Monte Carlo Methods and Applications, 97-104 © De Gruyter 2013

Chapter 11

A Two-Dimensional Lorentzian Distribution
for an Atomic Force Microscopy Simulator

Lado Filipovic and Siegfried Selberherr

Abstract. Atomic force microscopy (AFM) is a lithographic technique capable of manufac-
turing nanometer-sized devices. A Monte Carlo simulator for oxide growth on a silicon sub-
strate using the AFM method is described. In previous publications, it is shown that a nano-
dot formed using AFM has a diagonal cross section that closely resembles the Lorentzian
distribution. Therefore, an essential part of the simulator is the generation of particles us-
ing a two-dimensional Lorentzian distribution around the AFM needle tip. A successful al-
gorithm was generated by integrating the probability distribution, while taking into consid-
eration two-dimensional pieces of the surface. A second evenly-distributed value is used to
generate a radial distribution 6. The location of each generated particle is then described by
(x,y) = (ry cos B,y sin6).
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11.1 Introduction

Atomic force microscopy (AFM) [1] was developed in 1986 as a method to detect
depressions and protuberances on a nanometer-sized section of a sample surface. Fol-
lowing this initial discovery, the use of an atomic force microscope was also shown to
be an effective tool in the oxidation of nanometer-sized patterns on a silicon wafer [2].
Furthermore, it has been extensively used not only in the semiconductor industry,
but also in physics, chemistry, biology, biochemistry, and other disciplines where the
chemical or physical properties of a surface are required [3]. The AFM lithographic
technique is capable of manufacturing nanometer-sized devices and is a promising
alternative to modern lithographic methods. Performing physical simulations to repli-
cate the AFM process is currently not feasible for large surface simulations, and there-
fore a Monte Carlo approach must be considered. Previous research has shown that
a simulator for the generation of AFM nanodots is feasible in a Level Set environ-
ment [4] using empirical equations for the nanodot height and full width at half max-
imum (FWHM). It has also been shown that the physical shape of an oxide dot, gen-
erated using AFM, most closely resembles a Lorentzian distribution when viewed in
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diagonal cross sections [5]. Therefore, it is the goal of this work to create a Monte
Carlo simulator for an AFM nanodot following a two-dimensional Lorentzian distri-
bution around the AFM needle tip.

The simulator must be seamlessly integrated into an existing Level Set simula-
tor environment, which is described in detail in [6]. The wafer surface and surfaces
where differing materials intercept, such as the silicon—silicon-dioxide interface, are
described using the Level Set equation. The equation describing the effect of the pro-
cessing conditions, including bias voltage, process time, and ambient humidity, on the
height and FWHM of the oxide nanodot is

H(t,V,h) = [Hy (V) + H> (V) In (1)] [0.00037h% — 0.019h + 0.928] ,
W(t,V,h) = [(11.6 + 9V) + (2.7 + 0.9V) In(¢)] [0.019h — 0.051]

where H; = —2.1 + 0.5V — 0.006V2 and H, = 0.1 + 0.03V — 0.0005V 2.

11.2 Modeling Oxidation Kinetics

Figure 11.1a shows a simplified version of the kinetics of AFM oxidation. A charged
AFM tip is brought near a grounded silicon surface, resulting in the generation of an
electric field. This field breaks up the ambient into ions and causes the downward ac-
celeration of oxyions (O™, OH™) towards the surface. The combination of these ions
with the silicon surface results in the generation of SiO5. The model implemented to
mimic oxidation kinetics is similar to the method described in [5]. Particles are gener-
ated around the needle tip with a desired two-dimensional distribution. Each particle is
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(a) Oxidation kinetics. (b) Oxidation kinetics model.

Figure 11.1. The AFM tip is modeled by generating particles generated around the needle tip,
following a desired distribution.
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accelerated towards the silicon surface, causing a “bump” upon impact. The summa-
tion of all particles generates the desired nanodot shape on the surface. In [5] particles
are generated using an even distribution. The Monte Carlo rejection technique is then
implemented to select the particles to be used for the nanostructure. The Monte Carlo
rejection techniques is not feasible when nanosized structures are required to be sim-
ulated on millimeter sized wafers.

Therefore, a more direct Monte Carlo approach must be taken to simulate nanodots
and nanowires. The implementation of the simulator is as follows:

1. Generate a particle at position po(Xo,yo,Zo), located on a plane parallel to the sili-
con surface with a desired distribution (Gaussian or Lorentzian), as shown in Fig-
ure 11.1b. xp and yg are distributed random variables, while zg = d is the effective
vertical position of the static dot charge.

2. Accelerate the particle towards the silicon surface along the vertical direction, until
it collides with the top surface.

3. At the impact location, advance the ambient—oxide interface towards the ambient
while advancing the oxide—silicon interface into the silicon.

4. If the number of particles is 0 the simulation is complete. Otherwise particle counter
must be reduced by 1 and the procedure must be repeated from Step 1.

The processing steps required to simulate AFM using a Monte Carlo method with a
Gaussian or Lorentzian distribution of particles is shown in Figure 11.2.

m = Method (char array, "dot" or "wire")

v =Voltage (double) Pa;‘tiltcle Advance particle to
t = Pulse time (double) surface? next grid square

h =Humidity (double)
n = Number of particles (int)
s = Start position (double array)
e = End position (double array - "wire")
'Jl, 1. At contace location, generate bump
—Bump height H (m, v, t, h)
2.n=n-1

1. Generate particle
2. Particle position p (double array)
- Depends on distribution
- Depends on FWHM (m, v, t, h, s)
- If "wire", p also depends on e
1

Accelerate particle toward .
oxide surface
T YES

Figure 11.2. Flow chart for the Monte Carlo AFM simulator in a Level Set environment.
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Figure 11.3. Difference between Gaussian and Lorentzian distributions.

11.3 Development of the Lorentzian Model

As seen from the previous discussion regarding the Monte Carlo model for AFM ox-
idation from Figure 11.2, a method to distribute particles according to a desired dis-
tribution is required. The Gaussian distribution is well known; however, in a previous
publication [5] it was found that a Lorentzian distribution is a better fit to the final
shape of a desired nanostructure, as can be seen in Figure 11.3.

The implementation of the Gaussian distribution was performed successfully, while
a similar approach to the Lorentzian distribution was attempted without much success.
Therefore, in order to generate particles according to a Lorentzian distribution, a novel
approach was developed.

11.3.1 Algorithm for the Gaussian Model

The quantile function of the one-dimensional Gaussian distribution, required for the
generation of a random particle position x, is

xr=2ef ' Qu—1  ue(01). (1.1

Because of the error function, the quantile Gaussian function is not easily imple-
mentable in a Monte Carlo environment, and hence another model is desired. The
model implemented is based on the well-known Marsaglia polar method [7]. This
method suggests a way to generate two independent standard normal random vari-
ables. The first step is the generation of an evenly distributed random point (ry,ry)
within a circle of unity radius s = r2 + rf, where ry and r), are evenly distributed
random numbers € (—1, 1). The Gaussian distributed coordinates (x,y) can then be
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(a) Gaussian nanodot and its (b) diagonal cross section.

Figure 11.4. Nanodot generated using Gaussian particle distribution.

calculated using the Marsaglia equations:

X =Ty #n(s)’ y=ry,/#n(s). (11.2)

A sample Gaussian distributed nanodot is shown in Figure 11.4.

11.3.2 Development of the Lorentzian Model
11.3.2.1 One-Dimensional Lorentzian Distribution

The normalized pdf (probability density function) of the Lorentzian distribution is
given by
1 1
SO =TT e
The cpd (cumulative probability distribution) is found by integrating the probability
density function ® (x) = [*_ f (u) du

(11.3)

D (x) = %arctan (x) + % (11.4)

The quantile function of the Lorentzian distribution, required for particle generation,

is the inverse cpd 1
xr = &1 (u) = tan |:n (u - E)i| , (11.5)

where u € (0, 1) is a uniformly distributed random number.

11.3.2.2 Two-Dimensional Lorentzian Distribution

We must perform the same analysis shown for the one-dimensional Lorentzian distri-
bution in order to generate a two-dimensional Lorentzian quantile function. The pdf
of the two-dimensional Lorentzian distribution can be represented as

Cc

f(LY):m, (11.6)
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where C is the normalization constant. Using polar coordinates, where x2 + y? = r2

and dx dy = r dr d9, it can easily be shown that the pdf cannot be normalized in the
whole 32, We therefore must normalize the equation to a desired maximum radius

Tmax:
Fmax 1 2
1:2710/0 mrdr:Cnln(1+rmaX). (11.7)
The normalization constant follows from the cpd, normalized to 7pay:
In(1+r?
@ (r) = In(i+rg) : (11.8)
In (1 +r2.)

where we can treat In (1 + rr%m) as a rmax-dependent constant M. By inverting the
cpd and solving for r7, we can find the two-dimensional Lorentzian quantile function,
required for particle generation,

rp = VerM 1, (11.9)

where u €(0,1) is a uniformly distributed random number.

An evenly-distributed angle 6 between 0 and 27 is generated, and the final parti-
cle position is given by (x,y) = (rx cos 8,ry sin8). It can be observed that the choice
of rmax affects the height of the Lorentzian distribution, thereby affecting the height
of the desired nanodot. Therefore, an additional contribution, dependent on ry,x is
needed in the equation for the height generated by each particle. This contribution is
In(1 + r2,,). The resulting nanodot cross section, shown in Figure 11.5 matches the
ideal one-dimensional Lorentzian distribution. This method allows for the generation
of nanodots, such as the one shown in Figure 11.6, which follow a Lorentzian distri-

bution, as required for the AFM simulator.

Ideal Lorentzian distribution
Numerical MC particle distribution

Figure 11.5. Nanodot cross section generated using a Lorentzian distribution.
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Figure 11.6. Nanodot generated using Lorentzian particle distribution.

11.3.2.3 Marsaglia Polar Method

The expression for the quantile function in (11.9) suggests a potential connection to
the Marsaglia polar method. A Lorentzian distribution can be generated using a similar
procedure. The first step is, once again, the generation of a random point (ry,ry) within
a unit circle with radius s = r)% + rf. The Lorentzian distributed coordinates (x,y) can
then be expressed as

R L oy=n S (11.10)

where M = In (1 + r2

max/ "

11.4 Conclusion

A two-dimensional Lorentzian distribution of particles is developed for an AFM simu-
lator. The simulator implements a Monte Carlo method to generate particles around the
needle tip, which are subsequently accelerated towards the wafer surface, described
using the Level Set equation. Once the particles have been generated and accelerated
towards the surface, the resulting structure forms an AFM nanodot, the cross sec-
tion of which follows a Lorentzian probability distribution. A method, similar to the
Marsaglia polar method for Gaussian particle generation is implemented to generate
Lorentzian distributed particles in two-dimensional space.
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