization

A study of the QR factorization using block Householder factorizations [26] is given in this section. The QR fac-

torization is the key ingredient for the computation of eigenvalues using the QR algorithm and is usually the method

of choice for the solution of least-squares problems [26]. For the implementations considered in this section, proxy

objects as introduced in the previous section are extensively used in order to obtain a fast, yet easy to maintain, imple-

mentation. The following discussion can also be applied to Cholesky- and LU-factorizations, which are commonly

implemented using similar delayed update strategies.

The QR factorization computes an orthogonal matrix Q and an upper triangular matrix R, such that A = QR for

given A ∈ R
n×n. For the sake of clarity it is assumed that A is square and has full rank. The repeated application of

suitable Householder transformations Hi = I − 2vivT
i /(v

T
i vi) with identity matrix I and Householder vector vi zeroing

all elements below the diagonal in column i leads to HnHn−1 · · ·H1A = R. Since Householder matrices are orthogonal

and symmetric, the orthogonal matrix Q is thus obtained as Q = H1 · · ·Hn.

The Householder matrices H1, . . . ,Hn and thus Q are usually kept in an implicit form, thus only the House-

holder vectors vi and the coefficients βi = 2/(vT
i vi) are stored. A direct implementation of the QR factorization

using Householder reflections is rich in BLAS level 2 operations such as matrix-vector multiplications and outer-

product updates. Using delayed updates, one can accumulate several Householder reflections Hr · · ·Hs, r < s, as

(I +Wr,sYT
r,s) = Hr · · ·Hs. The matrices Wr,s and Yr,s are determined from the Householder vectors vr, . . . , vs with

coefficients βr, . . . , βs by

Yr,s := vr; Wr,s := −βrvr

for j = r + 1: s
z := −β j(I +Wr,sYT

r,s)v j

Wr,s := [Wr,s z]; Yr,s := [Yr,s v j]

end

where the brackets denote a concatenation of the two arguments. Updates to A can now be computed as

(I +Wr,sYT
r,s)

T A(r :n, s + 1:n) = A(r :n, s + 1:n) + Yr,sWT
r,sA(r :n, s + 1:n) (1)

using BLAS level 3 operations, where A(r :n, s + 1:n) denotes the submatrix of A starting at row r and column s + 1.

Transferring the above algorithm to code is rather immediate using the proxies presented in Sec. 3. The required

code for applying Householder reflections to columns r to s of a matrix object A consists of four steps.

1. Householder reflections are applied to the panel consisting of columns r to s of A. For the sake of brevity, this

rather technical (yet not performance critical) part is not shown here and may even be put in a separate com-

pute kernel for a high-performance implementation. The computed Householder vectors are stored memory-

efficiently below the diagonal in the respective columns of A and the coefficients βi are assumed to be available

in a vector betas.

2. The matrix Y ∈ R
n×(s−r+1) is set up. Note that the Householder vector vi is normalized such that the i-th entry

is equal to one. Moreover, since the Householder vectors are already stored in A, only copy operations are

required. Thus, the k-th column of Y is set up using
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1 Y(r+k, k) = 1.0;

2 project(Y, range(r+k+1, n), range(k, k+1)) =

3 project(A, range(r+k+1, n), range(r+k, r+k+1));

3. The columns of W ∈ R
n×(s−r+1) are computed one after another. While the first column is up to a factor −β1

identical to that of Y , the k-th column of W is computed using the proxy objects along the lines

1 MatrixRange Y_old = project(Y, range(r, n), range(0, k));

2 MatrixRange v_k = project(Y, range(r, n), range(k, k+1));

3 MatrixRange W_old = project(W, range(r, n), range(0, k));

4 MatrixRange z = project(W, range(r, n), range(k, k+1));

5

6 YT_prod_v = prod(trans(Y_old), v_k);

7 z = - betas(r+k) * (v_k + prod(W_old , YT_prod_v));

Here, MatrixRange refers to the type of the matrix range proxy, trans() denotes the transpose operation and

YT_prod_v is a temporary vector used for storing YT
k vk.

4. Finally, the update to the remaining columns of A with column index larger than s as in (1) is applied.

1 MatrixRange A_part(A, range(r, n), range(s + 1, n));

2 MatrixRange W_part(W, range(r, n), range(0, block_size));

3 MatrixRange Y_part(Y, range(r, n), range(0, block_size));

4

5 MatrixType WT_prod_A = prod(trans(W_part), A_part);

6 A_part += prod(Y_part , WT_prod_A);

The variable block_size refers to the number s − r + 1 of columns processed within the delayed update.

In summary, the presented code lines cover the main operations of the QR algorithm at a high level of abstraction.

Particularly, up to the namespaces of the the involved types, the code for the GPU-accelerated ViennaCL code is

identical to that obtained when using the purely CPU-based Boost.uBLAS library. Conversely, the implementation of

the QR algorithm can be used for both ViennaCL types and Boost.uBLAS types using suitable template arguments

and type deduction facilities. Thus, it is demonstrated that low-level programming using OpenCL and high-level

abstraction facilities provided by C++ blend well. The high-level interface of ViennaCL thus counters productivity

concerns for GPU computing raised in the past [27].

5. Benchmark Results

A comparison of different copy strategies for submatrices discussed in Sec. 3 as well as execution times for the

QR factorization from Sec. 4 are given. All benchmark results have been collected using double data types on a

Linux machine equipped with an Intel Core i7 960 CPU and an NVIDIA Geforce GTX 470 graphics adapter with

driver version 290.10. No device- or problem-size specific optimizations have been applied in order to reflect the

out-of-the-box performance for a ViennaCL library user.

Submatrices of square matrices A ∈ R
n×n specified by the slice s(n/4, 2, n/4) are considered for different

values of n in order to evaluate the overhead of copy operations. Without loss of generality, the matrices are row-

major. The time required to copy the entries of project(A, s, s) from GPU memory to host memory, setting the

respective entries to zero, and then to copy the affected entries back to GPU memory is recorded. Four different

methods are compared in the benchmark: First, elements are set to zero one after another using the overloaded

parenthesis operator. Second, rows addressed by the slice are transferred one after another to the CPU, where the

respective entries of each row are manipulated, and then transferred back to the GPU. The third method considered

in the benchmark is to copy all affected entries contained in the smallest contiguous piece of memory possible using

a single transfer to the CPU. Updates are then applied on the CPU and the buffer is copied back to GPU RAM using

again a single OpenCL transfer. The last method copies the whole matrix, updates the respective entries and then

pushes the new data back to GPU.



1865  Karl Rupp  /  Procedia Computer Science   9  ( 2012 )  1857 – 1866 

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10  100  1000  10000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Matrix Rows

Individually
Per Row

Enclosing Block
Full

Quadratic

Figure 2: Comparison of execution times for the transfer of sliced submatrices. For comparison, quadratic complexity with respect to the matrix

dimension is depicted with a dashed line.
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Figure 3: Comparison of execution times for a QR-factorization using types from Boost.uBLAS only (single-threaded, CPU-based execution),

types from ViennaCL only (GPU-based execution using OpenCL), a hybrid implementation using types from both libraries, and a single-threaded

LAPACK reference. The same generic code base is used for the benchmarks.

Benchmark results are depicted in Fig. 2. Already at n = 50, copying entries individually is by a factor of five

slower than copying each affected row one after another, which is again by a factor of six slower than copying the

whole matrix in a single transfer. A saturation of execution times is observed for matrices matrices below 100 × 100,

where OpenCL overhead dominates. In particular, from the total transfer time for the full matrix one can deduce

a transfer overhead of slightly above 100μs, which is independent of the transferred data. For matrix sizes above

100 × 100, setting entries individually is orders of magnitude slower than the other methods and thus not considered

further. Copying individual rows is still by up to one order of magnitude slower than transferring all entries at once

for matrix sizes up to 1000×1000. Beyond 1000×1000, row-based, block-based and full matrix transfer methods are

comparable in execution times. It is worthwhile to note that a full transfer of the matrix requires twice as many data

than a block-based transfer, still only a difference in execution times of a factor of 1.4 is obtained. From the execution

time for the row-based method it is concluded that a single block transfer is preferred in general, unless only very

local updates of the matrix are applied or the additional CPU RAM requirements are a concern.

An implementation of the QR-factorization considered in Sec. 4 is used for the second benchmark. The same

generic code is used for the comparison of the single-threaded Boost.uBLAS implementation and a purely GPU-

based implementation in ViennaCL. A hybrid implementation using Boost.uBLAS for the panel factorization and

ViennaCL for BLAS level 3 operations is directly obtained by adding calls of copy() for the transfer of the panels

of A as well as the matrices Yr,s and Wr,s between host and device memory to the generic implementation. Suitable

block sizes in the QR factorization of 20 for Boost.uBLAS and 10 for the GPU-assisted implementations have been

determined by numerical experiments. No GPU-specific optimizations [28, 29] have been applied, because the focus

of this benchmark is on a comparison of execution times obtainable from identical high-level implementations.
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Benchmark results in Fig. 3 show that the generic implementation using Boost.uBLAS types is by a factor of

4.5 slower than the reference LAPACK implementation, which can be entirely attributed to the lower performance

of matrix-matrix multiplications in Boost.uBLAS. The same implementation using ViennaCL objects suffers from

excessive kernel launch overheads for problem sizes below 2000 × 2000, with less than five percent of the time spent

on BLAS level 3 calls for smaller matrices. Above 2000 × 2000, kernel launch overheads diminish and smaller

execution times than for Boost.uBLAS types are obtained. The performance of a LAPACK reference on the CPU

is reached at a matrix size of 6400 × 6400, even though the GPU is shipped with reduced performance for double

types. The hybrid implementation is by a factor of up to 4.5 faster than the LAPACK reference. Approximately half

of the total execution time for the hybrid implementation is spent almost uniformly on BLAS level 3 operations. The

high-level hybrid implementation is faster than the LAPACK reference already at a matrix size of 1000 × 1000.

6. Conclusion

The introduction of proxy objects for the manipulation of subvectors and submatrices essentially enables the

convenience of scripting languages in C++ without sacrificing performance of the OpenCL device. This allows

for user code to become considerably more compact and easier to maintain as compared to dealing with all low-

level details of the OpenCL API and kernel language. The interface compatibility of ViennaCL and Boost.uBLAS

allows for a careful prototyping of algorithms in a purely CPU-based environment using established debugging tools,

and then to seamlessly switch to an OpenCL-based execution using ViennaCL. The hybrid implementation of the

QR factorization case study shows an up to 4.5-times higher performance than a LAPACK reference even without

applying any low-level tuning or sophisticated scheduling.
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