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Abstract—The two-band k·p model for the conduction band is
used to analyze the subband structure in (0 0 1) thin silicon films.
In contrast to the usually assumed parabolic energy dispersion,
the two-band k·p model is able to describe the conduction band
structure in the presence of shear strain. It is demonstrated that
the unprimed subbands are degenerate only in relatively thick re-
laxed films. In thin films, the subbands develop different in-plane
effective masses. In orthogonal magnetic fields, this leads to a sub-
band splitting linear in the field strength. It also results in a large
subband splitting that is observed in [1 1 0]-oriented point contacts.
With shear strain, the degeneracy between the unprimed subbands
in (0 0 1) films is lifted. This splitting depends strongly on the film
thickness and becomes large in ultrathin films. Strain-induced val-
ley splitting results in reduced scattering and increased spin co-
herent time, which makes silicon attractive for future spintronic
applications.

Index Terms—Shear strain, two-band k·p model, valley
splitting.

I. INTRODUCTION

THE RAPID increase in computational power and speed of
integrated circuits is supported by the incessant reduction

of semiconductor devices’ feature size. Due to constantly in-
troduced innovative changes in the technological processes, the
miniaturization of MOSFETs institutionalized by Moore’s law
successfully continues. The 32-nm MOSFET process technol-
ogy by Intel [1], [2] involves new high-k dielectric/metal gates,
which represents a major change in the technological process
since the invention of MOSFETs. Although alternative channel
materials with a mobility higher than in Si were already investi-
gated [3], [4], it is believed that Si will still be the main channel
material for MOSFETs beyond the 22-nm technology node.

With scaling apparently approaching its fundamental limits,
the semiconductor industry is facing critical challenges. New
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engineering solutions and innovative techniques are required to
improve CMOS device performance. Strain-induced mobility
enhancement is one of the most attractive solutions to increase
the device speed, which will certainly maintain its key position
among possible technological innovations for future technol-
ogy generations. In addition, new device architectures based
on multigate structures with better electrostatic channel control
and reduced short channel effects will be developed. A multi-
gate MOSFET architecture is expected to be introduced for the
16-nm technology node. Combined with a high-k dielectric/
metal gate technology and strain engineering, a multigate
MOSFET appears to be the ultimate device for high-speed oper-
ation with excellent channel control, reduced leakage currents,
and low-power budget. Confining carriers within a thin film
reduces the channel dimension in transversal direction, which
further improves gate channel control.

At the same time, the search for post-CMOS device con-
cepts has accelerated. A quantum computer promises to open
new horizons to approach large-scale computations. Quantum
mechanical properties in representing the data should lead to a
substantial superiority in quantum computation over classical
approaches. Although the concept is very attractive, quantum
calculations in experiment were performed on a small number
of qubits only. There are several extremely challenging prob-
lems that prevent the building of a large quantum computer,
and more research is needed. One particular problem is how to
maintain the quantum state coherence within qubits.

Spin as a degree of freedom is promising for future nano-
electronic devices and applications. A concept of a racetrack
memory recently proposed in [5] is based on the controlled
domain wall movement by spin-polarized current in magnetic
nanowires. Silicon, the main element of microelectronics, pos-
sesses several properties attractive for spintronic applications.
Silicon is composed of nuclei with predominantly zero spin
and is characterized by small spin-orbit coupling. In a recent
ground-breaking experiment coherent spin transport through an
undoped silicon wafer of 350 μm length was demonstrated [6].
The experiment was possible due to a unique injection and
detection technique of polarized spins delivered through thin
ferromagnetic films. Coherent propagation of spins at such long
distances makes the fabrication of spin-based switching devices
likely already in the near future.

Spin-controlled qubits may be thought of as a basis for up-
coming logic gates. However, the conduction band of silicon
contains six equivalent valleys, which is a source of poten-
tially increased decoherence. For successful applications, the
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degeneracy between the valleys must be removed and become
larger than the spin Zeeman splitting. Shubnikov-de-Haas mea-
surements in an electron system, which is composed of thin
silicon films in Si–SiGe heterostructures, reveal that the valley
splitting is small [7]. At the same time, recent experiments on
the conductivity measurements of point contacts created by con-
fining a quasi-2-D electron system in lateral direction with the
help of additional gates deposited on the top of the silicon film
demonstrate a splitting between equivalent valleys larger than
the spin splitting [7].

In this paper, we demonstrate that a large valley splitting in
the confined electron system can be induced by a shear strain
component. Our analysis is based on the two-band k·p model
for the conduction band in silicon. The parabolic band approx-
imation usually employed for subband structure calculations of
confined electrons in Si inversion layers is insufficient in ul-
trathin Si films. The two-band k·p model includes strain and
is shown to be accurate up to energies of 0.5 eV. This model
can therefore be used to describe the subband structure in thin
silicon films, where the subband quantization energy may reach
a hundred millielectronvolts.

We first describe the subband structure in a thin unstrained
(0 0 1) silicon film. We demonstrate that the peculiarities of the
subband dispersion obtained within the two-band k·p model
result in a linear dependence of the valley splitting on the mag-
netic field. We show that a large valley splitting is observed
in experiments on conduction quantization through a quantum
point contact in [1 1 0] direction, but the splitting is suppressed
in [1 0 0] point contacts. Finally, we demonstrate that the valley
splitting is considerably enhanced in films strained in [1 1 0]
direction.

II. TWO-BAND k·p MODEL

The closest band to the lowest conduction band Δ1 near
its minimum is the second conduction band Δ2 . These two
bands are degenerating exactly at the X point. Since the mini-
mum of the lowest conduction band in unstrained silicon is only
k0 = 0.15(2π)/a away from the X point, where a is the lattice
constant of unstrained silicon, the two bands must be included
on equal footing in order to describe the dispersion around the
minimum. More distant bands separated by larger gaps are in-
cluded in the second-order k·p perturbation theory [8], which
results in the following two-band k·p Hamiltonian [9]:

H =

(
h̄2k2

z

2ml
+

h̄2(k2
x + k2

y )
2mt

)
I +

(
Dεxy − h̄2kxky

M

)
σx

+
h̄2kzk0

ml
σz (1)

where σx,z are the Pauli matrices, I is the 2 × 2 unity ma-
trix, mt and ml are the transversal and the longitudinal effec-
tive masses, respectively, εxy denotes the shear strain compo-
nent, M−1 ≈ m−1

t − m−1
0 , and D = 14 eV is the shear strain

deformation potential [9], [10]. This is the only form of the
Hamiltonian in the vicinity of the X point allowed by symme-
try considerations [8]. The two-band Hamiltonian (1) results in

Fig. 1. Comparison of the conduction band of silicon computed with the
DFT [10], the empirical EPM [9], the sp3 d5 s∗ tight-binding method [11], and
the two-band k·p model [8]. The two-band k·p model is accurate up to an
energy of 0.5 eV.

the following dispersion relations:

E =
h̄2k2

z

2ml
+

h̄2(k2
x + k2

y )
2mt

±

√(
h̄2kzk0

ml

)2

+ δ2 (2)

where the negative sign corresponds to the lowest conduction
band,

δ2 = (Dεxy − h̄2kxky /M)2 .

The energy E and kz are counted from the X point. A com-
parison of (2) with the band structure of [0 0 1] valleys obtained
numerically with the density functional theory (DFT) [11]–[14],
the empirical pseudopotential method (EPM) [10], and with the
tight-binding sp3d5 s∗ model [15] in [1 0 0] and [1 1 0] direc-
tions is shown in Fig. 1. The empirical tight-binding sp3d5 s∗

model with parameters from [15] seems to underestimate the
anisotropy of the conduction band. The reason for such a be-
havior is displayed in Fig. 2. The minimum of the conduction
band within the tight-binding model is located further away
from the X point than k0 . This leads to a gap between the two
bands at the minimum of the lowest conduction band, which is
nearly two times larger than the corresponding gap from EPM
calculations. Since the warping of the conduction band is de-
termined by the band interaction, the larger gap results in less
coupling and a lower degree of anisotropy.

The k·p model accurately describes the dispersion relation up
to energies of about 0.5 eV. It also reproduces correctly the con-
duction band dispersion subject to shear strain [16]. Therefore,
the k·p Hamiltonian (1) can be used to describe the subband
structure in thin silicon films and inversion layers.

III. SUBBAND DISPERSION IN A (0 0 1) SILICON FILM:
ANALYTICAL RESULTS

A. General Equations

For [0 0 1] silicon films, the confinement potential gives an
additional contribution U (z)I to the Hamiltonian (1). In the
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Fig. 2. Conduction band dispersion along the Γ − X -direction obtained with
the EPM and the TB methods. Because of the minimum position found further
away from the X point, the gap between the two conduction bands at the
minimum obtained with the TB method [15] is two times larger.

effective-mass approximation described by (1) with the coeffi-
cient in front of σx set to zero, the confining potential U (z) is
known to quantize the six equivalent valleys of the conduction
band of bulk silicon into the fourfold degenerate primed and the
twofold degenerate unprimed subband ladder. In ultrathin films,
the unprimed ladder is predominantly occupied and must be
considered. The term with σx in (1) couples the two lowest con-
duction bands and lifts the twofold degeneracy of the unprimed
subband ladder. The additional unprimed subband splitting, or
the valley splitting, can be extracted from the Shubnikov-de-
Haas oscillations and is typically in the order of a few tens mi-
croelectronvolts [7]. However, the valley splitting is significantly
enhanced in a laterally confined 2-D electron gas [7]. The valley
splitting is usually addressed by introducing a phenomenolog-
ical intervalley coupling constant at the silicon interface [17].
Here, we investigate the valley splitting based on the two-band
k·p model (1) without introducing any additional parameters.

We approximate the confining potential of an ultrathin silicon
film by a square-well potential with infinite potential walls. This
is sufficient for the purpose to analyze the valley splitting in a
quasi-2-D gas due to interband coupling. The generalization to
include a self-consistent potential is straightforward though nu-
merically involved [18]. Because of the two-band Hamiltonian,
the wave function Ψ is a spinor with the two components |0〉
and |1〉. For a wave function with space dependence in a form
exp(ikz z), the coefficients A0 and A1 of the spinor components
are related via the equation HΨ = E (kz ) Ψ. For a particular
energy E, there exist four solutions ki (i = 1, . . . , 4) for kz of
the dispersion relation (2); therefore, the spatial dependence of
a spinor component α is in the form

∑4
i=1 Ai

α exp(ikiz). The
four coefficients are determined by the boundary conditions that
both spinor components are zero at the two film interfaces. This
leads to the following equations:

tan
(
k1

k0t

2

)
=

k2√
k2
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√
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(
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(3)

where η = ml |δ|/(h̄k0)2 . The value of

k2 =

√
k2

1 + 4 − 4
√

k2
1 + η2 (4)

becomes imaginary at high η values. Then the trigonometric
functions in (3) are replaced by the hyperbolic ones. Special
care must be taken to choose the correct branch of

√
k2

2 + η2 in
(4): the sign of

√
k2

2 + η2 must be alternated after the argument
becomes zero.

For arbitrary parameters, (3) has to be solved numerically.
We present results of the numerical solution in the next section.
However, to gain an insight into the results, it is sufficient to
analyze the solutions in case of small strain.

Introducing yn = (k1 − k2)/2, (3) can be written in the fol-
lowing form [19]:

sin(ynk0t) = ±ηyn sin(
√

((1 − η2 − y2
n )/(1 − y2

n ))k0t)√
(1 − y2

n )(1 − η2 − y2
n )

.

(5)
Solving (5) by perturbations for small values of the parameter

η, we obtain the following dispersion relation for the unprimed
subbands n:

E±
n =
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2ml

(πn

t

)2
+ h̄2 k2
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y

2mt

±
(
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2 |
sin(k0t). (6)

Equation (6) demonstrates that the unprimed subbands are not
necessarily degenerate and degeneracy is preserved only, when
shear strain is zero and either kx = 0 or ky = 0.

B. Valley Splitting in a Magnetic Field

For zero shear strain, the Landau levels in an orthogonal mag-
netic field B are found from (6) by using the Bohr–Sommerfeld
quantization conditions

E(1,2)
m = h̄ωc

(
m +

1
2

)
π

4 arctan
(√

m(1,2)/m(2,1)
) (7)

where

m(1,2) =

(
1

mt
± 1

M

(
πn

k0t

)2 sin(kot)
k0t|1 − (πn/k0t)

2 |

)−1

(8)

and

ωc =
eB√

m1m2c

is the cyclotron frequency, e is the electron charge, and c is the
speed of light. According to (7), the difference |E1

m − E2
m | is

linear regarding the magnetic field.
In Shubnikov-de-Haas experiments, now there will occur two

sets of resistance oscillations with slightly different periods in
inverse magnetic field resolved. Because of the small difference
between the masses, the difference in periods will also be small.
However, at the Fermi level, the quantum number m, which is
proportional to the ratio of the Fermi energy to the cyclotron
frequency, is typically very large and may lead to a splitting
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of several hundreds microelectronvolts. The difference in the
periods can be interpreted as an appearance of an additional
energy shift between the equivalent unprimed valleys. Most
importantly, the shift is linear in the magnetic field. The linear
dependence of splitting between the valleys on the magnetic
field will be also observed even in the presence of a small
intrinsic constant valley splitting as long as this splitting is much
smaller than the Fermi energy. This splitting is possible due to a
remaining shear strain and/or conduction band nonparabolicity,
which is not accounted for in the two-band k·p theory and is
usually several tens of microelectronvolts, thus much smaller
than the Fermi energy. For a 10-nm-thick silicon film grown on
SiGe, it follows from (7) and (8) that the valley splitting can
be several tens of microelectronvolts in a magnetic field of 1 T,
which is consistent with the experimental observations [7].

C. Valley Splitting in a Point Contact

We consider a point contact in [1 1 0] direction realized by
confining an electron system of a thin silicon film laterally by
depleting the area under additional gates. Without strain, the
low-energy effective Hamiltonian in the point contact can be
written as

H(1,2) =
h̄2k′2

x

2m(2,1)
+

h̄2k′2
y

2m(1,2)
+

1
2
κx′2 + Vb (9)

where the primed variables are along the [1 1 0] and [1 –1 0]
axes, the effective masses are determined by (8), κ is the spring
constant of the point contact confinement potential V (x′) =
κx′2/2 in [1 –1 0] direction, and Vb is a gate–voltage-dependent
conduction-band shift in the point contact [20]. The dispersion
relation of propagating modes within the point contact is written
as

E(1,2)
p =

k2k′2
x

2m(2,1)
+ h̄ω(1,2)

(
p +

1
2

)
+ Vb (10)

where ω2
(1,2) = κ/m(1,2) . Since the energy minima of the two

propagating modes with the same p are separated, they are re-
solved in the conductance experiment through the point con-
tact as two distinct steps. The valley splitting is given by
ΔEp = h̄|ω1 − ω2 |. The difference in the effective masses (8)
and, correspondingly, the valley splitting can be greatly en-
hanced by reducing the effective thickness t of the quasi-2-D
electron gas, which is usually the case in a gated electron system,
when the inversion layer is formed.

In a [1 0 0] oriented point contact without strain, the effective
Hamiltonian is

H± = h̄2 k2
x + k2

y

2mt
±

(
πn

k0t

)2 |h̄2kxky /M | sin(kot)
k0t|1 − (πn/k0t)

2 |
+

κ

2
x2 .

Due to symmetry with respect to ky , the subband minima in a
point contact are always degenerate. For this reason, the valley
splitting in [1 0 0] oriented point contacts is greatly reduced.

D. Valley Splitting by Shear Strain

It follows from (6) that shear strain induces a valley splitting
linear in strain for small shear strain values [19]

ΔEn = 2
(

πn

k0t

)2
Dεxy

k0t|1 − (πn/k0t)
2 |

sin(k0t).

The subband splitting is inversely proportional to the film
thickness in the third power, and thus, can be large in thin films.

One can also evaluate the maximum subband splitting
achieved in the limit η → ∞. In this limit, it follows from (2)
that the band dispersion becomes parabolic again around the
minimum located exactly at the X point. The subband quanti-
zation energies are thus determined by the usual quantization
conditions, which results in the subband splitting

ΔEn =
(

h̄π

t

)2 2n − 1
2mt

.

For practically relevant intermediate strain values, a numeri-
cal solution of (3) is required.

IV. NUMERICAL RESULTS

A. Unprimed Subbands

In order to analyze the subband structure in (0 0 1) oriented
thin silicon films, we first approximate the film potential by the
square-well potential with infinite potential walls. Although not
exact, this is a good approximation for thin films. To obtain
the values for the subband splitting and effective masses for an
arbitrary strain value, (3) can be solved numerically. Alterna-
tively, the eigenvalues can be found by resolving the equations
obtained by discretizing the Hamiltonian (1) with kz = −i d

dz
and the confinement potential IU(z) added. The latter method is
more general, because it allows the inclusion of a confinement
potential of arbitrary form making self-consistent calculations
possible.

Both numerical routines were implemented, and equivalent
results were obtained by the two methods in case of a square-
well potential with infinite walls.

The splitting between the unprimed subbands with the same
quantum number n normalized to the ground subband energy in
unstrained films for a film of thickness t = 6.5 nm is shown in
Fig. 3 as function of shear strain. The dependence is not mono-
tonic and strongly depends on the subband number. Even for
the ground subbands with n = 1, the splitting is comparable to
the subband energy at large strain values. The subband splitting
increases rapidly with the film thickness decreased, as demon-
strated in Fig. 4. For ultrathin body films, the splitting can reach
a value comparable to kB T already at moderate strain values.

Results shown in Fig. 4 demonstrate that valley splitting can
be effectively controlled by adjusting the shear strain and mod-
ifying the effective thickness t of the electron system. Uniax-
ial stress along [1 1 0] channel direction, which induces shear
strain, is already used by industry to enhance the performance of
MOSFETs. Therefore, its application to control valley splitting
does not require expensive technological modifications.
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Fig. 3. Splitting between the unprimed subband energies, or the valley split-
ting, in a 6.5-nm-thick silicon film as a function of shear strain. The splitting
values are normalized to the energy of the ground subband without strain. The
value η = 1 corresponds to the shear strain value εxy = 0.016. The value of
valley splitting may alternate its sign, in accordance to (6).

Fig. 4. Shear-strain-induced splitting of the ground subbands for several film
thicknesses. In ultrathin films, the splitting is larger than kT already for moderate
stress.

The dependence of the subband effective masses in [1 1 0]
and [1 –1 0] directions on tensile strain along [1 1 0] direction is
shown in Fig. 5. Similar to the bulk results [10], the effective
mass decreases in the tensile strain direction along [1 1 0] guar-
anteeing enhancement of current and mobility by shear strain in
thin films. However, the effective masses of the two unprimed
subbands with the same quantum number are not equal in thin
films even without strain. Fig. 6 demonstrates a strong depen-
dence of the effective masses of the two ground subbands on
the film thickness t, also predicted by (8). Subbands are, how-
ever, nonparabolic, as shown in the inset of Fig. 6, where the
equipotentials of the corresponding dispersion relations for a

Fig. 5. Effective masses of the two ground subbands. In ultrathin films, the
effective masses of the two ground subbands are different even without stress.

Fig. 6. Thickness dependence in unstrained films of the two lowest unprimed
subbands. Inset: contour plots of the two lowest unprimed subbands.

t = 1.36 nm thin film are shown. This difference in shape is
responsible for the splitting proportional to the strength of an
orthogonal magnetic field. The difference in the in-plane masses
also guarantees a large subband splitting in [1 1 0] oriented point
contacts (10).

B. Primed Subbands

Recent calculations of the primed subbands based on the
“linear combination of bulk bands” method obtained with the
empirical pseudopotential calculations [21] reveal the depen-
dence of the transport effective masses on silicon film thickness
t. Here, we briefly analyze the effective mass of the primed
subbands based on the two-band Hamiltonian (1). We assume
the quantization direction along the [1 0 0] axis. By formally
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Fig. 7. Thickness dependence of the effective mass of the lowest primed
subbands computed with the two-band k·p model (solid line) is in excellent
agreement with the full-band calculations [21].

replacing k0 /ml with ky /M and kx ky /M with kz k0 /ml in
(1) one finds the dispersion relation and the effective masses in
the primed subbands, where results of calculations are shown
in Fig. 7. The two-band k·p results are in excellent agreement
with the “linear combination of the bulk bands” method with a
potential barrier of 3 eV at the film interface [21].

V. CONCLUSION

The unprimed valley structure in (0 0 1) thin silicon films has
been analyzed with the two-band k·p model. It is shown that
the twofold degeneracy of the unprimed subbands can be lifted
leading to the so-called valley splitting. For the first time, the
model predicts that the splitting is proportional to the strength
of the perpendicular magnetic field. The valley splitting is sig-
nificantly enhanced in 〈1 1 0〉 oriented point contacts, while it
should be suppressed in a 〈1 0 0〉 point contact. Finally, the val-
ley splitting can be controlled and made larger than the Zeeman
splitting by shear strain. This makes silicon very attractive for
spintronic applications.
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