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Abstract—Process variations increasingly challenge the manu-
facturability of advanced devices and the yield of integrated cir-
cuits. Technology computer-aided design (TCAD) has the potential
to make key contributions to minimize this problem, by assessing
the impact of certain variations on the device, circuit, and system.
In this way, TCAD can provide the information necessary to decide
on investments in the processing level or the adoption of a more
variation tolerant process flow, device architecture, or design on
circuit or chip level. Five Fraunhofer institutes joined forces to ad-
dress these issues. Their own software tools, e.g., for lithography/
topography simulation, mixed-mode device simulation, compact
model extraction, and behavioral modeling, have been combined
with commercial tools to establish a hierarchical system of simula-
tors in order to analyze process variations from their source, e.g.,
in a lithography step, through device fabrication up to the circuit
and system levels.

Index Terms—Circuit simulation, manufacturability, process
modeling, semiconductor device modeling, sensitivity, yield.

1. INTRODUCTION

S DISCUSSED in the preceding paper [1] also published
in this Special Issue, process variations are increasingly
affecting the performance, the reliability, and the manufac-
turability of advanced semiconductor devices. Simulation is

Manuscript received November 16, 2010; revised February 23, 2011; ac-
cepted March 31, 2011. Date of publication June 16, 2011; date of current
version July 22, 2011. This work was supported by the Fraunhofer Internal
Programs under Grant MAVO 817 759. The review of this paper was arranged
by Editor A. Asenov.

J. K. Lorenz, E. Bédr, P. Evanschitzky, and C. Kampen are with the
Fraunhofer Institute for Integrated Systems and Device Technology (IISB),
91058 Erlangen, Germany (e-mail: juergen.lorenz@iisb.fraunhofer.de;
eberhard.baer @iisb.fraunhofer.de; peter.evanschitzky @iisb.fraunhofer.de;
christian.kampen @iisb.fraunhofer.de).

T. Clees is with the Fraunhofer Institute for Algorithms and Scientific
Computing (SCAI), 53754 Sankt Augustin, Germany (e-mail: tanja.clees@
scai.fraunhofer.de).

R. Jancke is with the Division Design Automation of the Fraunhofer In-
stitute for Integrated Circuits (IIS/EAS), 01069 Dresden, Germany (e-mail:
roland.jancke @eas.iis.fraunhofer.de).

U. Paschen is with the Fraunhofer Institute for Microelectronic Circuits
and Systems (IMS), 47057 Duisburg, Germany (e-mail: uwe.paschen@ims.
fraunhofer.de).

C. P. J. Salzig is with the Fraunhofer Institute for Industrial Mathematics
(ITWM), 67663 Kaiserslautern, Germany (e-mail: christian.salzig@itwm.
fraunhofer.de).

S. Selberherr is with the Institute for Microelectronics, Vienna University of
Technology, 1040 Vienna, Austria (e-mail: Selberherr@ TUWien.ac.at).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TED.2011.2150226

the only realistic possibility for a holistic investigation of the
impact of the large manifold of relevant process variations on
circuits and systems. A hierarchical approach is required to
investigate process variations from their sources, which are
largely at the equipment level, to their impact on devices,
circuits, and systems. Simulation tools are needed, which accu-
rately predict not only nominal values but also their variability,
both along the chain of technological processes and at all
levels.

Based on the assessment of process variability and the state
of the art summarized in [1], in the following relevant appli-
cation results obtained in the “HIErarchische Simulation von
PArameterschwankungen in NAnoelektronischen Systemen”
(HIESPANA) project at Fraunhofer are presented.

II. HIESPANA PROJECT

In the HIESPANA project [2], five Fraunhofer institutes, i.e.,
the Institute for Integrated Systems and Device Technology
(IISB), the Division Design Automation of the Institute for
Integrated Circuits (IIS/EAS), the Institute for Microelectronic
Circuits and Systems (IMS), the Institute for Industrial Mathe-
matics ITWM), and the Institute for Algorithms and Scientific
Computing (SCAI), have joined forces to develop a software
system that allows simulating the impact of process variations.
Further contributions have been made by the Vienna University
of Technology and the University of Cologne. Own software
tools have been combined with third-party tools from software
houses and academic sites to establish a hierarchical system
of simulators to analyze process variations from their source,
e.g., in a lithography process, through device fabrication up
to circuit and system levels. Aside from software integration
issues, the activities have particularly focused on extension of
the lithography (Dr.LiTHO [3], [4]), deposition, and etching
simulation tools from IISB; commercial circuit simulators by
IIS/EAS to allow for the appropriate simulation of variations;
and the behavioral modeling tool Analog Insydes [5] of ITWM
to treat variations with statistical reduction methods. SCAI has
focused on the improvement and the use of advanced tools
for efficiently solving systems of sparse equations (SAMGp
[6]), mixed-level device/circuit simulation MECS [7], and
PRO-CHAIN [8]. The project software has been evaluated with
a demonstrator chip fabricated by IMS. Some examples for
the application of these programs for the hierarchical simu-
lation of the impact of variations are given in the following
section.

0018-9383/$26.00 © 2011 IEEE
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Fig. 1. Geometry and doping concentration of a 32-nm nominal FD SOI
transistor, simulated with Sentaurus Process.

III. RESULTS

Planar fully depleted silicon-on-insulator (FD SOI) transis-
tors are among the most promising device architectures for
scaling beyond the 22-nm node. For the single-gate (SG) FD
SOI transistor shown in Fig. 1, the geometry has been generated
with the solid modeling feature of Sentaurus Process [9].
Doping and electrical properties of the nominal device have
been simulated with Sentaurus Process and Sentaurus Device
[9], respectively.

The first example deals with the impact of focus and dose
variations in optical lithography on the threshold voltage of
32-nm transistors with different architectures. 32-nm bulk, SG
and double-gate (DG) FD SOI devices were investigated. A
basic difference in the impact of these variations on bulk and
the SOI transistors is shown in this example. Using Dr.LiTHO,
the lithography process window analysis [allowing up to 10%
critical dimension (CD) variation] for the 193-nm water im-
mersion process employed yielded a depth of focus of 52 nm
and a “threshold latitude” of 8.5% (see the drawn rectangle in
[1, Fig. 1]). In order to study the impact of process variations
not only under best conditions, the variation range has been
increased to £40 nm around best focus and to a threshold
range of 0.25-0.4 (broken-line rectangle in [1, Fig. 1]). A
fixed etch bias of 13 nm was assumed. The inherent nature
of the lithography process, as discussed in [1, Sec. II], yields
the highly asymmetric probability distribution function (pdf)
of the CD, as shown in Fig. 2. Process and device simulations
using Sentaurus—assuming the gate length distribution from
lithography as previously explained—then predict only for the
bulk metal-oxide—semiconductor (MOS) field-effect transistor
a symmetric threshold-voltage distribution because of the dom-
inating role of the pockets.

For both SOI devices, quite similar highly asymmet-
ric generalized-extreme-value (GEV) distributions result. The
pdf’s for the bulk and the FD SOI n-channel MOS (NMOS)
transistors are shown in Fig. 3. More details on the setup of
this simulation, the interpretation, and the additional results are
presented in [10].
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Fig. 2. Pdf of the transistor gate length subject to variations of focus and dose
in optical lithography.
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Fig. 3. Pdf of the threshold voltage for different transistor architectures. Bulk
NMOS transistor—(top) normal distribution and (middle) SG and (bottom) DG
FD SOI NMOSs—both GEV distributed.

In other simulation studies, the impact of across-wafer inho-
mogeneities in etching [11], silicon thickness variations of SOI
wafers [12], and variations in the peak temperature of millisec-
ond anneals [13] has been investigated. Furthermore, a method
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Fig. 4. Variations of gate (top) length and (middle) width due to defocus and
dose variations in optical lithography. (Bottom) Variations of gate CD due to
variations of etch bias across the wafer, assuming nominal CD after lithography.

to derive variation-aware compact models was shown [12].
In the following, a comprehensive study is presented, which
includes all these effects and methods, including the treatment
of correlations as outlined in [1, Sec. IV]. The fabrication of
SOI transistors has been simulated, using Dr.LiTHO linked to
Sentaurus Process and Sentaurus Device. The impact of focus
and dose variations in lithography was included, affecting both
the gate width and length (see Fig. 4). The apparent double
peak, particularly in the pdf of the gate width, results from
the overlay of the highly asymmetric pdf’s due to focus vari-
ations [10] and a linear pdf due to dose variations. Absolute
CD variations are comparable for the gate length and width.
However, because a nominal width twice as large as the gate
length was used, relative variations are smaller for the width
than for the length. The variation of the etch bias was simulated
using equipment simulation with the CFD-ACE [14] tool cou-
pled with the 3-D etching simulator ANETCH [11] from IISB
(see Fig. 4). For the variation of temperature profiles during
millisecond anneal, an approximation already used before [13]
was applied (see Fig. 5) and fed into the simulation of annealing
with Sentaurus Process.

Similar to the first example, 193-nm water immersion litho-
graphy has been used. The focus was varied between —80 and
10 nm, and the dose was varied between 21.7 and 24.7 mJ/cm?.
Two relevant layers (active n+ /p+ and polygate) of a stan-
dard six-transistor static random-access memory (6T SRAM)
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Fig. 5. Variation of temperature profile during millisecond annealing.

Fig. 6. Resist profiles of (vertical) the active n+ /p+ layers and (horizontal)
the poly layer of four 6T SRAM cells investigated, for fixed values of dose and
defocus. The simulated area is 1.764 pum x 0.754 pm. The pattern sizes are
45, 55, 65, and 105 nm. Due to periodic boundary conditions in the etching
simulations, four cells had to be simulated.

cell were simulated with rigorous mask simulation (solving
Maxwell’s equations), full vectorial image simulation, and a
full resists model, after applying simple optical proximity cor-
rection to the attenuated phase-shift mask used. The simulated
resist layers are shown in Fig. 6. An etch bias with variations
as previously outlined was used. Doping processes were simu-
lated with Sentaurus Process, assuming two implantations for
source/drain (S/D) extensions and contact formation after the
formation of the elevated S/D, respectively. Doses and energies
used were low enough to avoid damage concentrations above
102" cm™3. Combined spike (nominal peak of 1070 °C) and
Flash annealing (1280 °C) was used, as discussed in [12].

Simulation splits were performed as follows: 11 equally
distributed values each for both defocus variables and both dose
values; 11 equally distributed positions along the wafer radius
for the determination of the etch bias; and 11 values for the peak
temperature in the Flash annealing, equally distributed between
1230 °C and 1330 °C. Standard BSIM3SOI [15] parameters
were extracted from three dimensional (3-D) process and device
simulations using Sentaurus, including the length and width
variations previously mentioned. As demonstrated before [12],
temperature variations only affect contact resistances and were
therefore only considered as resistance variations in the SRAM
cell, together with the width and length variations.

In total, 11% variations were simulated with the compact
model as previously described. The six transistors in the cell
were subject to identical variations, however partly starting
from different nominal values due to the layout in lithography.
A python interface was used to transfer the process variations
that resulted from lithography, etching, and annealing to the
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Fig. 7. Classical butterfly characteristic in the READ operation mode of the

6T SRAM cell under the influence of the six statistically independent process
variations.
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Fig. 8. Variation of the READ SNM of the 6T SRAM cell due to the six
statistically independent process variations.

SPICE level. Using this interface, the values of the gate length
and width were first included in the SPICE netlist and second
used to recalculate the contact resistances of the SRAM cell
in combination with the annealing peak temperature, using a
compact model extracted before from the 3-D process and
device simulations. This procedure was repeated after each sim-
ulation step until each combination of process variations was
simulated. The computational effort amounted to about 20 days
on three conventional 2.5-GHz central processing unit cores.

In the following, some key results are presented. Fig. 7 shows
the static behavior of the SRAM cell in the READ state, indi-
cating a large spread of the static noise margin (SNM). Fig. 8
shows the pdf of the SNM of the SRAM cell. In both figures,
a large variability is visible. As an example for the treatment
of the correlations, Fig. 9 shows the strong correlation between
the normalized WRITE delay and the normalized variation of
the gate length. The spread of the WRITE delay at the fixed gate
length indicates the impact of the other variations. Although the
nominal values for the gate length differ in the SRAM cell from
transistor to transistor, due to proximity effects in lithography,
the normalized length variations were identical.

A further detailed discussion of the various correlations and
conditional distributions is just a straight-forward postprocess-
ing of the data obtained.
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Fig. 9. Correlation between the normalized WRITE delay of the 6T SRAM
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the varying quantity (e.g., CD) from its mean value normalized to the standard
deviation of the varying quantity.
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Fig. 10.  Voltage-limiter circuit subject to local and global process variations.

In the next example, the simulation of the impact of local and
global process variations on the circuit level is presented for a
voltage-limiter circuit, as shown in Fig. 10. This analog build-
ing block is used in larger mixed-signal applications, where
full-chip verification requires replacement by an equivalent
behavioral model. The block model needs to represent the
statistical characteristics of the circuit including correlations.
The divided voltage at node “in—"" is compared with reference
Viet, Which, in effect, opens transistor M7 accordingly until the
target value for the voltage at node vdd_rect is reached.

Fig. 11 shows assumed local and global variations of the
threshold voltage V;y, which can be readily obtained from
coupled equipment, process, and device simulations. Here, it
is important to note that not only the sources of variations pre-
viously discussed can be considered but also others that may be
important for the device or the circuit in question, e.g., dopant
fluctuations in the case of transistors with doped channels.

Starting from a SPICE model of the voltage-limiter circuit,
the threshold voltages of the respective transistors are changed
according to these pdf’s. For the local variations, the transistors
are independently treated of each other, whereas global vari-
ations affect all transistors in the same way. In this example,
we examine the variations of the settling time at node vdd_rect
when a voltage ramp is applied.
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Fig. 11. Assumed threshold-voltage variations as combination of (bottom)
global variations for all NMOS devices and (top) local variations for device
MO in the differential pair of the voltage-limiter circuit.

We obtained the influence of the V};, variations on the settling
time separately for local and global variations. This yields two
new random variables for the locally and globally induced
settling-time variations, respectively.

Now, it is possible to parameterize multiple instances of
that block correctly in a hierarchical manner. Again, variations
of the locally induced settling time are independently treated,
whereas global variations affect all blocks simultaneously. This
enables the variation analysis of complex circuits where only a
simulation with behavioral models is feasible.

This separated propagation of local and global variations
is only possible in the case of linear block behavior. Fig. 12
depicts the nearly linear relation between the threshold voltage
and the settling time. Therefore, both distinct distributions yield
the same result as the combined distribution that is shown in
Fig. 13. Further refinements of the simulations are straightfor-
ward, using the approach described in [1, Sec. IV].

For larger circuits or systems, behavioral models, as dis-
cussed in [1, Sec. III-G], can be used. In the next step, be-
havioral models have been extracted using the program Analog
Insydes from Fraunhofer ITWM [16], [17]. Due to the symbolic
modeling of analog circuits in this tool, it is possible to calcu-
late the sensitivities of output parameters y; (here: the output
voltage) on input parameters p; in an analytical way. Starting
with a static behavioral model f(x, p) = 0, where

f:R"xR™— R" (1
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sensitivities S are calculated by

g

_ RIxm 2
€ @)

(z0,Y0)

which is the solution of the equation system

a@ _
2P =0 (3)

(z0,p0)

where z € R" denotes the state vector, p € R™ is the vector
of distributed parameters, xg € R™ is the operating point, and
po € R™ is the nominal design point. The system output vector
y € R?is a subvector of state x. Then

Ylp 2 Ylp, + 5 (p—po) “4)

is a first-order approximation of the system output.

The sensitivities in (zg,pp) yield information about the
output change depending on parameter variations. Using this
approach, the importance of the accuracy of parameters in the
production of a circuit can be estimated.

Table I shows the normalized sensitivity .S - y/p of the output
voltage of the voltage-limiter circuit to various parameters such
as resistances R3 and RS, and the transistor gate width W,
length L, oxide thickness T}, and threshold voltage Viy,, with
the frames referring to those in Fig. 14. Obviously, variations of
the parameters of the dashed block, i.e., the matching resistors,
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TABLE 1
SENSITIVITY OF THE OUTPUT VOLTAGE OF THE VOLTAGE-LIMITER
CIRCUIT WITH RESPECT TO VARIOUS DEVICE PARAMETERS

normalized sensitivity parameters
~0.65 R3, R3
I S S S—
~0.56—0.72 & Tox, Toxm
~051-0.53 : Vtho :
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Fig. 14.  Voltage-limiter circuit. Some blocks are marked, which have different
sensitivity with respect to variations.
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Fig. 15. Pdf of the output voltage of the current-limiter circuit for the original
and reduced behavioral models.

and of some parameters of the dotted block have the largest
impact on the output voltage.

Furthermore, symbolic statistical order reduction, including
treatment of the variations, has been implemented in Analog
Insydes. This allows for the minimization of the number of
equations in the behavioral model (1), largely maintaining
accuracy while reducing simulation time. An example is given
in Fig. 15, where the pdf of the output voltage is compared
between the original and reduced models, yielding good agree-
ment. Table II characterizes the reduced model in terms of the
order reduction and the simulation time.
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TABLE 1II
COMPARISON OF MODEL ORDERS AND SIMULATION TIME FOR
THE ORIGINAL AND REDUCED BEHAVIORAL MODELS

model order simulation time [s]

original 353 18.96
157 3.14
reduced (44.5%) (16.5%)

As a promising approach for enhancing the splitting process
to obtain the R* vectors (see [1, Sec. IV]), as well as for con-
trolling computational and data complexity, the PRO-CHAIN
strategy [8], [18] has been recently transferred to the process-
to-device/circuit simulation chains. PRO-CHAIN has been
originally developed for the forming-to-crash and casting-to-
crash chains arising in the automotive industry. Corresponding
mathematical software modules have been integrated into the
DesParO software [19] for parameter sensitivity analysis, in-
terpolation, and robust multiobjective optimization. The main
steps of the current PRO-CHAIN version for the process-to-
device/circuit simulation chain are:

1) at the process level
a) input: parameters, along with ranges, distribution
functions (determined or assumed), and correlations;
iterative analysis by means of DesParQ: process simu-
lations performed based on a first experimental design
[design of experiment (DoE)] followed by a sensitivity
analysis of results (functionals on discretization grids;
DF-ISE format [9]) and an interpolation and a com-
pression of these functionals and statistical measures
for the overall parameter range; principal component
analysis combined with interpolation based on radial
basis functions and polynomial detrending is used
here; DesParO sets up an extended DoE and requests
another analysis if the current DoE does not allow for
a sufficient interpolation; etc.;
output: database (compressed) describing simulation
results, along with interpolated statistics on, e.g.,
the final grid of the nominal simulation (without
variations);
at the device level or the coupled circuit and device level
[Multiphysical Electric Circuit Simulator (MECS)]
a) input: database from the process level, mapped to the
grid for device simulation if necessary;
b) iterative analysis by means of DesParO for results
(functionals on grids and/or device characteristics);
¢) output: database (compressed) including statistics; and
at the circuit level
a) input: mapped database from the device level or
parameters, along with variations and correlations;
b) iterative analysis by means of DesParO.

In particular PRO-CHAIN together with the mixed-level
simulator MECS allows for a deep analysis of the impact of

b)

)

2)

3)
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variance

Fig. 16. Variance of the potential for the p-channel MOS (PMOS) based
on a DoE with 17 experiments for variations of the gate length and the
channel implantation. On the x- and y-axes, spatial coordinates are shown in
micrometers. The nitride spacers and the oxide areas are located on the right-
hand side.

parameter variations on the process level to the circuit level if,
at least for some devices, compact modeling shall be avoided
and replaced by a tightly coupled circuit and device simulation.

The exemplary output of the statistical analysis of the
process-to-device simulation chain for the HIESPANA demon-
strator is shown in Fig. 16. The gate length and the channel
implantation have been simultaneously varied for a PMOS and
an NMOS in an inverter by means of a DoE with 17 expe-
riments in total. Sentaurus Process and MinimosNT have been
used. The results of the device simulations have been mapped
(interpolated) to the resulting grid of the nominal device sim-
ulation. Variances are substantial, particularly in and/or around
nitride and oxide.

IV. CONCLUSION

Hierarchical coupled equipment, process, device, circuit, and
system simulation is a valuable approach to assess the impact of
variations and to decide about the best equipment, process, and
device architectures options and the best tradeoffs to be taken.
Technologies with normal distributions of process parameters
can lead to highly asymmetric parameter distributions at the
device level. A cooptimization of the nominal performance
of devices, circuits, and systems and of their variability is
of paramount importance because these targets may compete
against each other.
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