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Idealized Aging MechanismsIdealized Aging Mechanisms

In order to characterize degradation, stress is accelerated
Idealized stress conditions are defined

Time-dependent dielectric breakdown (TDDB)
Very large gate voltages ⇒ oxide loses insulating property

Bias temperature instability (BTI)

S/D grounded, elevated temperature

pMOS: −VG ⇒ NBTI

nMOS: +VG ⇒ PBTI (mostly high-κ)

Hot carrier (HC) degradation

Current flow between S/D

Circuit:
All of the above in a mixed form!
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Time Dependent Dielectric BreakdownTime Dependent Dielectric Breakdown

Very large voltages applied to the gate
Larger than about 10MV/cm

All other terminals grounded

Cause of degradation: creation of defects (conducting paths in the oxide)
Oxide loses insulating property

Soft and hard breakdowns

[Sune et al., T-ED ’04]

VDD = 0

VG large
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The Negative Bias Temperature InstabilityThe Negative Bias Temperature Instability

Large negative voltage applied to the gate of a PMOS (NBTI)

Larger than about 4MV/cm

All other terminals grounded

Elevated temperatures (NBTI)
Typically 125 ◦C

Cause of degradation: oxide charges and defects
Drift of Vth, gm, etc.

Degradation occurs in all four configurations
NMOS/PMOS

Negative and positive stress voltages

NBTI in PMOS most important

In high-k NMOSFETs, PBTI equally important

Note:
Degradation occurs also at room temperature and voltages slightly larger than Vth

VDD = 0

VG < 0
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Hot Carrier DegradationHot Carrier Degradation

Voltages applied to both gate and drain
Like BTI, but with current flow from S/D

Carriers become ‘hot’ as they traverse the channel
Excess energy can create defects at drain side

Cause of degradation: oxide charges and defects
Drift of Vth, gm, etc.

Very similar to BTI, except:
Inhomogeneous degradation at the drain side

Degradation does not recover that well

Degradation typ. becomes weaker with increasing T

VDD

VG
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NBTI vs. HC DegradationNBTI vs. HC Degradation

In a circuit NBTI and HC degradation can occur simultaneously

Separation using modified ring-oscillators[1]

Feedback interruptable by control circuitry

Allows separation of BTI and HCI

Activity 50%: BTI + HCI

Activity 0.01%: Almost static BTI

At normal operating conditions
Degradation NBTI dominated

At least for combinatorial logic

[1]
Hofmann et al., VLSI Symp. ’10
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The Negative Bias Temperature InstabilityThe Negative Bias Temperature Instability

When does the NBTI scenario occur?
NBTI: VG ≪ 0V, VS = VD = 0V

Example: inverter with Vin = 0V

Similar scenarios in ring-oscillators, SRAM cells, etc.

VDD

Vin Vout

What happens to the pMOS transistor?

Kimizuka et al., VLSI Symp. ’00
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Conventional NBTI ModelConventional NBTI Model

Most popularized model for NBTI
Reaction-diffusion theory

Stress
Si–H breaks

Creation of Si–•

H diffuses away

2 H form H2

H2 diffusion controls kinetics

Interface

H

Si

H2

Oxide Bulk

0
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Conventional NBTI ModelConventional NBTI Model

Most popularized model for NBTI
Reaction-diffusion theory

Stress
Si–H breaks

Creation of Si–•

H diffuses away

2 H form H2

H2 diffusion controls kinetics

Recovery
H2 repassivates Si–•

H2 back-diffusion controls kinetics

Hole trapping
Obscures data up to 1 s

Has to be ‘subtracted’

Interface

H

Si

H2

Oxide Bulk

0
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Conventional NBTI ModelConventional NBTI Model

Reaction-diffusion (RD) theory
Problem #1: cannot reproduce recovery
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Conventional NBTI ModelConventional NBTI Model

Reaction-diffusion (RD) theory
Problem #2: long-time recovery is due to back-diffusion of neutral H2
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Conventional NBTI ModelConventional NBTI Model

Reaction-diffusion (RD) theory

Problem #3: Duty-factor (DF) dependence nearly constant for DF → 100%
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Conventional NBTI ModelConventional NBTI Model

Reaction-diffusion (RD) theory

Problem #4: elastic hole trapping (HT) cannot fix recovery
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OverviewOverview

Introduction
Stochastic NBTI on small-area devices: link NBTI and RTN

New measurement technique
The time dependent defect spectroscopy

Anomalous defect behavior
Present in all defects

Stochastic model
Additional metastable states, multiphonon theory

Implications
Lifetime of nanoscale MOSFETs

Conclusions
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What is Really Going On?What is Really Going On?

Study of NBTI recovery on small-area devices [1] [2] [3] [4] [5]

Stochastic and discrete charge emission events, no diffusion

[1]
Reisinger et al., IIRW ’09

[2]
Grasser et al., IEDM ’09

[3]
Kaczer et al., IRPS ’10

[4]
Grasser et al., IRPS ’10

[5]
Reisinger et al., IRPS ’10
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Recoverable NBTI due to the same Defects as RTNRecoverable NBTI due to the same Defects as RTN

Quasi-equilibrium:
Some defects neutral, others positive, a few produce random telegraph noise (RTN)

Stress:
Defects switch to new equilibrium (mostly positive), a few may produce RTN

Recovery:
Slow transition (broad distribution of timescales) to initial quasi-equilibrium
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Experimental ResultsExperimental Results

Short stress may activate only a single defect
Defect initially only charged with 30%, 1− exp(−ts/τc) = 0.3 ⇒ τc & 3ms

Defect discharges around τe = 4 s

Averaging results in the expected exp(−t/τ) behavior
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Each Defect has Unique FingerprintEach Defect has Unique Fingerprint

[Courtesy: Glasgow University]
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[Courtesy: Glasgow University]
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Distribution of Step-HeightsDistribution of Step-Heights

Like RTN, NBTI step-heights are exponentially distributed[1]
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[1]
Kaczer, IRPS ’10
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The Time Dependent Defect Spectroscopy (TDDS)The Time Dependent Defect Spectroscopy (TDDS)

Analyzes contributions from multiple traps via spectral maps [1] [2]
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Grasser et al., IRPS ’10

[2]
Grasser et al., PRB ’10
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The Time Dependent Defect SpectroscopyThe Time Dependent Defect Spectroscopy

Function of stress time ts
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The Time Dependent Defect SpectroscopyThe Time Dependent Defect Spectroscopy

Function of stress time ts



20/60

The Time Dependent Defect SpectroscopyThe Time Dependent Defect Spectroscopy

Function of temperature
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The Time Dependent Defect SpectroscopyThe Time Dependent Defect Spectroscopy

Different non-linear field dependence of the capture time constants

Different bias dependence of emission time constant: two defect types?
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Anomalous Defect BehaviorAnomalous Defect Behavior
Defects disappear temporarily from the map (#7)

Long term stability: defect #6 missing for a few months now
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Anomalous Defect BehaviorAnomalous Defect Behavior

Temporary random telegraph noise (tRTN)
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How Can We Model All That?
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Charging of Oxide DefectsCharging of Oxide Defects

Conventional model
Elastic tunneling, results in a ’tunneling front’ (1 nm in 10ms)
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How are Charges Really Trapped in Oxides?How are Charges Really Trapped in Oxides?
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100 Femtoseconds in the Life of an E’ center100 Femtoseconds in the Life of an E’ center
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Charging of an E’ centerCharging of an E’ center
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Puckering of an E’ centerPuckering of an E’ center
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Detailed Defect Model RequiredDetailed Defect Model Required
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Nonradiative Multiphonon TheoryNonradiative Multiphonon Theory

Developed for F-centers and defects in III-V semiconductors[1] [2]

O in GaP, Fe and Cr in GaAs, etc.

Thermal vibrations modulate ET

Total energy: vibrational plus electronic
Adiabatic approximation

Linear coupling: changes defect level

Quadratic coupling: changes in vibrational frequency
Explains optical energies

[1]
Huang and Rhys, Proc.Roy.Soc.A 50

[2]
Henry and Lang, PRB 77
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ModelModel

Different adiabatic potentials for the neutral and positive defect

Metastable states 2’ and 1’ are secondary minima
Thermal transitions to ground states 1 and 2

Stochastic Markov-model for defect kinetics based on multiphonon theory
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Charging of Oxide DefectsCharging of Oxide Defects

Nonradiative multiphonon model
Inelastic tunneling, no ’tunneling front’
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Qualitative Model EvaluationQualitative Model Evaluation

Normal random telegraph noise (RTN)
Very similar energetical position of the minimas 1 and 2
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Qualitative Model EvaluationQualitative Model Evaluation

Anomalous RTN
Very similar energetical position of the three minima 1, 2, and 1’
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Qualitative Model EvaluationQualitative Model Evaluation

Temporary random telegraph noise (tRTN)
Very similar energetical position of the minima 2 and 1’
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Quantitative Model EvaluationQuantitative Model Evaluation

Excellent agreement for both capture and emission time constants
Capture time: particularly important for back-extrapolation of stress data

Emission time: determines recovery behavior

Does the defect act like a switching trap?
Depends on the defect configuration
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Model SummaryModel Summary

All features can be consistently explained with a general defect model
Differences simple consequences of defect potentials (amorphous oxide!)
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NBTI ModelingNBTI Modeling

NBTI model based on switching traps (Grasser et al., IRPS ’09)
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Why Would We Care?
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How to Determine the Lifetime?How to Determine the Lifetime?

Small area devices: lifetime is a stochastic quantity [1]

Charge capture/emission stochastic events

Capture and emission times distributed

Number of defects follow Poisson distribution
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How to Determine the Lifetime?How to Determine the Lifetime?

Small area devices: lifetime is a stochastic quantity
Charge capture/emission stochastic events

Capture and emission times distributed

Number of defects follow Poisson distribution
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How to Determine the Lifetime?How to Determine the Lifetime?

Small area devices: lifetime is a stochastic quantity [1]

Charge capture/emission stochastic events

Capture and emission times distributed

Number of defects follow Poisson distribution
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How to Determine the Lifetime?How to Determine the Lifetime?

Small area devices: lifetime is a stochastic quantity
Charge capture/emission stochastic events

Capture and emission times distributed

Number of defects follow Poisson distribution
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Stochastic LifetimesStochastic Lifetimes

Distribution of lifetime[1]

Variance increases with decreasing number of defects
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How to Model This with SPICE?
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Compact ModelingCompact Modeling

First attempt: approximate multi-state model by two-state model[1] [2]

Try to capture the notoriously difficult dynamics first

Effective capture and emission time constants

Differential equation for a two-state model
Corresponds to an RC equivalent circuit

Two branches: charging vs. discharging

[1]
Kaczer et al., IRPS ’10

[2]
Reisinger et al., IRPS ’10
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Compact ModelingCompact Modeling

Example: modeling of recovery[1]

Crude approximation: 1 RC element every 3 decades

[1]
Reisinger et al., IRPS ’10
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Compact ModelingCompact Modeling

Example: modeling of recovery[1]

Finer approximation: 2 RC elements every 3 decades

[1]
Reisinger et al., IRPS ’10
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Compact ModelingCompact Modeling

Extraction of the time constants[1]

[1]
Reisinger et al., IRPS ’10
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Compact ModelingCompact Modeling

Example: dynamic stress/recovery experiment[1]

[1]
Reisinger et al., IRPS ’10 and IRPS ’11 (Tutorial)
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Compact Modeling: Duty Factor DependenceCompact Modeling: Duty Factor Dependence

Notorious problem[1] [2] [3]

[1]
Grasser et al., IEDM ’07

[2]
Grasser et al., IRPS ’08 (Tutorial)

[3]
Reisinger et al., IRPS ’10/IRPS ’11 (Tut.)
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Compact Modeling: Duty Factor DependenceCompact Modeling: Duty Factor Dependence

Notorious problem[1] [2] [3]

[1]
Grasser et al., IEDM ’07

[2]
Grasser et al., IRPS ’08 (Tutorial)

[3]
Reisinger et al., IRPS ’10/IRPS ’11 (Tut.)
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Stochastic Impact on CircuitStochastic Impact on Circuit

Implementation of stochastic behavior of distributed traps in VERILOG[1]

[1]
Kaczer et al., IRPS ’11
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Stochastic Impact on CircuitStochastic Impact on Circuit

Model correctly incorporates distribution of ∆Vth
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Stochastic Impact on CircuitStochastic Impact on Circuit

Example circuit with inverter: Jitter vs. NBTI[1]

[1]
Kaczer et al., IRPS ’11
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Stochastic Impact on CircuitStochastic Impact on Circuit

Example circuit with inverter: Jitter vs. NBTI[1]

[1]
Kaczer et al., IRPS ’11
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Stochastic Impact on CircuitStochastic Impact on Circuit

Distribution of delay widens with time[1]

[1]
Kaczer et al., IRPS ’11
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Stochastic Impact on CircuitStochastic Impact on Circuit

Normalized delay-power plot shifts and widens with time[1]

[1]
Kaczer et al., IRPS ’11
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Stochastic Impact on CircuitStochastic Impact on Circuit

In this model, jitter is independent of aging[1]

[1]
Kaczer et al., IRPS ’11
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Stochastic Impact on CircuitStochastic Impact on Circuit

Runtime penalty of VERILOG implementation
Example circuit with 6 MOSFETs

15 traps per MOSFET (90 traps in total)
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ConclusionsConclusions

Statistics of individual defects become important in nanoscale MOSFETs
Random number of traps

Random distribution of traps in space

Random defect properties

Interaction with random discrete dopants

Discrete stochastic charge capture and emission events

Measurement method: time dependent defect spectroscopy (TDDS)
Allows extraction of τ̄e, τ̄c, and step-height over very wide range

Allows simultaneous analysis of multiple defects

Fundamental implications on device reliability
Lifetime is a stochastic quantity

Lifetime will have a huge variance

Circuit modeling
Capture expectation values using distributed RC elements in SPICE

Capture all features using a VERILOG implementation
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