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Abstract—We perform a comparative study of various macro-
scopic transport models against multisubband Monte Carlo (MC)
device simulations for decananometer MOSFETs in an ultra-
thin body double-gate realization. The transport parameters of
the macroscopic models are taken from homogeneous subband
MC simulations, thereby implicitly taking surface roughness and
quantization effects into account. Our results demonstrate that the
drift-diffusion (DD) model predicts accurate drain currents down
to channel lengths of about 40 nm but fails to predict the transit
frequency below 80 nm. The energy-transport (ET) model, on
the other hand, gives good drain currents and transit frequencies
down to 80 nm, whereas below 80 nm, the error rapidly increases.
The six moments model follows the results of MC simulations
down to 30 nm and outperforms the DD and the ET models.

Index Terms—Drift-diffusion (DD) model, energy-transport
(ET) model, higher order transport models, quantization, six mo-
ments (SM) model, subband Monte Carlo (SMC), surface rough-
ness scattering.

I. INTRODUCTION

THE fundamental equation describing semiclassical trans-
port is the Boltzmann transport equation (BTE), which has

been shown to adequately capture the problem in the absence
of quantum mechanical transport effects such as source–drain
tunneling. Conventionally, the BTE is solved by some kind
of Monte Carlo (MC) approach [1], [2] and more recently
by deterministic solution methods employing the spherical
harmonics expansion method [3]–[7]. Although solution of the
BTE allows for the most detailed consideration of the physics,
its high computational effort makes it rather less suitable for
engineering applications. However, as the results obtained by
these codes are often in good agreement with experiments [8],
[9] they are frequently used as a benchmark for simpler models.

Due to the difficulties associated with the solution of the
multidimensional BTE, which determines the microscopic dis-
tribution function (DF), many simplified macroscopic trans-
port models have been derived [10]–[15]. The simplest and
most commonly used macroscopic transport model is the drift-
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diffusion (DD) model, which comprises the two lowest mo-
ments, and it is still the workhorse of today’s Technology
Computer-Aided Design (TCAD) tools. However, it has been
repeatedly discussed and demonstrated that the DD model
becomes more and more inaccurate with decreasing device
size [16]–[20]. As a consequence, energy-transport (ET) or
hydrodynamic1 models have been suggested, which consider
the first three or four moments, most notably some form of
average carrier energy [13], [21]. The most severe limitation
of these ET models is that they approximate the DF by some
form of heated Maxwellian distribution [22], while it is known
from MC simulations that the shape of the DF is, in general,
more complicated. More details about the DF can be obtained
by including additional moments, for instance, the first six [18],
[23], [24].

A crucial issue of all macroscopic transport models is the
accurate modeling of the transport parameters, for instance, the
carrier mobility and energy relaxation time. This is critical,
as these transport parameters have to capture all the complex
physics that enter the scattering integral of the BTE, such as
impurity, phonon, and surface roughness scattering.

Although a number of empirical models for these parameters
are available, these models contain “free” parameters, making
it tempting to use them as tunable knobs to fit the macroscopic
model to experimental or MC data [19], [25]. Unfortunately,
the awareness has to be still developed that such a procedure
compromises the consistency of the models, so that a model
tuned in such a way may work just for a particular case and
may give unreasonable results otherwise. The simplest example
of such an inconsistency is the adjustment of the saturation
velocity to account for the missing velocity overshoot in the
DD models [19], which makes the model inaccurate in regions
with large but nearly homogeneous driving forces.

In order to assess the applicability of macroscopic transport
models while guaranteeing their consistency [18], we have pre-
viously extracted the transport parameters from homogeneous
MC simulations [18], [26]. While this procedure appears suit-
able for simple n-i-n structures [18], it is problematic for MOS
transistors, where surface roughness scattering and quantization
in the inversion layer have a significant impact on the transport
parameters. Consequently, in this work, we extract the transport
parameters to be set in macroscopic models from an infinitely

1Although there is considerable ambiguity in literature, we refer to hydrody-
namic models strictly as those that retain the convective contributions (e.g.,
mV 2

0/2) to the total carrier energy. Since these models contain hyperbolic
terms, they are challenging to solve numerically and therefore never used in
TCAD environments.
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long homogeneous inversion layer, which is the MOS analog
to the uniform bulk case, considering the electronic structure
of the 2-D electron gas from a slightly extended version of the
multisubband MC solver described in [26]–[30].

In order to show the validity range of the developed models,
a practical evaluation is mandatory, which will be given in the
next sections.

II. REVIEW OF MACROSCOPIC MODELS

In this section, the most important steps of the derivations
of macroscopic transport models will be reviewed. General
conservation and flux equations of the higher order transport
models will be explained. Since carrier transport in an inversion
layer is based on a 2-D electron gas, a suitable general
formulation applicable to different electron dimensionality is
chosen [26]. Still, in order to maintain computational efficiency,
carrier transport is considered in 3-D k-space, whereas the
subband structure is incorporated into the models via effective
transport parameters. These parameters are chosen such that
under homogeneous conditions, the MC results are exactly
reproduced.

At an engineering level, a very efficient way to find approxi-
mate solutions of the BTE is the method of moments. In order
to formulate a set of balance and flux equations, one has to
multiply the BTE with a set of weight functions and integrate
(average) over k-space. An arbitrary number of equations can
thus be derived, each containing information from the next
higher equation. In order to obtain a tractable model, one
has to truncate the equation hierarchy in order to get a fully
defined equation set. This assumption to close the system is
called “closure relation,” which estimates the information of the
higher order moments and thus determines the accuracy of the
system. For instance, in the case of the DD model, the closure
relation for the carriers is assumed to be a drifted Maxwellian
distribution [16]. There exist several theoretical approaches that
address the closure problem [31], such as the maximum entropy
principle in the sense of extended thermodynamics [14], [21],
[22], [32]. However, none of them has been found to be of
sufficient practical relevance to enter available TCAD codes
that rely on rather simple estimates.

To obtain physically meaningful equations, the weight func-
tions X are conventionally chosen as the powers of increasing
order of the momentum. Two cases are distinguished depending
on whether X is an even scalar-valued function of the wave
vector k or an odd vector-valued function of k. Multiplying
the BTE by the even scalar-valued weights and the odd vector-
valued function and then integrating over k-space yields the
general conservation equation and the general flux equation,
respectively.

Using the macroscopic relaxation time approximation for
the scattering operator of the BTE, a nonparabolic, isotropic
band structure, and a scalar approximation of the tensor valued
parameters via their traces, the general conservation equation
can be written as

∂t(nwl)+∇r(nV l)+lsαqnV l−1∇rϕ̃+n
wl−wl0

τl
=0 (1)

TABLE I
TRANSPORT PARAMETER SET OF THE DD, ET, AND SM MODELS:

THE CARRIER MOBILITY μ0, THE ENERGY MOBILITY μ1, THE

SECOND-ORDER ENERGY MOBILITY μ2, THE ENERGY RELAXATION

TIME τ1, AND THE SECOND-ORDER ENERGY RELAXATION TIME τ2

whereas the general flux equation of higher order transport
models looks like

nV l = −nμl

q
Hl+1A∇r(nwl+1) − sαnμl(1 + lAHl)wl∇rϕ̃.

(2)

Here, n is the carrier concentration (electrons or holes), q is
the elementary charge, wl is the average energy of the charged
carriers defined as wl = 〈E l〉, wl0 is the average equilibrium
carrier energy, and V l denotes the higher order fluxes defined as
the velocity times energy V l = 〈vE l〉, while ϕ̃ is the effective
potential. Furthermore, sα represents a prefix considering the
sign of the carrier charge (sα = −1 for electrons and sα = +1
for holes). Hl+1 is a nonparabolicity factor, whereas A is a
dimension factor (in 1DEG: A = 2, in 2DEG: A = 1, and in
3DEG: A = 2/3). The index l denotes the order of the moment.
For the DD model, l is equal to 0, whereas for the ET and the
six moments (SM) models, l is in the range of l ∈ [0, 1] and
l ∈ [0, 2], respectively. μl and τi are the higher order mobility
values and relaxation times, which are discussed below.

III. MODELING OF THE TRANSPORT PARAMETERS

The most general case considered here in terms of transport
parameter modeling is the SM model. There, the transport
parameters are the carrier mobility μ0, the energy mobility
μ1, the second-order energy mobility μ2, the energy relaxation
time τ1, and the second-order energy relaxation time τ2, which
are required to approximate the scattering integral of the BTE
and thus have to capture a number of detailed and complex
physical processes. Table I summarizes the required transport
parameters for each macroscopic model.

A. Homogeneous Subband Macroscopic Models

To include the impact of the inversion layer in the macro-
scopic models derived above and to characterize high field
transport, a model for the mobility values and the relaxation
times has been developed, which is based on the parameter
extraction from homogeneous subband Monte Carlo (SMC)
simulations [26], [33]. Under homogeneous and stationary con-
ditions, the relaxation times can be expressed from (1) as

τl =
wl − wl0

lsαqVl−1E
(3)

whereas the mobility values can be written as

μl =
Vl

Ewl(1 + lAHl)
(4)

with E as the longitudinal electric field. The energies wl and
wl0 as well as the velocity and the nonparabolicity factors H1
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and H2 are calculated from the MC simulation in analogy to
[18] as

Hl =
1

2wl

d∑

i=1

〈vipiE l−1〉. (5)

Here, vi and pi are the velocity and the momentum components
with respect to the conduction band minimum of the carriers,
respectively. The above formulation guarantees that, under
homogeneous conditions, the SMC results, which have been
used to create the tables for the transport parameters, are exactly
reproduced by the macroscopic transport model. For the ET
and SM models, the extracted higher order mobility values and
the macroscopic relaxation times are tabulated as a function of
average energy and the transverse effective field Eeff defined
here as

Eeff =

tSi/2∫
0

Eyndy

tSi/2∫
0

ndy

(6)

where Ey is the electric field perpendicular to the interface,
and tSi is the thickness of our device. In the case of the DD
model, the gradient of the quasi-Fermi level is used instead of
the average energy [18].

Inversion layer effects such as surface roughness scatter-
ing and quantization, which have a considerable impact on
the transport parameters, are thus inherently considered in
the SMC tables. The higher order transport parameter set
from SMC simulations is shown in Fig. 1 for different ef-
fective fields of 210 and 950 kV/cm, which demonstrates the
considerable impact of the transversal field on the transport
parameters.

The extracted higher order transport parameters derived from
SMC simulations form the basis for a parameter interpolation
within the channel of the device simulator. In the source and in
the drain region, the transport parameters are set to their bulk
values, which have been extracted from bulk MC simulations
as in [34]. The device simulator calculates the transverse effec-
tive field in the channel and extracts the mobility values and
relaxation times from the SMC tables for the specific device
structure. The mobility values and the relaxation times are here
independent of the vertical device position. In the DD model,
the electric field is used as a parameter, whereas the higher order
transport model uses the average energy w1.

For the sake of computational efficiency, quantum mechani-
cal confinement has been considered in the macroscopic device
simulator using the improved modified local density approx-
imation (IMLDA) quantum correction model [35], which has
been consistently calibrated to the Schrödinger–Poisson simu-
lator used in the device SMC (DSMC) simulator.

The most severe limitation of this calculation scheme for the
transport parameters is that they do not contain inhomogeneous
effects, which are important in all transport parameters since
the average energy does not provide a unique parametrization of
the DF [15]. Nonetheless, since analytical models suffer from

Fig. 1. Homogeneous subband higher order transport parameter defined in
Table 1 and extracted from SMC simulations for different effective fields Eeff

within a double-gate MOSFET with a thickness of tSi = 8 nm. Note the strong
impact of Eeff .

the same limitation, the tabulated parameters give the optimum
behavior to be expected from a consistent model.

To verify the validity of the 2-D macroscopic models, the
results are now benchmarked against DSMC simulations. A
detailed description of the reference DSMC simulator can be
found in [27], [28], and [30].

IV. MODEL EVALUATION

To compare the performance of these transport models, we
simulated a series of double-gate MOSFETs similar to the ones
used in [36] and compared the results to the corresponding
MC results. The gate length was varied from 1000 nm down
to 30 nm with a silicon layer thickness of tSi = 8 nm. To
guarantee electrostatic integrity, we used tSi = LCh/4 for the
channel lengths of 20 and 16 nm. The study of even shorter
devices becomes questionable due to the increasing importance
of quantum mechanical effects. In order to avoid large tem-
peratures in the contact regions, which lead to artifacts in the
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TABLE II
CPU CALCULATION TIMES OF THE COMPLETE OUTPUT

CHARACTERISTICS OF A 40- AND A 1000-nm CHANNEL DEVICE (SEE

FIGS. 2 AND 3) OF THE DD, ET, AND SM MODELS ARE SHOWN. THE CPU
TIME VALUE OF THE DSMC SIMULATOR IS JUST GIVEN FOR ONE BIAS

POINT (OP) OF THE OUTPUT CURRENT. IN ALL CASES, THE STATISTICAL

ERROR IN THE DRAIN CURRENT IN THE MC SIMULATIONS IS ABOUT 1

Fig. 2. Output current of 1000- and 100-nm channel devices calculated with
the DD, ET, and SM models are compared with the output current obtained
from the DSMC simulator. For the 1000-nm device, the results of all models
are similar.

macroscopic models due to the cold-Maxwellian boundary con-
ditions, the doping concentration was set to 2 × 1020 cm−3 in
the source/drain regions. The gate/drain biases have been cho-
sen such that the electric field E in all devices was comparable.

The simulation times of the output characteristics of a
40- and a 1000-nm channel length device calculated with the
DD, ET, SM, and DSMC models on one core of an Intel Core
i7 CPU with 3.4 GHz are summarized in Table II. The sim-
ulation time of the DSMC model is shown only for one bias
point of the output current in Figs. 2 and 3, respectively. From
an efficiency point of view, the macroscopic transport models
clearly outperform MC simulations; the accuracy and the va-
lidity of each macroscopic transport model will be investigated
and discussed in the following sections. In particular, the MC
simulation times critically depend on a number of parameters
such as the number of particles. Since, for our study, we require
accurate reference currents and transit frequencies, the MC
simulations were tuned for accuracy rather than speed.

A. Long-Channel Device

First two long-channel devices with 100 and 1000 nm are
simulated to check the consistency of the models. Fig. 2 shows
output characteristics calculated with the DD, ET, SM, and
DSMC models. For the 1000-nm device, all macroscopic mod-
els reproduce the MC reference results, as enforced by the setup
of the transport parameters in (3) and (4) very well. For the

Fig. 3. Output current of a 30- and a 40-nm device using the DD, ET, SM,
and DSMC models. The SM model predicts the most accurate result, whereas
the ET overestimates and the DD underestimates the current from DSMC
simulations.

100-nm channel device, however, the error in the current of the
DD and the ET models starts to increase particularly for high
drain voltages, whereas the SM model follows the reference
DSMC results quite closely. The inset shows the overestimation
of the drain current by the ET and SM models in the linear
regime, which increases with the reduction in the channel
length [37]. The DD model yields lower Id values, and the ET
model slightly overestimates the results from MC simulations.
The Id overestimation of the ET model increases for decreasing
channel lengths, as will be shown in the following.

B. Short-Channel Devices

The simulated drain current of devices with 30- and 40-nm
channels is shown in Fig. 3. The inset zooms in the low drain
voltage portion of the output characteristics, and we can see
that, as known, the macroscopic models overestimate the drain
current. Compared with the results obtained from n − i − n
structures [37], the overestimation by the macroscopic models
appears to be less pronounced. Overall, the SM model yields
the most accurate result, whereas the DD model significantly
underestimates the results obtained from the DSMC code.
On the other hand, the ET model seriously overestimates the
maximum drain current. We remark that, just like in the case of
the DD model, an improvement in these predictions is possible
by adjusting the parameters of the model. In the case of the
ET model, it has been observed that the heated and displaced
Maxwellian distribution, which is usually employed for the clo-
sure relation, results in an overestimation of the heat flux [38].
Similar observations related to the overestimation of the high-
energy tail of the DF by a heated Maxwellian distribution have
been made in impact ionization models [39] and hot-electron
oxide tunneling [40]. As a remedy, it has been suggested to re-
duce the heat flux of the carrier gas to 10%–20% of its original
value [38]. However, the assessment of the general validity of
such modifications is beyond the scope of this paper [34].
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Fig. 4. Transfer characteristics of the 30-nm device for drain voltages of
50 mV and 1 V calculated with the DD, ET, SM, and DSMC models. The
macroscopic models overestimate the drain current at low Vg , whereas the SM
model is particularly accurate at higher voltages.

Fig. 5. Velocity profile of a 30-nm-long device calculated with the DD, ET,
SM, and DSMC models. A source-to-drain voltage of 0.8 V has been applied.
The vertical position of the velocity profile is very close to the interface.

Fig. 4 shows transfer characteristics of the 30-nm device
calculated with the DD, ET, SM, and DSMC models for drain
voltages of 50 mV and 1 V. The overestimation by macroscopic
models at low gate voltages Vg is here more clearly visible.

Fig. 5 presents the velocity profile of the 30-nm-long device.
The velocity profile is notoriously difficult to reproduce by
macroscopic models and often contains a spurious velocity
overshoot at the end of the channel [41]. The ET model clearly
overestimates the velocity with respect to the DSMC model,
whereas the DD velocity is limited by the saturation velocity.
Again, the result closest to the reference DSMC is delivered by
the SM model.

Fig. 6 illustrates the relative error in the output current of
the macroscopic models as a function of the channel length for

Fig. 6. Relative error in the maximum drain current as a function of the
channel length for the DD, ET, and SM models relative to the DSMC results.
The error of the ET model rapidly increases for devices with a channel length
below 80 nm, where even the DD model shows lower errors. The SM model is
the most accurate model for short-channel devices. The ±10% error bounds are
indicated by the dotted lines.

the DD, ET, and SM models. For 100 nm, the ET and the SM
models yield an output current with an error below 5%, whereas
the error in the current of the DD model is about −8%. With a
further decrease in the channel length down to 80 nm, the error
of the ET model rapidly increases, whereas the SM model stays
within 5%. Astonishingly, at about 60 nm, the magnitude of
the error of the DD model becomes smaller than that of the
ET model. For a critical channel length of 30 nm, the errors
of the DD, ET, and SM models are −20%, 54%, and 14%,
respectively. The SM model is thus the most accurate model.
However, below 30 nm, the results obtained by macroscopic
models become questionable. For instance, at a channel length
of 16 nm, the errors of the DD, ET, and SM models are −33%,
127%, and 42%, respectively.

It is interesting to note that the error of the DD current is
relatively small. This has been explained as a consequence of
error cancelation: While the velocity is underestimated, the
zero-field conductivity is overestimated [9], [37], [42] (see
Figs. 2 and 3). No such error cancelation occurs when other
figures-of-merit are considered such as the transit frequencies.
Fig. 7 shows the error of the transit frequencies as a function of
the channel length. The transit frequencies have been calculated
following [9], which requires an accurate velocity profile in the
channel but otherwise no additional parameters. We first see
that the SM model provides results very close to the reference
DSMC simulation down to about 30 nm. In the DD model, the
error in fT is much more severe than the one in Id (see Fig. 6)
due to the lower velocity in the channel (see Fig. 5). Better
agreement between MC and DD is usually enforced by modify-
ing the saturation velocity vsat employed in the mobility model,
which then introduces errors at different channel lengths [43].
However, in a consistent model valid for all channel lengths,
the SM approach yields the best results and outperforms the ET
and the DD models.
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Fig. 7. Relative error in the transit frequencies of the DD, ET, and SM models
compared with the DSMC results as a function of the channel length. The error
of the DD model is now significantly higher than the error in the maximum
drain current (see Fig. 6), whereas the SM model remains the most accurate
model.

V. CONCLUSION

In order to efficiently describe carrier transport in future
device structures, various macroscopic transport models have
been proposed over the years. We provide a guideline for the
validity of the most prominent macroscopic models, namely,
the DD, the ET, and the SM models. To characterize car-
rier transport in the inversion layer, we use a subband-based
macroscopic transport model, where quantum effects as well
as surface roughness scattering are inherently included using
effective transport parameters. Since we are still in a scattering
dominating regime, we neglect quantum effects in transport
direction expected to become important only for LCh ≤ 6 nm
[44]. As reference, we took data from DSMC simulations.

Overall, the DD model is found to be reasonably accurate for
devices with a channel length of at least 100 nm. The ET model,
on the other hand, remains valid down to 80 nm. Curiously,
below 80 nm, the ET model loses its validity and gives larger
errors in the drain current than the DD model. Finally, the
SM model is accurate throughout the whole channel length
investigation down to 30 nm. The final limit of this model
appears to be around 30 nm, as also stated for the bulk case in
[18] and [34]. Below that channel length, the results predicted
by macroscopic transport models should be considered with a
reasonable amount of suspicion.
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